Steven B. Bank

An existence theorem for certain solutions of algebraic differential equations in sectors

<http://www.numdam.org/item?id=RSMUP_1974__51__67_0>

STEVEN B. BANK (*)

1. Introduction.

In this paper we consider first-order differential equations,

\[\Omega(z, y, y') = \sum_{k,l \geq 0} f_{k,l}(z) y^k (y')^l = 0, \]

where \(\Omega \) is a polynomial in \(y \) and \(y' \), whose coefficients \(f_{k,l}(z) \) are complex functions, defined and analytic in a sectorial region which is approximately of the form,

\[a < \arg(z - \beta \exp[i(a + b)/2]) < b, \]

(for some \(\beta > 0 \)), and where each non-zero \(f_{k,l}(z) \) has an asymptotic expansion in terms of real powers of \(z \), as \(z \to \infty \) over a filter base (denoted \(F(a, b) \)) which consists essentially of the sectors (2) as \(\beta \to +\infty \). (We are using here the stronger concepts of «asymptotically equivalent» (\(\sim \)) and «smaller rate of growth» (\(\ll \)) which were introduced by W. Strodt in [5; §13]. For the reader’s convenience, these concepts are reviewed in §2 below, and we point out that the class of equations treated here contains, as a special case, the class of equations having polynomial coefficients.) The equations (1) were

(*) Indirizzo dell'A.: Dept. of Mathematics, University of Illinois, Urbana, Illinois 61801, U.S.A.
among those equations which were treated in [2], [5] and [7], where
existence theorems were proved for solutions which are asymptotically
equivalent over $F(a, b)$ to logarithmic monomials (i.e. functions of
the form,

$$M(z) = Kz^{\alpha_{*}}(\log z)^{\alpha_{1}}(\log \log z)^{\alpha_{2}} \cdots (\log_{q} z)^{\alpha_{q}},$$

for real α_{j} and complex $K \neq 0$). If (1) has a solution which is $\sim M$
over $F(a, b)$, then M must be a critical monomial [2; §§ 4, 5] of Ω (i.e.
M is a point of instability of Ω in the sense that for some function
g $\sim M$, $\Omega(z, g, g')$ is not $\sim \Omega(z, M, M')$ over $F(a, b)$). An algorithm
for determining all critical monomials of Ω was developed in [2; §§ 21, 22]
and the powerful Strodt-Wright theorem [7; p. 221] states, in part,
that for every critical monomial M of Ω, there exists a solution $\sim M$
over a suitable $F(a_{1}, b_{1})$. (For the special class treated in this paper,
the algorithm shows that $\alpha_{1} = 0$ for $j > 2$).

In [1], existence theorems were proved for solutions of (1) which
are of larger rate of growth than all logarithmic monomials over $F(a, b)$
and also for solutions which are of smaller rate of growth than all
monomials. (These solutions are of the form $\exp \left[\int W \right]$, where W is \sim
to a logarithmic monomial of the form $Kz^{\alpha_{*}}$).

In [3], a converse result was proved which shows that for the class
of equations treated here, any solution $h(z)$ of (1), which is meromorphic
in an element of $F(a, b)$ and which is \ll comparable \ll with all loga-
rithmic monomials M over $F(a, b)$ (in the sense that for any M, one
of the relations $h \ll M$, $M \ll h$ or $h \sim cM$ for some $c \neq 0$, is valid over
$F(a, b)$), must either be asymptotically equivalent to a logarithmic
monomial or of the form $\exp \int W$, where $W/Kz^{\alpha_{*}} \to 1$ over $F(a, b)$, for
real α_{0} and complex $K \neq 0$.

Of course, equations (1) can possess solutions which violate the
above comparability condition such as solutions which are \sim to func-
tions of the form cz^{α}, where α is a nonreal complex number and $c \neq 0$.
(It is easy to see that for such α, z^{α} and $z^{\text{Re}(\alpha)}$ are not comparable over
any $F(a, b)$). Thusfar, no general existence theorem for such solu-
tions of nonlinear equations (1) has been proved, and in this paper,
we prove such a result. Because of the noncomparability property
of such functions cz^{α} with logarithmic monomials, the concept of
a point of instability of Ω cannot in general be used as the starting
point in the search for such solutions because as is pointed out in
$p.$ p. 253], it is possible for a function cz^{α}, with α nonreal, to be a
point of instability of Ω, and yet there be no solution of (1) which
is \(\sim c \zeta^x \) over any \(F(a, b) \). However, in the case of those \(\Omega \) which are homogeneous as polynomials in \(y \) and \(y' \), it is true that for nonreal \(\alpha \) the equation \(\Omega = 0 \) possesses a solution \(\sim c \zeta^x \) over \(F(a, b) \), if \(c \zeta^x \) is a point of instability of \(\Omega \). (See §§ 4, 6 below). It is this fact which is the basis for our method for nonhomogeneous \(\Omega \). Roughly speaking, we show that under certain conditions if \(c \zeta^x \) (with \(\alpha \) nonreal) is a point of instability of a homogeneous part of \(\Omega \), and if this homogeneous part is in some sense «dominant» for \(z \Re(a) \), then the whole equation \(\Omega = 0 \) possesses a solution which is \(\sim c \zeta^x \) over \(F(a, b) \). We remark that it is very easy to determine those functions \(c \zeta^x \) which are points of instability of a homogeneous part of \(\Omega \) (see § 6), and that in any given example, it is very easy to test whether the hypothesis is satisfied for the particular \(c \zeta^x \) involved.

The proof of the main result consists of using the exact solution \(\sim c \zeta^x \) of the homogeneous part of the equation involved (see § 4), to eventually transform the whole equation \(\Omega = 0 \) into a quasi-linear equation of the type treated by Strodt in [5; § 117], where a method of linear successive approximations was successful.

2. Preliminaries.

(a) [5; § 94]. Let \(-\pi < a < b < \pi\). For each nonnegative real-valued function \(g \) on \((0, (b - a)/2)\), let \(V(g) \) be the union \(\{ \delta \in (0, (b - a)/2) \mid a + \delta < \arg (z - h(\delta)) < b - \delta \} \) where \(h(\delta) = g(\delta) \exp [i(a + b)/2] \). The set of all \(V(g) \) (for all choices of \(g \)) is denoted \(F(a, b) \), and is a filter base of simply-connected regions which converges to \(\infty \) by [5; §§ 93, 95]. By \(\log z \), we will mean the principal branch of the logarithm in \(|\arg z| < \pi \). By induction, it is easy to see that the function \(\log(\log(z)) \) is defined and analytic in some element of \(F(a, b) \). If \(\alpha \) is a complex number, then as usual, \(z^\alpha \) will denote \(\exp[\alpha \log z] \).

(b) [5; §§ 13, 17]. If \(f \) is analytic in an element of \(F(a, b) \), then \(f \to 0 \) over \(F(a, b) \) means that for any \(\varepsilon > 0 \), there is an element of \(F(a, b) \) on which \(|f(z)| < \varepsilon \). The statement \(f \ll 1 \) over \(F(a, b) \) means that in addition to \(f \to 0 \), for all positive integers \(j \) and \(k \) we have \(\theta_k f \to 0 \), where \(\theta_k f = (z \log z \ldots \log_{k-1} z)f' \), and where \(\theta_k^j \) is the \(j \)-th iterate of the operator \(\theta_k \). Then \(f \ll g, f \gg g, f \sim g \) and \(f \approx g \) over \(F(a, b) \) mean respectively, \(f/g \ll 1, g/f \ll 1, f - g \ll g \) and finally \(f \sim cg \)
for some constant $c \neq 0$. The crucial property [5; § 28] of the relation \ll is that if $f \ll 1$ over $F(a, b)$, then $\theta_j f \ll 1$ over $F(a, b)$ for all $j > 0$. From this, it easily follows that if $f \sim cz^\alpha$, where c and α are nonzero complex numbers, then $f' \sim \alpha cz^{\alpha-1}$. It is easily verified that for any complex number α and any $\varepsilon > 0$, we have $z^{\text{Re}(\alpha)-\varepsilon} \ll z^\alpha \ll z^{\text{Re}(\alpha)+\varepsilon}$ over $F(a, b)$.

(c) [6; p. 244]. A logarithmic field of rank zero over $F(a, b)$ is a set L of functions, each defined and meromorphic in an element of $F(a, b)$, with the following properties: (i) L is a field (where, as usual, we identify two elements of L if they agree on an element of $F(a, b)$); (ii) L contains all functions of the form cz^{β}, for real β and complex $c \neq 0$, and (iii) for every element f in L except zero, there exists a function cz^{β}, with β real and $c \neq 0$, such that $f \sim cz^{\beta}$ over $F(a, b)$. (The set of all rational combinations of the functions cz^{β} is the simplest example of such a field, and this field clearly contains the field of rational functions.)

(d) let the equation (1) have coefficients in a logarithmic field L of rank zero. We say Ω is nontrivial if some coefficient is not identically zero. If $f_{kj} \neq 0$, then

$$f_{kj}(z) = c_{kj} z^{\alpha_{kj}} (1 + E_{kj}),$$

where a_{kj} is real, c_{kj} is a nonzero complex number, and E_{kj} is an element of L which is $\ll 1$ over $F(a, b)$. We denote by $\delta_0(f_{kj})$ the number a_{kj}. (If $f_{kj} \equiv 0$, we set $\delta_0(f_{kj}) = -\infty$). Let $A = (k + j; f_{kj} \neq 0)$. If $q \in A$, we denote by $\Omega^{(q)}$ the homogeneous part of Ω of degree q in the indeterminates y and y'. For a real number β, we set,

$$\Omega^{(q)*, \beta} = \beta q + \max \{ \delta_0(f_{kj}) - j; k + j = q \}.$$

Finally [2; § 17], the critical equation of $\Omega^{(q)}$ is the equation $G_q(x) = 0$, where

$$G_q(x) = \sum \{ c_{kj} x^j; (k, j) \in J_q \},$$

where

$$J_q = \{(k, j); k + j = q \text{ and } \delta_0(f_{kj}) - j = \Omega^{(q)*, 0}\}.$$
3. We now state our main result.

The proof will be given in § 5.

THEOREM. Let \(\Omega(z, y, y') = \sum f_{k,j}(z) y^k(y')^j \) be a nontrivial polynomial in \(y \) and \(y' \) whose coefficients belong to a logarithmic field of rank zero over \(F(a, b) \). Let \(A = \{k + j : f_{k,j} \neq 0\} \), and for \(q \in A \), let \(G_q(x) = 0 \) be the critical equation of \(\Omega^{(q)} \). Let \(\alpha \) be a nonzero complex number for which there exists an element \(p \) in \(A \) such that,

(a) \(\alpha \) is a simple root of the equation \(G_p(x) = 0 \), and

(b) \(\Omega^{(q)}[\star, \Re \alpha] < \Omega^{(q)}[\star, \Re \alpha] \) for all \(q \in A - \{p\} \).

Assume further that if \(A \neq \{p\} \), then there exists an element \(t \) in \(A - \{p\} \) such that,

(c) \(G_t(\alpha) \neq 0 \), and

(d) \(\Omega^{(q)}[\star, \Re \alpha] < \Omega^{(q)}[\star, \Re \alpha] \) for all \(q \in A - \{p, t\} \).

Then, for any complex number \(c \neq 0 \), the equation \(\Omega = 0 \), possesses a solution \(y_c \), which is analytic in an element of \(F(a, b) \) and satisfies \(y_c \sim cz^{\alpha} \) over \(F(a, b) \).

4. Lemma.

Let \(\Omega(z, y, y') = \sum f_{k,j}(z) y^k(y')^j \) be a nontrivial polynomial in \(y \) and \(y' \) whose coefficients belong to a logarithmic field of rank zero over \(F(a, b) \), and assume that \(\Omega \) is homogeneous as a polynomial in \(y \) and \(y' \) (i.e. for some \(p \), \(\Omega = \Omega^{(p)} \)). Then, if \(\alpha \) is a nonzero complex root of the critical equation \(G_p(x) = 0 \) of \(\Omega \), and \(c \) is a nonzero complex number, then the equation \(\Omega = 0 \) possesses a solution \(g \), which is analytic in an element of \(F(a, b) \), and satisfies \(g \sim cz^{\alpha} \) over \(F(a, b) \).

PROOF. Since \(\Omega = \Omega^{(p)} \), if we divide the equation \(\Omega = 0 \) by \(y^p \), and set \(v = y'/y \), we obtain

\[
H(v) = \sum_{k+j=p} f_{k,j}(z) v^j = 0 .
\]
Let $\beta = \Omega^*[\ast, 0]$, let J_σ be as in (7) and let σ be a complex number. Using the representation (4) for the coefficients, and noting that $a_{kj} - j = \beta$ if $(k, j) \in J_\sigma$, while $a_{kj} - j < \beta$ if $(k, j) \notin J_\sigma$, it follows easily from (6) and (8) that,

\begin{equation}
H(\sigma z^{-1}) = z^\theta (G_\sigma(\sigma) + E) \quad \text{where } E \ll 1 \quad \text{over } F(a, b).
\end{equation}

Let σ_0 be a complex number which is not a root of G_σ. Then since $G_\sigma(\sigma) = 0$, we have,

\begin{equation}
H(\sigma z^{-1}) \ll z^\theta \approx H((\sigma_0/\sigma) \alpha z^{-1}).
\end{equation}

Thus by \cite[\S 5(a)]{2}, αz^{-1} is a point of instability of H, so in the terminology of \cite[\S 5]{6}, the instability multiplicity of αz^{-1} for H is at least 1, that is,

\begin{equation}
\text{inst}(\alpha z^{-1}, H) \geq 1.
\end{equation}

(This shows immediately that H is of degree ≥ 1). Since H has coefficients in a logarithmic field of rank zero, it follows from \cite[Theorem II, p. 244]{6} (by applying this result to, in the terminology of \cite[p. 246]{6}, the logarithmic quadruple $(F, E_0 \ast (F), R, S_0)$, where $F = F(a, b)$ and R is the set of real numbers), that there exists a logarithmic field of rank zero over $F(a, b)$ in which H factors completely into linear factors. Hence there exist distinct functions $\varphi_1, \ldots, \varphi_q$ all lying in a logarithmic field of rank zero over $F(a, b)$, and all nonidentically zero, such that for some (k, j) we have

\begin{equation}
H(\varphi_j) \ll \varphi_j \approx \alpha z^{-1}.\quad \text{(by (12))}.
\end{equation}

Since φ_j lies in a logarithmic field of rank zero, we have,

\begin{equation}
\varphi_j \approx \alpha z^{-1}(1 + w_0),
\end{equation}

where m_1, \ldots, m_q are positive integers. Now if $q = 0$ or none of the functions $\varphi_1, \ldots, \varphi_q$ are $\sim \alpha z^{-1}$, then by building up H one factor at a time, it would follow from repeated applications of \cite[\S\S 24, 25]{6}, that $\text{inst}(\alpha z^{-1}, H) = 0$, contradicting (11). Thus $q > 1$ and for some j, $1 < j < q$, we have,

\begin{equation}
\varphi_j \sim \alpha z^{-1} \quad \text{and} \quad H(\varphi_j) \equiv 0 \quad \text{(by (12))}.
\end{equation}

Since φ_j lies in a logarithmic field of rank zero, we have,
where $\omega_0 \ll 1$ and ω_0 also lies in the field. If $\omega_0 = 0$, then $H(xz^{-1}) \equiv 0$, so clearly cz^x would be a solution of $\Omega = 0$ and the proof would be complete. If $\omega_0 \neq 0$, then by property (iii) for a field of rank zero, (and noting that $\omega_0 \ll 1$), we have, over $F(a, b)$,

(15) \[w_0 \sim Kz^\lambda, \quad \text{for some } \lambda < 0 \text{ and } K \neq 0. \]

Recalling that the elements of $F(a, b)$ are simply-connected, and choosing a point r in the domain of w_0, let

(16) \[U(z) = \int z^{\lambda-1} w_0(\zeta) d\zeta. \]

In view of (15), it follows from [4; Lemma ζ (b), p. 272], that there is a complex number K_1 such that

(17) \[K_1 + U \sim (\alpha K/\lambda) z^\lambda \quad \text{over } F(a, b). \]

Now set,

(18) \[U_1 = K_1 + U \quad \text{and} \quad W = \exp U_1. \]

Then if we set $g = cz^x W$, it follows easily from (14) that $g'/g = \varphi_i$, and hence since $H(\varphi_i) \equiv 0$ (by (13)), we see that g is a solution of $\Omega = 0$. Hence the proof will be complete if we show $g \sim cz^x$, or equivalently that $W \sim 1$ over $F(a, b)$. To this end, let $V = W - 1$. Since $\lambda < 0$, clearly $U_1 \to 0$ and hence $W \to 1$ over $F(a, b)$. Thus $V \to 0$ over $F(a, b)$. Now let k be a positive integer, and refer to the operators θ_k^j in §2(b). Clearly $\theta_k^j V = W \theta_k^j U_1$, since $W' = WU'_1$. By induction on j, it is easy to see that for $j > 1$ we have,

(19) \[\theta_k^j V = WQ_j(\theta_k^1 U_1, \theta_k^2 U_1, \ldots, \theta_k^j U_1), \]

where $Q_j(u_1, \ldots, u_j)$ is a polynomial in u_1, \ldots, u_j, with constant coefficients and $Q_j(0, \ldots, 0) = 0$. Since $\lambda < 0$, it follows from (17) that $U_1 \ll 1$. Thus $\theta_k^j U_1 \to 0$ over $F(a, b)$ for all positive k and j. Since $W \to 1$, it follows from (19) that $\theta_k^j V \to 0$ for all positive k and j and hence $V \ll 1$ over $F(a, b)$. Thus $W \sim 1$ and the proof of the lemma is now complete.
5. Proof of the main result (§ 3).

We can assume at the outset that \(A \neq \{p\} \), for if \(A = \{p\} \), then \(\Omega = \Omega^{(p)} \) and the result follows from the previous lemma.

Let the nonzero coefficients of \(\Omega \) have the representation (4) and let \(G_q \) and \(J_q \) be as in (6) and (7). By hypothesis, we have,

\[
G_p(x) = 0 \quad \text{and} \quad G'_p(x) \neq 0 .
\]

(Note that if \(p = 0 \), \(G_p(x) \) would have no roots.) For convenience, let

\[
b_q = \Omega^{(p)}[\ast, 0] \quad \text{for} \quad q \in A ,
\]

and let \(c \) be any nonzero constant. By the previous lemma, there exists an analytic function \(g \) in an element of \(F(a, b) \) such that over \(F(a, b) \),

\[
g \sim cz^\alpha \quad \text{and} \quad \Omega^{(p)}(z, g(z), g'(z)) = 0 .
\]

Since \(\alpha \neq 0 \), it follows from § 2(b) that we have the representations,

\[
g = cz^\alpha(1 + E_1) \quad \text{and} \quad g' = \alpha cz^{\alpha-1}(1 + E_2) \quad \text{where} \quad E_i \ll 1 .
\]

We now consider the equation,

\[
\Omega(z, y, y')/g^p z^b = 0 .
\]

Under the change of dependent variable \(y = gw \), (24) is transformed into the equation,

\[
A(z, w, w') = \sum d_{nm} w^n w'^m = 0 ,
\]

where for each \(q > 0 \), and \(m < q \), we have

\[
d_{q-m,m} = \sum_{j=m}^{q} T_{q, m, j} ,
\]
where
\begin{equation}
T_{q_m j} = g^{-p-z^{-p}} f_{q-j, i} \left(\frac{j}{m} \right) g^{z^{-j+m}(g')^{j-m}}.
\end{equation}

From the second relation in (22), it follows that
\begin{equation}
d_{\varphi 0} = 0.
\end{equation}

We now consider $d_{p-1,1}$. In view of the representations (4) and (23), and the definitions of b_p, J_p and $G_p(x)$, it follows from a straightforward calculation of (26) for the case $q = p$ and $m = 1$, that over $F(a, b)$,
\begin{equation}
d_{p-1,1} \sim \lambda z, \quad \text{where } \lambda = G'_p(\alpha) \neq 0 \text{ by (20)}.
\end{equation}

From the representations (4) and (23), we see that if $f_{p-j, i} \neq 0$, then $T_{q_m j} \approx z_{q-p-j, j-b_p+m}$. By definition of b_p, it follows that for each j, either $T_{q_m j}$ is $\approx z^m$ or is $\ll z^m$. Thus by (26), it easily follows that for each m,
\begin{equation}
d_{q-m, m} \text{ is either } \approx z^m \text{ or is } \ll z^m.
\end{equation}

We now consider $d_{q-m, m}$ where $q \in A - \{p\}$. From (4) and (23), we see that if $f_{q-j, i} \neq 0$, then
\begin{equation}
T_{q_m j} \approx z^{\beta(q, 0) + m},
\end{equation}
where,
\begin{equation}
\beta(q, j) = \alpha q + a_{q-j, i} - j - (\alpha p + b_p).
\end{equation}

Now from (b) of the hypothesis, there exists $\delta > 0$ such that $Q^q[*, \Re \alpha] < Q^q[*, \Re \alpha] - 2\delta$ for all $q \in A - \{p\}$. Hence,
\[\Re (\beta(q, j)) < -2\delta,\]
and thus from (31) (and § 2(b)), we have $T_{q_m j} \ll z^{m-\delta}$. Thus from (26),
\begin{equation}
d_{q-m, m} \ll z^{m-\delta} \quad \text{for } q \in A - \{p\}.
\end{equation}

Of course if $q \notin A$, then each $f_{q-j, i} = 0$ so clearly each $d_{q-m, m} = 0$ by (26).
Hence, with (33) we have,

$$d_{q-m-m} \ll z^{m-\delta} \quad \text{if } q \neq p .$$

Under the change of dependent variable $w = 1 + v$, equation (25) is transformed into the equation,

$$\Phi(z, v, v') = \sum D_{k,j} v^j(v')^j = 0 ,$$

where

$$D_{k,j} = \sum_{n \geq k} \binom{n}{k} d_{n,j} .$$

From (28) and (34), we see that,

$$D_{k,0} \ll z^{-\delta} \quad \text{over } F(a, b) \text{ for } k > 0 .$$

From (29) and (34), we see that since $\delta > 0$,

$$D_{0,1} \sim \lambda z \quad \text{over } F(a, b) ,$$

while for $k > 1$,

$$D_{k,1} \text{ is either } \approx z \text{ or } \ll z .$$

Finally, from (30) and (34), we see that for each k, j,

$$D_{k,j} \text{ is either } \approx z^j \text{ or } \ll z^j .$$

We now investigate the coefficient D_{00} more closely. Clearly, $D_{00} = \Omega(z, g, g')/g^p z^{b_p}$: In view of (22) and the definition of the set A, we have

$$D_{00} = g^{-p} z^{-b_p} \sum \{ \Omega^{(q)}(z, g, g') : q \in A - \{p\} \} .$$

In view of the representations (4) and (23), and the definitions of b_z, J_z and $G_q(x)$, it follows from a straightforward calculation, that for $q \in A$, we have

$$\Omega^{(q)}(z, g, g') = c^z z^{a_q+b_q} (G_q(x) + E_q) \quad \text{where } E_q \ll 1 .$$
Now by hypotheses (e) and (d), there exist $t \in A - \{p\}$ and $\delta_1 > 0$ such that $G_t(x) \neq 0$, and

$$\Omega^{(e)}[\ast, \Re x] < \Omega^{(d)}[\ast, \Re x] - 2\delta_1 \quad \text{for} \quad q \in A - \{p, t\}.$$

Thus from (42),

$$\Omega^{(d)}(z, g, g') \sim e^t \lambda_1 z^{x+t+b} \quad \text{where} \quad \lambda_1 = G_t(x) \neq 0.$$

Furthermore, since $\Re(xq + b_t - (xt + b_t)) < -2\delta_1$ by (43) for $q \in A - \{p, t\}$, it follows from §2(b) that $z^{x+t+b} \ll z^{-\delta} \ll 1$, and hence by (42) and (44), we have that for each $q \in A - \{p, t\}$, the function $\Omega^{(d)}(z, g, g')$ is \ll the function $\Omega^{(d)}(z, g, g')$ over $F(a, b)$.

Thus from (41), (44) and (23), we have,

$$D_{00} \sim K_1 z^\beta \quad \text{over} \quad F(a, b),$$

where

$$\beta = xt + b_t - (xp + b_p) \quad \text{and} \quad K_1 = e^{t-p} \lambda_1.$$

By hypothesis (b), we have,

$$\Re(\beta) < 0.$$

In view of (45) and (38), we have,

$$D_{00}/D_{01} \sim (K_1/\lambda) z^{\beta-1}.$$

We consider the equation,

$$h' = -D_{00}/D_{01}. $$

Under the change of dependent variable,

$$h = -(K_1/\lambda \beta) z^\beta(1 + \varphi),$$

followed by multiplication by $(\lambda/K_1) z^{1-\beta}$, we have from (48) that equation (49) is transformed into an equation of the form,

$$\varphi + (z/\beta) \varphi' = U, \quad \text{where} \quad U \ll 1 \quad \text{over} \quad F(a, b).$$
In view of (47), it follows from [4; Lemma 6(b), p. 271], that equation (51) possesses a solution \(q_0 \), analytic in an element of \(F(a, b) \), and satisfying \(q_0 \ll 1 \) over \(F(a, b) \). Thus by (50), the equation (49) possesses a solution \(h_0 \) such that

\[
(52) \quad h_0 \sim -(K_1/\lambda \beta) z^\beta \quad \text{over } F(a, b).
\]

Under the change of dependent variable \(v = h_0 + h_0 u \), equation (35) is transformed into the equation,

\[
(53) \quad \Psi(z, u, u') = \sum t_{mn} u^m(u')^n = 0,
\]

where the coefficients are given by the formula,

\[
(54) \quad t_{mn} = (h_0)^n \sum_{k \geq m} \binom{k}{m} \Gamma_{kn},
\]

where

\[
(55) \quad \Gamma_{kn} = \sum_{i=0}^{k} \binom{k+i}{n} D_{i,k+n-i}(h_0)^i (h_0')^{k-i}.
\]

Since \(h_0 \) solves equation (49), it follows from (48) and (52) that for \(0 \ll i \ll k \),

\[
(56) \quad h_0'(h_0')^{k-i} \approx z^{k\beta-k+i} \quad \text{over } F(a, b).
\]

It thus follows from (40) and (55) that for each \(k, n \),

\[
(57) \quad \Gamma_{kn} \text{ is either } \approx z^{k\beta+n} \text{ or } \ll z^{k\beta+n} \text{ over } F(a, b).
\]

Now \(\Gamma_{00} = D_{00} \) and \(\Gamma_{10} = D_{01} h_0' + D_{10} h_0 \). Since \(h_0 \) solves (49), it follows from (54) that

\[
(58) \quad t_{00} = D_{10} h_0 + \sum_{k \geq 2} \Gamma_{k0}.
\]

In view of (37) and (52), \(D_{10} h_0 / z^\beta \ll 1 \). Furthermore, if \(k \geq 2 \), then since \(\text{Re}((k-1)\beta) < 0 \) (by (47)), it follows from (57) and § 2(b) that \(\Gamma_{k0} / z^\beta \ll 1 \). Hence from (58),

\[
(59) \quad t_{00} / z^\beta \ll 1 \quad \text{over } F(a, b).
\]
An existence theorem for certain solutions etc. 79

Now $\Gamma_{o1} = D_{o1}$ so by (38),

$$\Gamma_{o1} \sim \lambda z.$$

For $k \geq 1$, $\text{Re}(k\beta + 1) < 1$ by (47), so by (57) and §2(b), $\Gamma_{o1} \ll z$ for $k \geq 1$. Thus by (54) and (60), clearly, $t_{o1} \sim h_0 \lambda z$. Thus by (52),

$$t_{o1}/z^\theta \sim (-K_1/\beta)z \quad \text{over } F(a, b).$$

We now consider $t_{10} = \sum_{k \geq 1} k\Gamma_{o1}$. Now $\Gamma_{10} = D_{o1} h_0 + D_{10} h_0$. Since h_0 solves (49), it follows easily from (37), (38), (48) and (52), that, $D_{10} h_0 \ll D_{o1} h_0 \sim -K_1 z^\theta$. Thus,

$$\Gamma_{10} \sim -K_1 z^\theta.$$

Now for $k \geq 2$, $\text{Re}((k-1)\beta) < 0$ (by (47)), so clearly from (57) and §2(b), we have

$$\Gamma_{k0} \ll z^\theta \quad \text{for } k \geq 2.$$

Thus with (62), we have $t_{10} \sim -K_1 z^\theta$, and hence

$$t_{10}/z^\theta \sim -K_1 \quad \text{over } F(a, b).$$

From (63), it immediately follows that over $F(a, b)$,

$$t_{m0}/z^\theta \ll 1 \quad \text{for } m \geq 2.$$

Finally, we consider the ratio t_{mn}/t_{o1} for $n \geq 1$ and $m + n \geq 2$. We rewrite (54) in the form,

$$t_{mn}/t_{o1} = \sum_{k \geq m} \binom{k}{m} (h_0)^n (\Gamma_{kn}/t_{o1}).$$

In view of (52), (57) and (61), the term in the summation corresponding to k is either \approx or $\ll z^{\beta(k+n-1)+n-1}$. But $k \geq m$, so $k + n - 1 \geq m + n - 1 \geq 1$. Thus by (47), $\text{Re}(\beta(k + n - 1)) < 0$, and hence it follows from §2(b) that each term in the sum on the right of (66) is $\ll z^{n-1}$,

$$t_{mn}/t_{o1} \ll z^{n-1} \quad \text{over } F(a, b) \text{ if } n \geq 1 \text{ and } m + n \geq 2.$$
If follows from the asymptotic relations (59), (61), (64), (65) and (67) that the polynomial \(\Psi(z, u, u')/(-K_1 z^\delta) \) is normal over \(F(a, b) \) in the sense of [5; § 83]). In view of (47), it follows from [5; §§ 117, 118] that the equation,

\[
\Psi(z, u, u')/(-K_1 z^\delta) = 0 ,
\]

possesses a unique solution \(u_0 \), which is analytic in an element of \(F(a, b) \) and satisfies,

\[
u_0 \ll 1 \text{ over } F(a, b).
\]

From (35), it follows that \(w_0 = 1 + h_0 + h_0 u_0 \) satisfies equation (25). Thus the function \(y_0 = g(1 + h_0 + h_0 u_0) \) is analytic in an element of \(F(a, b) \) and is a solution of the original equation \(\Omega(z, y, y') = 0 \). In view of (69) and the fact that \(h_0 \ll 1 \) over \(F(a, b) \) by (47) and (52) (and § 2(b)), we see that \(y_0 \sim g \) over \(F(a, b) \) and hence by (22), \(y_0 \sim cz^\alpha \). This concludes the proof of the theorem.

6. Remark.

We point out here that for the differential polynomials \(\Omega \), and the functions \(cz^\alpha \) which are treated in the main result, it was shown in the course of the proof that \(cz^\alpha \) is a point of instability of a homogeneous \(\Omega \), if and only if \(\alpha \) is a root of the critical equation of \(\Omega \). (If \(\Omega = \Omega^{(\alpha)} \) and if \(\alpha \) is not a root of the critical equation \(G_\alpha(x) = 0 \), then from the calculation in (42) it follows that for any function \(g \sim cz^\alpha \), we have that \(\Omega(z, g, g') \sim c^\alpha G_\alpha(x) x^{\alpha+q} \), so clearly \(cz^\alpha \) is not a point of instability of \(\Omega \). Conversely, if \(\alpha \) is a root of \(G_\alpha(x) = 0 \), then by § 4, the equation \(\Omega = 0 \) possesses a solution \(\sim cz^\alpha \) and hence clearly \(cz^\alpha \) is a point of instability of \(\Omega \).)

REFERENCES

