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Binary Multiples of Combinatorial Geometries - II (*)

LARRY D. SHATOFF (**)

1. Introduction.

In [2] we considered the sequence of multiples G, 2@, ..., mG of a
projective geometry, where m is the smallest integer such that m@ is a
Boolean algebra. We showed that the only multiples that were binary
were possibly @ itself, m@&, and (m —1)G if (ne1 4 ne2 + ... 4 n)/q
is an integer (where G has order » and rank ¢). In this paper we prove
similar results about affine geometries. All definitions not given here
can be found in [2] and we will assume the reader is familiar with
that paper.

2. Affine geometries.

Given an affine geometry on the set of points S, the lattice of flats
(points, lines, ete.) is a geometric lattice, and thus defines a combina-
torial geometry. We will refer to these combinatorial geometries as
affine geometries. Recall that if f is a submodular function on a set 8§,
then it defines a pregeometry on S as follows: ACS is independent
if and only if f(4')>|4'| for all non-empty A'CA. [1, Prop. 7.3].
(Here |A’| denotes the cardinality of A'.) If G(S) is a combinatorial
geometry with rank function r, and k is a positive integer, then kr
is submodular and thus defines a new combinatorial geometry, de-
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noted kG. If @ is an affine geometry, when are the multiples of @
binary geometries? We show that kG' is binary only when k=1
and @ is binary, or when kG is a Boolean truncation of rank one less
than the cardinality of 8, or when kG is a Boolean algebra. We prove
this result first for affine planes and then use induection for the general
case. We will make use of the following well-known results on affine
geometries.

THEOREM 1. Suppose G(S) is an affine geometry. There exists an
integer n>2 such that:

(i) Every flat of rank q contains exactly ne points;
(ii) Every coline of G is covered by exactly n + 1 copoints;
(iii) There is a set of m copoints of G which partition S.

The number » is the order of G. Notice that the rank of a flat is
one more than its dimension in the affine geometry. (Thus an affine
plane has rank 3.)

THEOREM 2. If G is an affine geometry of order n and rank q>4,
and C is a copoint of @, then the subgeometry of G on the set C is an
affine geometry of order m and rank q—1.

‘We now prove the theorem for affine planes.

THEOREM 3. Let G(S) be an affine plane of order n. kG is binary
if and only if k> (n®*—1)/3.

PrOOF. We first consider the case n = 2. By Theorem 1 and
[2; Theorem 1], this is the only case in which @ is binary. k@, k>2,
is the Boolean algebra on 8, and so kG is binary if and only if
k>(n*—1)/[3=1. Now let n>3. Since any line of G is an n-set
(i.e., a set of cardinality n), kG is a Boolean truncation if k>n/2.
By [2; Lemma 1] k@ is binary if and only if every set of |§|—1 =
=mn?—1 elements is k-independent. This is true if and only if
k>(n®—1)/3. Suppose 1<k<nf2. If ACS is a 3k-set no (2k 4 1)-
subset of which is contained in a line of @, then A is a basis for kG.
We construct a (3k 4 2)-set, every 3k-subset of which is a basis for k@.
By [2; Lemma 2] and [2; Theorem 1], this will show kG is not binary.
Let C,, C, be two non-intersecting lines of @. Let A consist of any
2k elements of C, and any % + 2 elements of C,. This is possible as
kE+2<2k<mn. To show any 3k-subset of A is a basis for kG, let
BCA be a (2k + 1)-set. We must show that B is not contained in
any line of G. If B were contained in a line of @, then [BN O,|<1.
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For if |[BN C,|>1, we would have two lines intersecting in more
than one point. Similarly, |BN (,|<1. This means |B|<2. But
2k +1>3, and so it is impossible for B to be contained in a line.
This completes the proof.

LEMMA 1. If n and q are positive integers such that n>2 and ¢> 4,
then
nt—1  ped
q—1 = q—2

and
/na—z /nq—3
qg—1 = qg—2°

THEOREM 4. Let G(8) be an affine geometry of order n and rank q.
kG is binary if and only if k>(n1—1)/q or both k=1 and n = 2.

Proor. @ is binary of and only if » =2, thus we may assume
k> 1. Because of the arithmetic details, we first note that the theorem
holds where n = 2, ¢ = 4. It is easy to see that kG, k>2, is a Boolean
algebra; and so kG is binary if and only if k> (ne1—1)/g =1  or k=1.
‘We now prove the theorem by induction on q. If n£2, ¢ =3 is the
first step of the induction. The result is then that of Theorem 3.
If n =2, then the case of ¢ =3 is given by Theorem 3, and we let
q = 4 be the first step of the induction. Assume the result holds for
affine geometries of order » and rank ¢g—1, ¢>4 (¢>5 if n =2).
We show it holds for G. Let G’ be the affine geometry of order =,
rank ¢—1 on a copoint of G (Theorem 2). kG’ is a subgeometry of
k@ by [2; Lemma 5] and so since kG is binary we conclude that kG’
is binary. By the induction hypothesis, k> (n+2—1)/¢—1. Now if
k>mn2[(g— 1), then every set of n*-2 elements is k-independent. For
if |[A| = n2, then r(4)>q—1, and so kr(4d)>k(g—1)>|A|. If BC A,
kr(B)> |B|, for

EI_ E nm na-2

'B)<rB) “m+1-q¢—1

<k

(for m =r(B)—1) by Lemma 1. This means copoints of G are
k-independent (i.e., independent in k@), so kG is a Boolean truncation.
Thus, by [2; Lemma 1], kG is binary if and only if every (ne*—1)-
set is k-independent, that is, if and only if k> (ne! —1)/q. The only
case left to consider is k= (ne?—1)/(¢g—1). In this case, k>
> n'3[(¢ —2) by Lemma 1, and so by an argument like that above,



240 Larry D. Shatoff

any (ne3)-set is k-independent. In fact, any [(¢ — 1)k]-set is k-inde-
pendent; for if A is a subset of such a set, and if n*3< |4|<k(g—1),
then 7(4)>¢—1 and so kr(4)>k(¢—1) =n*2—1>]A|. A copoint
(which is a [(¢— 1)k + 1]-set) however is not k-independent. We con-
clude that if A is a gk-set no [(¢q — 1)k + 1]-subset of which is con-
tained in a copoint of @, then A is a basis for kG. We construct a
(gk + 2)-set every gk-subset of which is a basis for k¥@. This, by
[2; Theorem 1 and Lemma 2], will show that kG is not binary. Let
C,, C, be any two non-intersecting copoints of G (Theorem 1). Let 4
consist of any (¢ — 1)k points of C; and any & + 2 points of C,. This
is possible, as k¥ +2<(¢q—1)k<n*2 |A]|=qk + 2. To show every
gk-subset of A is a basis of kG, let BCA be a [(¢q—1)k + 1]-set.
We show B is contained in no copoint of G. If B is contained in a
copoint, then |BN C,|<n?3. Otherwise we would have two copoints
which intersect in more than n¢2 points. This is impossible by The-
orem 1. Similarly |[BN 0,|<n3. Thus |B|<2n3<ni? if n#2.
Thus it is impossible to find B unless n =2. If n =2, we must
pick B so that [BN C,| = |[BN C,| =n+3. But [ANC,| =k + 2, and
it is easy to show n*3>k 4 2 for n =2, ¢>5. Since BN C,C AN C,,
this show it is impossible to find a B in this case also. Thus the desired
set A does exist, and the proof is complete.

Let G be an affine geometry with sequence of multiples G, 24, ...,
m@, m the smallest integer such that mG is a Boolean algebra. m@ is
always binary. G is binary; its order is 2. Just as for projective
geometries, we have shown that the only other multiple of an affine
geometry that may be binary is (m—1)G. (m—1)G@ is actually
binary if and only if k¥ = (n*'—1)/q is an integer. In this case
m—1=~F. If n and q are relatively prime and ¢ is a prime, it is well-
known that n*' =1 (modgq). Thus in this case (m —1)G is binary.
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