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Some Remarks on L2-Valued Functions.

S. ZAIDMAN (*)

Introduction.

Let us consider polynomials with real coef-

ficients, and then, for arbitrarily given functions q(s) E L2 (- 00, 00),
consider the L2-valued functions defined on - oo C t C + oo, through
the formula:

This class of functions arises naturally when we solve, through Fourier-
Plancherel transform, the Cauchy problem for a class of partial dif-
ferential equations of the form:

where ak are convenient complex numbers, and u(x, t) E L2(RI) for any
real t.

Let us consider also polynomials as above, such that P(s) c 0 for
any real s (henceforth, necessarily of even degree); thereafter, for a

given function oo, + cxJ) and for arbitrary oo, 00)
consider the class of functions:
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defined for t &#x3E; 0 and belonging to L2(- oo, + oo) as easily seen below.
This second class arises when we solve by the same method, partial

differential equations of the form:

where the f3k are again convenient complex numbers, u(x, t) belongs
to L2(- 00, + 00) for any t ~ 0, and f (x) is given in L2(- 00, + 00).

Now, the inverse Fourier-transform of the functions y(s, t) cor-

responding to polynomials of degree will give us a class of L2-
valued, L2-bounded solutions of partial differential equations with
constant coefficients which are not L2-almost-periodic (see the § 1
of our paper [2 ] and also the monograph [1 ] for the necessary definitions) .
On the other hand we shall see that, for polynomials P(s) c 0 with
real coefficients and some real roots, one can choose in order that
lim II U(s, t) li.. = oo. This generalizes to a larger extent the example
of an L2-unbounded solution for the inhomogeneous heat equation which
is given in our paper [3]- § 3.

§ 1. Let us consider, to begin, a slightly more general setting.
Let ~X be a Banach space, and x = f (t) be a continuous function

defined + cxJ with values in X. When t varies over the
real line, the point x = f (t) describes, in the X-space, a set which is
called the range of f ( t ) and is denoted by -1tf. It is known (see [1 ],
pag. 5) that if f (t) is strongly almost-periodic, than is a relatively
compact set in .X ; consequently, if -1tf is not relatively compact in X,
the function f (t) is not almost-periodic.

Let us consider now the complex Hilbert space L2(- oo, + oo) of
square-integrable complex-valued functions q(s) defined for - 00 s C

 + oo, and for an arbitrary polynomial with real coef-

ficients, consider the L2-valued function

We see that the equality
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is verified and consequently the range 1,(.,t) is located on the sphere
in .L2 with center the origin and radius = 11 q? 11 ,,. Furthermore, using
Lebesgue’s theorem on dominated convergence in the expression

we get also that y(s, t ) is strongly continuous, - oo  t  oo -

- L2(- 00, 00). Let us consider now the simplest case where the

polynomial P(s) has degree 0: P(s) = +00.
Then y(s, t) = exp (ia,, t) 9?(s) which is a continuous periodic function,

hence A. is relatively compact in L 2 (see [I],
pag 14). Even more generally, if x belongs to the Banach space X,
and A(t), - oo  t C a complex-valued bounded function,
then the X-valued function y(t) = has relatively compact range.

§ 2. We shall give below the proof of the following.

THEOREM 1..Let P(s)=ao+a1s+...aQsQ, I a,, 0 0, poly-
nomial with real coefficients, and let = 1 for A c s c A + 1, and
gg,(s) = 0 for other real s, where A is a large enough number. Then, for
at least a sequence of real numbers the L2(- 00, + oo)-valued
sequence: not relatively compact in L2.

PROOF. Let us remember the identity: lexp [iÂ1] - exp [i,2] ( =
= 2 - 2 cos (,1I - A2). Then, for an arbitrary polynomial Q (s ) with real
coefficients and for any E L2(- oo, + cxJ), we have, for any pair
of real numbers tl , t2 , the relation

Let us consider now our given polynomial P(s), of degree q&#x3E;1. Its
derivative P’ ( s ) is a polynomial of degree q -1 ~ 0, hence it has a
constant sign (sign of for large enough s (say, for Hence,
the polynomial P(s) is a strictly monotonical function for s ~ so . Let
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us take now A &#x3E; s,, and we get from 2.1) the relation

Let us consider now the monotonical 
This will have a regular inverse, s = P-1(~) _ where

and

We can effect the substitution P(s) = or, and obtain the relation

In the last integral we use an integration by parts and obtain

We can estimate henceforth as follows:
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where LA is a positive constant. We have consequently the estimate

(Remark ( 1) that f or q = 1 we can take for A an arbitrary real, and
we can have L., = L = 

Let us consider now the sequence (t")i where ~==1+2-}-...?.
We have, for m 0 n, the inequality Itm - tn (m, n) and conse-

quently

for max (m, n) &#x3E; no .
This is contrary to relative compactness in L2(- oo, + oo) of the

sequence

which proves the theorem.

§ 3. Let us consider in this § a polynomial

real coefficients y and let us assume that P(s)  0 for any real s.
Take then F(s) E L2(- oo, oo) and consider the class QF of functions

U(s, t) of the form

where is an arbitrary function in L2(- oo, + oo) (the particular
case of P(s) _ - s2 was considered in our paper [3]). We consider the
following problem : When we have

But we see that 11q;IILI, as t &#x3E; 0 and P(s)  0. Hence
(3.2) holds if and only if

( 1) Using a more direct computation, one gets value of second integral
in (2.3) without use of partial integration.
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Actually we see that

when 0 and = tF(s), when P(s) = 0.
But P ( s ) = 0 in a finite number of Sj only; furthermore our

function is continuous of s in these points because 

hence it is continuous on the real axis.
On the other hand we have the estimate 

for any real s ; it f ollows that the function (3.5) belongs to

L2(- oo, oo) for and

We can give now the following.

THEOREM 2. Let P(s) c 0 be a polynomial with real coefficients and
let us assume that it has at least one real root so. Take F(s) = 1 for

F(s) = 0 for other s, where s is « near &#x3E;&#x3E; to so. Then, all the

f unctions (3.1 ) are L2.unbounded as t ~ oo.

PROOF. In view of the above remarks it is enough to consider the
(Lebesgue) integral (for 

for a certain "8 C so and near to so, and we shall see that it tends to
0o as t -~ oo.

Remark that being will have a local maximum for

s = so ; hence P’ (so ) = 0 too. Furthermore, for near to so ,
P’(s) &#x3E; 0; if s1 is the first zero for P’(s) left of so, we get, say, P’(s) &#x3E; 0

strictly for Hence P(s) is strictly increasing
on the Let also 0 C ~ = sup P’ (s ) ; hence we
have 0 C P’ (s) c l!1 and we get 

¡~8~’.
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Now, in the integral (3.6) we shall effectuate the substitution: a = P(s),
s = = R(a); and P(s) c ~ c 0; hence R’(a) =
= for P(s) c or ~ 0. We obtain this way

here we effectuate again the substitution at = ~; hence P(s) t ~ ~ c 0,
t &#x3E; 0 and we have

- - -

which proves the theorem.
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