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REND. SEM. MaT. UNIv. PaDOVA, Vol. 49 (1973)

Some Remarks on L?-Valued Functions.

S. ZAIDMAN (¥*)

Introduction.

Let us consider polynomials P(s)=a,+ a,s+...a,s? with real coef-
ficients, and then, for arbitrarily given functions ¢(s) e L*(— oo, c0),
consider the L2-valued functions defined on — co<<t<C + oo, through
the formula:

(8, ) = exp [iP(s)t]g(s) .

This class of functions arises naturally when we solve, through Fourier-
Plancherel transform, the Cauchy problem for a class of partial dif-
ferential equations of the form:

a Oy
Uy, 1) = ,g,“k—a—ﬁ (1),

where «, are convenient complex numbers, and u(x, t) € L2(R*) for any
real .

Let us consider also polynomials as above, such that P(s)<0 for
any real s (henceforth, necessarily of even degree); thereafter, for a
given function F(s)e L2(— oo, + oo) and for arbitrary g(s)e L*(— oo, o)
consider the class of functions:

U(s, t) = exp [tP(s)]p(s) —i—fexp [P(s)(t — o] F(s)do ,

(*) Indirizzo dell’A.: Département de Mathématiques, Université de
Montréal, Montreal (P.Q.), Canada.
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defined for t >0 and belonging to L*(— oo, + co) as easily seen below.
This second class arises when we solve by the same method, partial
differential equations of the form:

wlo,) = 3 pu 22 (0,1) + 10

where the f§, are again convenient complex numbers, u(x,t) belongs
to L%(— oo, + oo) for any ¢>0, and f(x) is given in L3*— oo, 4 co).

Now, the inverse Fourier-transform of the functions y(s,?) cor-
responding to polynomials of degree ¢>1 will give us a class of L*-
valued, L*-bounded solutions of partial differential equations with
constant coefficients which are not L:-almost-periodic (see the § 1
of our paper [2] and also the monograph [1] for the necessary definitions).
On the other hand we shall see that, for polynomials P(s)<0 with
real coefficients and some real roots, one can choose F(s) in order that
‘llg: | U(syt)] ;o= oo. This generalizes to a larger extent the example

of an L2-unbounded solution for the inhomogeneous heat equation which
is given in our paper [3]-§ 3.

§ 1. Let us consider, to begin, a slightly more general setting.

Let X be a Banach space, and @ = f(t) be a continuous function
defined on — co< t<< + oo with values in X. When ¢ varies over the
real line, the point « = f(¢) describes, in the X-space, a set which is
called the range of f(t) and is denoted by R,. It is known (see [1],
pag. 5) that if f(¢) is strongly almost-periodic, than R, is a relatively
compact set in X; consequently, if R, is not relatively compact in X,
the function f(¢) is not almost-periodic.

Let us consider now the complex Hilbert space L2(— oo, + oo) of
square-integrable complex-valued functions ¢(s) defined for — co<< s <<

(4
< + oo, and for an arbitrary polynomial P(s) = > a,s’ with real coef-
ficients, consider the L*-valued function =0

(1.1) p(s,t) = exp [iP(s)t]p(s;, —oo<s<< oo, —oo<t< oo,

We see that the equality

(1.2) [twie t2ds =[lp@)rds,  —oco<t< oo
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is verified and consequently the range RX,,., is located on the sphere
in L® with center the origin and radius = |¢|,,. Furthermore, using
Lebesgue’s theorem on dominated convergence in the expression

@©

(1.3) [lexpi(t + 8) P(3)1g(s) — exp [itP(s)I(s)]* s

o
-

we get also that (s, t) is strongly continuous, — co<<t<< oo —
— L?¥(— o0, 00). Let us consider now the simplest case where the
polynomial P(s) has degree 0: P(s) =a,, — co<< < + oo.

Then (s, t) = exp (ia,t) @(s) which is a continuous periodic function,
— oco< t<< co— L?; hence R, is relatively compact in L2 (see [1],
pag 14). Even more generally, if # belongs to the Banach space X,
and A(t), — co<<t<< 4+ oo — C is a complex-valued bounded function,
then the X-valued function y(f) = A(t)2 has relatively compact range.

§ 2. We shall give below the proof of the following.

THEOREM 1. Let P(s) =a,+ a,8 + ... a,8% a,#0, ¢>1 be a poly-
nomial with real coefficients, and let ¢, (8) =1 for A<s<A +1, and
@4(8) = 0 for other real s, where A is a large enough number. Then, for
at least a sequence of real numbers (t,)7, the L*(— oo, + oo)-valued
sequence: {exp [iP(s)t,]¢(8)}n, 8 mot relatively compact in L2

ProoF. Let us remember the identity: |exp [i4,] — exp [14,]|2 =
=2 —2cos (A4, — A). Then, for an arbitrary polynomial Q(s) with real
coefficients and for any ¢(s) € L*(— oo, + o0), we have, for any pair
of real numbers t,,?,, the relation

[=-]

@1)  [lexp[iQ(s)t] - exp [iQ(e)t|* |p(s)|*ds =

—

= 2f|¢p(s)]2ds — 2| cos [Q(8) (¢, — )| p(8)]2ds .

-

Let us consider now our given polynomial P(s), of degree g>1. Its
derivative P’(s) is a polynomial of degree ¢ —1>0, hence it has a
constant sign (sign of a,) for large enough s (say, for s>s,). Hence,
the polynomial P(s) is a strictly monotonical function for s>s,. Let
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us take now A >s, and we get from 2.1) the relation

(2:2)  [lexp [iP(s)ta] - exp [iP(s)ts][*|pu(s)] s =

A+1
=2 —2|cos [P(s)({,—t,)]ds .

A

Let us consider now the monotonical function o = P(s), s>A4 >s,.
This will have a regular inverse, s = P~}(¢) = R(c), where

o) =
R (6) - PI(R(O'))
and
4 _ 1 "
R (G) - Pla(R(O')) P (R(G)) °

We can effect the substitution P(s) = ¢, and obtain the relation

4+1 P(4+1)
(2.3) f cos [P(8)(t, — t)] ds = f cos [o(t, — t,) 1R/ (0) do .
4 P(4)
In the last integral we use an integration by parts and obtain
P(4+1)
(2.4) f cos [o(t, — ;)] R (o) do =
PO
1 .
b — {R'(P(A +1)) sin [P(4A + 1(t,—t,)] —
! ? P(4+1)

— R/(P(A)) sin [P(A)(t, — t,)]} — Z——lz f sin [o(t, — t;)1R"(0) do .

P(4)
We can estimate henceforth as follows:
P(4+1)
(2.5) \ fcos [o(t; —t,)1 R/ (0) do| <
P(4)
1
<g—[20,+ sup |R"(0)||P(4 +1)— P(A)1< L (Jt.—t.])*

[ty — 1, A<s<at1
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where L, is a positive constant. We have consequently the estimate
(2.6)  [lexp [iP(s)t,] — exp [iP(s) a]|*|pa(s)]*ds > 2 — 2L, — 1) .

(Remark (1) that for ¢ =1 we can take for A an arbitrary real, and
we can have L, = L = 2|a,|™Y).

Let us consider now the sequence (¢,);7 where t,=142 + ... p.
We have, for m s n, the inequality |t,, —t,|>max (m,n) and conse-
quently

(2.7) [ [exp[iP(s)t.] — exp[iP(s) tn]] @,(8)[ 3 >2 — 2L (max (m, n))~*>1

for max (m, n)>n,.
This is contrary to relative compactness in L2*— oo, + oo) of the
sequence

(2.8) {exp [iP(s)t.] %(s)};‘;’,o R
which proves the theorem.
q
§ 3. Let us consider in this § a polynomial P(s) = > a,s’ with

=0
real coefficients, and let us assume that P(s)<0 for any real s.

Take then F(s)e L*(— oo, co) and consider the class ¢, of functions
U(s,t) of the form

(3.1) Ul(s, t) = exp [tP(s)]p(s) +feXP [P(s)(t — 0)] F(s) do

where ¢(s) is an arbitrary function in L*(— oo, 4 oo) (the particular
case of P(s) = — s was considered in our paper [3]). We consider the
following problem: When we have

(3.2) lim | U(s, t)] ;s = + oo?
t—>o

But we see that |exp [tP(s)]@(s)| < @]z, as t>0 and P(s)<0. Hence
(3.2) holds if and only if

(3.4) lim ” fexp [P(s)(t— o)] F(s)daHv — foo.

(*) Using a more direct computation, one gets value of second integral
in (2.3) without use of partial integration.

15



222 S. Zaidman

Actually we see that

(3.5) F(s)fexp [P(8)(t— 0)]do = F(s)(P(s))~* (exp [P(s)t] —1)

0

when P(s)<<0 and = tF(s), when P(s) = 0.
But P(s)=0 in a finite number of s; only; furthermore our
function is continuous of s in these points because lim (P(s))~*-

3—>84

-(exp [tP(s)] —1) = t; hence it is continuous on the real axis.

On the other hand we have the estimate |(P(s))~!|exp[¢P(s)] —1| <!,
t>0 for any real s; it follows that the function (3.5) belongs to
L?*(— oo, o) for t>0, and

| <tIP L.

“ f exp [P(s)(t — 0)] F(s) do

We can give now the following.

THEOREM 2. Let P(s)<0 be a polynomial with real coefficients and
let us assume that it has at least one real root s,. Take F(s) =1 for
§<8< 8y, F(8) =0 for other s, where § i8 «near» to s,. Then, all the
functions (3.1) are L2-unbounded as t— oco.

Proor. In view of the above remarks it is enough to consider the
(Lebesgue) integral (for ¢>0)

(3.6) I, =J. P_;l(?) (exp [P(s)t]1—1)%ds

for a certain s< s, and near to s,, and we shall see that it tends to
oo a8 t— oo,

Remark that being P(s)<0, P(s) will have a local maximum for
8 =38,; hence P’'(s,) =0 too. Furthermore, for s< s, near to s,,
P'(8) > 0; if s, is the first zero for P’(s) left of s,, we get, say, P'(s) >0
strictly for s<s< s, where 3 >s,. Hence P(s) is strictly increasing
on the interval s<s<s,. Let also 0 <M = sup P’(s); hence we
have 0 < P'(s)< M for §<s<s,, and we get Sesn

(3.7 (P'(s))*>M1>0, §<8<8,.
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Now, in the integral (3.6) we shall effectuate the substitution: ¢ = P(s),
s = P~Yo) = R(c); here s<s<s, and P(s)<o<0; hence R'(s)=
= (P'(s))"*> M for P(5)<o<0. We obtain this way

(3.8) I, _f (exp (6t) — 1) R'(0) do >~ f - (exp (ot) —1)%do ;

P(3) P( 8)

here we effectuate again the substitution ot = &; hence P(3)t<£<0,
t> 0 and we have

Pyt P(a)t

for t>1,

which proves the theorem.
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