RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

L. CARLITZ

A polynomial related to the cyclotomic polynomial

Rendiconti del Seminario Matematico della Università di Padova, tome 47 (1972), p. 57-63

http://www.numdam.org/item?id=RSMUP 1972 47 57 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1972, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A POLYNOMIAL RELATED TO THE CYCLOTOMIC POLYNOMIAL

L. CARLITZ *)

1. Let

(1.1)
$$F_n(x) = \prod_{\substack{k=1\\(k,n)=1}}^n (x - e^{2\pi ki/n})$$

denote the cyclotomic polynomial. In a recent paper [1] Apostol has determined the resultant $R(F_m, F_n)$ of the cyclotomic polynomials $F_m(x)$, $F_n(x)$; see also Diederichsen [3].

For $m, n \ge 1$ put

(1.2)
$$G_{m,n}(x) = \prod_{\alpha,\beta} (\alpha x - \beta),$$

where α runs through the primitive *m*-th roots of unity and β runs through the primitive *n*-th roots of unity. Clearly

(1.3)
$$G_{m,n}(1) = R(F_m, F_n).$$

Also it follows at once from (1.2) that

(1.4)
$$G_{m,n}(x) = c_{m,n} H_{m,n}(x).$$

Supported in part by NSF grant GP-17031.

^{*)} Indirizzo dell'A.: Dept. of Mathematics - Duke University - Durham, North Carolina 27706, U.S.A.

58 L. Carlitz

where

$$(1.5) H_{m,n}(x) = \prod_{\alpha,\beta} (x - \alpha\beta)$$

and

(1.6)
$$c_{m,n} = \prod_{\alpha} \alpha^{\varphi(n)} = \begin{cases} -1 & (m=2, n=1, 2) \\ 1 & (\text{otherwise}). \end{cases}$$

In (1.5), as in (1.2), α runs through the primitive *m*-th roots of unity while β runs through the primitive *n*-th roots of unity.

Let k denote the greatest common divisor of m and n such that

(1.7)
$$\left(k, \frac{m}{k}\right) = 1, \quad \left(k, \frac{n}{k}\right) = 1.$$

We may call k the unitary greatest common divisor of m and n and write

$$(1.8) k=(m, n)^*.$$

(We remark that Eckford Cohen [2] has defined a similar function that is denoted by (m, n).). We shall show that, for k=1,

$$(1.9) H_{m,n}(x) = (F_M(x))^{\varphi(d)}$$

where

$$d=(m, n), \qquad M=[m, n]=mn/d.$$

The general case $(k \ge 1)$ is given in Theorem 1 below.

Apostol's result is an easy corollary of the theorem. Indeed a slightly more general result is given in (3.12).

2. We shall require several lemmas.

LEMMA 1. The number of solutions of

$$(2.1) x+y \equiv \pmod{p^e} (p \not\mid xy),$$

where p is a prime and e>1, is equal to

(2.2)
$$\begin{cases} p^{e-1}(p-2) & (p \nmid a) \\ p^{e-1}(p-1) & (p/a). \end{cases}$$

LEMMA 2. Let f(a, n) denote the number of solutions of

(2.3)
$$x+y \equiv a \pmod{n}$$
 $((x, n)=(y, n)=1).$

Then, for (m, n)=1,

(2.4)
$$f(a, mn) = f(a, m)f(a, n)$$
.

The proof of these two lemmas is almost immediate.

LEMMA 3. Let α , β independently run through the primitive k-th roots of unity. Let r denote an arbitrary divisor of k. Then the primitive r-th roots of unity occur $\psi(r, k)$ times among the products $\alpha\beta$, where

(2.5)
$$\psi(r, k) = \prod_{\substack{f_j < e_j \\ j}} p_j^{e_j-1}(p_j-1) \prod_{\substack{f_j = e_j \\ j}} p_j^{e_j-1}(p_j-2),$$

with

(2.6)
$$k = \prod_{j=1}^{n} p_j^{e_j}, \quad r = \prod_{j=1}^{n} p_j^{t_j}.$$

PROOF. Let ε denote a fixed primitive k-th root of unity and put $\alpha = \varepsilon^x$, $\beta = \varepsilon^y$, where x, y run through reduced residue systems (mod k). Let k = rs. Then $\gamma = \alpha \beta = \varepsilon^{x+y}$ is a primitive r-th root of unity if and only if

$$x + y \equiv as \pmod{k}$$
,

where (a, r)=1. For fixed a, s, the number of solutions of this congruence is f(as, k) as defined in Lemma 2. Now apply Lemmas 1 and 2 and (2.5) follows at once.

LEMMA 4. Let $(m, n)^*=1$, where $(m, n)^*$ is defined by (1.7) and (1.8). Let α run through the primitive m-th roots of unity and β through the primitive n-th roots of unity. Then $\gamma=\alpha\beta$ runs through the primitive M-th roots of unity $\varphi(d)$ times, where

(2.7)
$$d=(m, n), M=[m, n]=mn/d.$$

60 L. Carlitz

It suffices to prove this when

$$m = p^e, \qquad n = p^f \qquad (e > f \ge 0),$$

where p is prime. Then if α is a primitive p^e -th root of unity and β is a primitive p^f -th root, it is clear that $\gamma = \alpha \beta$ is a primitive p^e -th root. Moreover each γ will occur exactly $\varphi(p^f)$ times.

3. Given $m, n \ge 1$, define $k = (m, n)^*$ by means of (1.7) and (1.8) and put

$$(3.1) m=km', n=kn',$$

so that

$$(3.2) (m', n')^* = 1.$$

Then by (1.5) and (3.1) we have

$$H_{m,n}(x) = \prod \{x - \alpha(k)\alpha(m')\beta(k)\beta(n')\},\,$$

where $\alpha(k)$, $\beta(k)$ independently run through the primitive k-th roots of unity while $\alpha(m')$, $\beta(n')$ run through the primitive m'-th and n'-th roots, respectively. Applying Lemmas 3 and (4) we get

(3.3)
$$H_{m,n}(x) = \prod_{r \mid k} \prod \{x - \gamma(r)\alpha(M)\}^{\psi(r,k)\phi(d)},$$

where in the inner product $\gamma(r)$ runs through the primitive r-th roots of unity and $\alpha(M)$ runs through the primitive M-th roots,

(3.4)
$$d=(m', n'), M=[m', n'].$$

Since (r, M)=1, $\gamma(r)\alpha(M)$ runs through the primitive rM-th roots of unity. Hence (3.3) becomes

(3.5)
$$H_{m,n}(x) = \prod_{r \mid k} (F_{rM}(x))^{\psi(r,k)\varphi(d)}.$$

Making use of the formula

$$F_{rM}(x) = \prod_{st=r} (F_M(x^s))^{\mu(t)},$$

we get

$$H_{m,n} = \prod_{rst=k} F_M(x^s)^{\mu(t)\psi(st, k)\varphi(d)}$$
$$= \prod_{su=k} F_M(x^s)^{\varphi(d)e(s, u, k)}$$

where

(3.6)
$$e(s, u, k) = \sum_{t \mid u} \mu(t) \psi(st, k).$$

Put

(3.7)
$$k = \prod p^e, \quad k^* = \prod p^{e-1}.$$

It follows from (2.5) and (3.6) that

(3.8)
$$e(s, u, k) = 0 \text{ if } k^* \backslash s.$$

Moreover, when $k^* \mid s$, we get

(3.9)
$$e(s, u, k) = \prod_{f < e} p^{e-1} \cdot \prod_{e = f} p^{e-1} (p-2),$$

where $s = \prod p^f$.

We may now state the following

Theorem 1. Let k be the greatest common divisor of m and n such that

$$\left(k, \frac{m}{k}\right) = \left(k, \frac{n}{k}\right) = 1$$

and put

$$M = \left[\frac{m}{k}, \frac{n}{k}\right], \quad d = \left(\frac{m}{k}, \frac{n}{k}\right).$$

62 L. Carlitz

Then

(3.10)
$$H_{m,n}(x) = \prod_{su=k} F_M(x^s)^{\varphi(d)e(s, u, k)},$$

where the product is restricted to those s that are divisible by k^* and e(s, u, k) is evaluated by (3.9). In particular, if k=1, then

$$(3.11) H_{m,n}(x) = (F_M(x))^{\varphi(d)},$$

where M=[m, n], d=(m, n).

It is easily verified that

$$\sum_{su=k} e(s, u, k) = \varphi(k).$$

Hence (3.10) implies

$$H_{m,n}(1) = p^{\varphi(d)\varphi(k)} = p^{\varphi(dk)},$$

provided $M=p^a$. Thus if $m>n\geq 1$ and $m=np^a$ then

(3.11)
$$H_{m,n}(1) = p^{\varphi(n)}$$

in agreement with Apostol [1].

It may be of interest to mention that if ζ denotes a k^* -th root of unity (not necessarily primitive) then we have

$$(3.12) H_{m,n}(\zeta) = p^{\varphi(n)},$$

where again $m = np^a$.

REFERENCES

[1] APOSTOL, T. M.: Resultants of cyclotomic polynomials, Proceedings of the American Mathematical Society, vol. 24 (1970), 457-462.

- [2] ECKFORD, COHEN: Arithmetical functions associated with the unitary divisors of an integer, Mathematische Zeitschrift, vol. 74 (1960), 66-80.
- [3] DIEDERICHSEN, F. E.: Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Sem. Hansischen Univ., vol. 13 (1964), 357-412.

Manoscritto pervenuto in redazione il 24 settembre 1971.