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A POLYNOMIAL RELATED
TO THE CYCLOTOMIC POLYNOMIAL

L. CARLITZ *)

1. Let

denote the cyclotomic polynomial. In a recent paper [ 1 ] Apostol has:

determined the resultant R(Fm , Fn) of the cyclotomic polynomials Fm(x),.
see also Diederichsen [3].

For m, put

where ’(1., runs through the primitive m-th roots of unity and 5 runs
through the primitive n-th roots of unity. Clearly

Also it follows at once from (1.2) that
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where

and

In (1.5), as in (1.2), a runs through the primitive m-th roots of unity
while ’~ runs through the primitive n-th roots of unity.

Let k denote the greatest common divisor of rn and n such that

We may call k the unitary greatest common divisor of m and n and write

(We remark that Eckford Cohen [2] has defined a similar function that
is denoted by (m, n)*). We shall show that, for k= 1,

where

The general case (k ? 1 ) is given in Theorem 1 below.

Apostol’s result is an easy corollary of the theorem. Indeed a

slightly more general result is given in (3.12).

2. We shall require several lemmas.

LEMMA 1. The number of solutions of

where p is a prime and e &#x3E; 1, is equal to
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LEMMA 2. Let f(a, n) denote the number of solutions of

Then, for (m, n) = 1,

The proof of these two lemmas is almost immediate.

LEMMA 3. Let .a, ~3 independently run through the primitive k-th
roots of unity. Let r denote an arbitrary divisor of k. Then the primitive
r-th roots of unity occur k) times among the products where

PROOF. Let E denote a fixed primitive k-th root of unity and put
a==~~ ~==~, where x, y~ run through reduced residue systems (mod k) .
Let k=rs. Then is a primitive r-th root of unity if and

only if

where (a, r) =1. For fixed a, s, the number of solutions of this con-

gruence is f (as, k) as defined in Lemma 2. Now apply Lemmas 1 ’and
2 and,(2.5) follows at once.

LEMMA 4. Let (m, n)* =1, where (m, n)* is defined by ( 1.7) and
( 1.8). Let a run through the primitive m-th roots of unity and 5 through
the primitive n-th roots of unity. Then y=a5 runs through the primitive
M-th roots of unity g(d) times, where
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It suffices to prove this when

where p is prime. Then if oc is a primitive pe-th root of unity and
is a primitive pf-th root, it is clear that -t=a5 is a primitive pe-th root.
Moreover each y will occur exactly times.

3. Given m, n &#x3E;_ 1, define k= (m, n)* by means of (1.7) and (1.8)
and put

so that

Then by (1.5) and ( 3 .1 ) we have

where a(k), 5(k) independently run through the primitive k-th roots of
unity while a(m’), 0(n’) run through the primitive m’-th and n’-th roots,
respectively. Applying Lemmas 3 and (4) we get

where in the inner product ~y{r) runs through the primitive r-th roots
of unity and ~a{M) runs through the primitive M-th roots,

Since (r, M) =1, runs through the primitive rM-th roots
of unity. Hence (3.3) becomes
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Making use of the formula

we get

where

Put

It follows from (2.5) and (3.6) that

Moreover, when k* ~ s, we get

where s= II pl.
We may now state the following

THEOREM 1. Let k be the greatest common divisor of m and n
such that

and put
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Then

where the product is restricted to those s that are divisible by k* and
e(s, u, k) is evaluated by (3.9). In particular, if k=1, then

where M=![m, n], d=(m, n).

It is easily verified that

Hence (3. 10) implies

provided M = pa. Thus if m &#x3E; n &#x3E; 1 and then

in agreement with Apostol [ 1 ] .
It may be of interest to mention that if ~ denotes a k*-th root of

unity (not necessarily primitive) then we have

where again m = n pa.
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