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ON THE SOLUTION

OF SCHRÖDINGER-LIKE WAVE EQUATIONS

by J. DE GRAAF and L. A. PELETIER *)

§ 1. Introduction.

In this paper we shall prove the unique solvability of the initial

value problem for a system of inhomogeneous linear second order partial
differential equations which can be denoted in matrix notation as

where u(x, t) = col (uyx, t), ..., un(x, t)). The real variable x runs

through the interval ( - 00, 00). The real variable t satisfies 0  t _ T C ~ .
D, A and B are constant matrices. D and A have the following restrictive
properties:

where At is the hermitian transpose of A.
S is a differential operator defined by (1).
f(x, t) is a vector valued function, f = col ( f i(x, t), ..., t)).
For the case f=0 some special properties of the solution will be

investigated.
One method of dealing with this problem is based on the theory

of semi-groups. See [2] and [3].
However, an elementary and very elegant proof for a related pro-

blem has been given by Ladyzenskaia [1]. She deals with the initial

*) Indirizzo degli A.A.: Technological University Eindhoven, the Netherlands.
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value problem for the operator equation

where for almost all t, u(t) and f(t) are elements of a seperable Hilbert-
space H. Here the linear operator Si(t) has the following four properties:

(i) The domain D(Si) of Si is dense everywhere in H.

(4) 
(ii) Si is self-adjoint.

(4) 
(iii) Si establishes a one-to-one mapping of D(Si) on to H.

(iv) Si &#x3E; 0.

In the present problem the operator corresponding to Si in neither
positive nor self-adjoint; on the other hand it does not depend on t.

We shall prove existence and, in passing, uniqueness, by suitably modi-
fying Ladyzenskaja’s method, using an auxiliary operator which does
have the properties (i) - (iv).

§ 2. Some notations.

R: the interval (- 00, 00) of the real numbers.

Q: a strip in the x-t-plane containing all points satisfying the

inequalities - 00  x  00 and 0  t  T 

We consider the vector valued functions of n complex components
u = col (ui , ..., un), uk = uk(x, t) defined on R and Q respectively; in
the former case t is fixed.

L2(R), L2(Q): Hilbert-spaces containing all square integrable n-

component vector valued functions on R and Q respectively. The inner
products and norms belonging to them are defined by

ut being the hermitian transpose of u.



331

Wr(R): Sobolev space. This space contains all vector valued

L2(R) - functions u(x) whose generalised derivatives Dku, (k=1, 2, ..., m)
are also elements of L2(R). The innerproduct and norm are, respectively,

W = L2(Q) X L2(R) i.e. the Cartesian product, being the set of all

pairs [ v; cp] with veL2(Q) and The innerproduct and norm
are defined by:

REMARK. All integrations applied in the definitions of norms and
inner products, are in the sense of Lebesgue. All differentiations in

the present paper are meant in generalized sense, although the classical
notation will be retained.

§ 3. Existence and uniqueness of the solution.

We consider equation (1) with the properties (2), feL2(Q) and
u(x, 0) E L2(R). Let D(O) be a linear manifold in L2(Q) containing the
functions u(x, t) which have generalized derivatives ut , ux , uxx in

L2(Q) and for which at each T], and uteWKR). Fur-
ther we define Do(O) and D°(O), being linear sub-sets of D(O), contai-
ning D((9)-functions vanishing at and t = T respectively.

Do(e) is dense everywhere in L2(Q).
Define on D( O ) the operator O as follows

The range R ( O ) of operator Q establishes a linear manifold in the
Hilbert-space W.

LEMMA. 1 The linear manifold R((9) is dense everywhere in W.
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PROOF. The lemma holds if and only if there is no element in W,
except [0; 0 ] , normal to the linear manifold R ( O ) . Let 

be normal to R(O). Then for every 

From v(x, t) construct the fuction cp(x, t) as solution of

As the auxilary operator I establishes a one-to-one mapping of
WRR) onto L2(R), cp exists, is uniquely determined, and belongs to

WRR) for every T]. It is easily seen that

Now we choose for any a E [ o, T ] the function u E D( O ) as follows:

By using the definition of one can verify that, for every
~~[0, T ] , u is an element of D(O).

Substitution of (6) and (7) in (5) yields
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After partial integration and using the properties of cp we obtain

Add to this expression its complex conjugate, then after some partial
integrations:

Further, there exists a unitary matrix U, such that

where A is a real diagonal matrix. Let K, in absolute sense be the

greatest eigenvalue of (B+Bt), then

With this result we obtain, as qp(T)=0, from (8) the inequality

which holds for all a E [ o, T ] . This is essentially Gronwall’s inequality
[ 6 ] . Therefore (lqp, p)=0 for every T ] .

Since 1&#x3E;0, it immediately follows that p==0, and hence v = 0

(cf. (6)). As W’ 2( R) is dense everywhere in L2(R), ~ must also be zero.
This completes the proof of our lemma.

REMARK. The auxiliary operator 0 has the properties (4).
Ladyzenskaja constructs the functions cp by means of the operator

81 (cf. (3)). This is not possible in our case and, obviously, not necessary.
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LEMMA 2. For every uED(O) the following inequalities hold.

ci and c2 are constants.

PROOF. Premultiply the expression

by ut and integrate it over the entire x-axis.

Then, adding to the result its complex conjugate and keeping in

mind that the operators and A a are skew-hermitian, we obtainp ax2 ax ’

Using (9) and the expansion of ~~ u-Su 112 we obtain

with O=K+ 1.
We multiply the left-hand side of the last inequality by The

result may be written

Integration of this inequality from 0 to ti leads to the desired

inequalities (10), where



335

THEOREM 1. The operator Q has a closure O, where R(O)=
= R(O) = W. The operator equation Ou = [ f ; cpo] is uniquely solvable
for every f EL2(Q) and po~L2(R), and for all t the solution u is an

element of L2(R), which depends continuously on t. Finally Su = f and
u(x, t) - go(x) as t -3 0 in the sense of the L2- norm.

PROOF.

(i) R(O) is dense everywhere in W (lemma 1), so every element
in W can be approximated by sequence of elements belonging to R(O).
From lemma 2 it is clear that the originals of the elements of a Cauchy
sequence in R(O) establish a converging sequence in L2(Q). The union
of D(O) and the limit points of these sequences will be denoted by
D(4).

(ii) Let be a sequences converging to such

that {(9~)=={[~; cpn] I converges to [ f ; 
When we succeed in proving that u = 0 implies [ f ; CPo] = [0, 0]

the operator has a closure O.

Multiply the expression from the right 
and integrate over Q. By means of partial integration the differentiations
may be carried over to ~. This leads to

where 
For n ~ oo our assumptions lead to

holding for 
Restricting ourselves apriori to test functions we imme-

diately obtain f = 0 as Do(O) is a dense subset of L2(Q). Then also

xpo=0 as is a dense subset of L2(R).
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(iii) Let be a sequence converging to uED(Q) It fol-
lows from (10 i ) that the un(t), as elements of L2(R ), converge uniformly
with respect to T] to u(t). Furthemore, because au,,IateL2(Q),
they are - as elements of L2(R) - strongly continuous with respect
to t. The limit function u(t) must therefore be strongly continuous

as well.

§ 4. Some properties of the solution if f = 0.

Concerning the (n X n)-matrices D, A an B we restrict ourselves to
those cases where the matrix

has n independent eigenvectors for all z within a sufficiently small circle
around the origin of the complex z-plane. This property, together with
condition (2), ensures that the matrix operator

is uniformly bounded for keR and T], (see appendix).
If we take the initial value u(x, the solution may

be represented by

where

This is easily verified by direct substitution: The differentiation

may be carried out under the integral sign, as the required derivatives
of the integrals converge uniformly since



337

THEOREM 2. For an arbitrary initial condition u(x, 0) = g(x) E L2(R)
the solution may be represented by (13).

PROOF. As W~(R) is dense everywhere in L2(R), it is possible to
find a sequence (g" } c W2;(R) which converges to g(x) in the sense of
the L2(R)-norm. Then the solutions un(x, t), corresponding to initial
values gn(x) also converge in the L2-norm i.e.

u(x, t) being a solutions and u(x, 0) = g(x).

Finally, as the Fourier-Plancherel operator (14) is bounded, the

order of integration and passing to the limit may be interchanged.
This proves the theorem.

THEOREM 3.

u(x, p &#x3E; 1, implies: u(x, for all t.

Using representation (13), we find

because the second term between pointed brackets is independent of x.
Note:

From (15) it follows that
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Finally, according to Titchmarsh p. 69 [5], we have for almost
all x

Consequently aPulaxPeL2(R), and for all t u(x, 

Appendix.

A. Consider the (nXn)-matrix (D-Az+iBZ2) , defined on the

complex z-plane. The matrix has the properties

(i) D = diag (du, ..., dnn); D is real.

(iii) There exists a positive number p so that 
has n independent eigenvectors for z ~ I  p.

REMARK. Sufficient (although not necessary) for (iii) to hold is

that all diagonal elements of D are all different from one another.
Let

For all are analytic in the origin, and the vi(z) may
be chosen so. (cf. [4] ). Substitute in (a) the power series

After identification of equal powers we obtain

From (b) it follows that Take 
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Premultlply (c) by After some reshuffling this yields

Obviously, both and are real when A is hermitian.

B. THEOREM. There exists a positive number M, so that for all

te [0, T] and keR

PROOF. In view of condition (iii) there exists a number K &#x3E; 0
such that the exponent divided by ik2t is diagonalizable for every k,

(i ) There exists a positive number M1 so that for all k, such
that I k I ~K and all t E [ o, T], 11 e(iDk’-ikA-B)t 11 I variables
are bounded.

(ii) For k, I k I &#x3E;K, construct from the normalized eigenvectors
a matrix S(k) such that ,

Then ~~ t) ~~ I =1, as ~,;1~ is real. lfJ2(k, t), S(k) and S - l(k) are

unformly bounded for k, ~ k ~ so there exists a number M2 satisfying
the requirement that for all k, ~ I k &#x3E; K.

(iii) Finally, take M= max (Mi , M2).
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