RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

MEHMET NAMIK OĞUZTÖRELI

Ottimizzazione dei sistemi di controllo a parametri distribuiti : condizioni necessarie di ottimalità. Punto di vista della programmazione dinamica

Rendiconti del Seminario Matematico della Università di Padova, tome 42 (1969), p. 221-265

http://www.numdam.org/item?id=RSMUP_1969_42_221_0

© Rendiconti del Seminario Matematico della Università di Padova, 1969, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

OTTIMIZZAZIONE DEI SISTEMI DI CONTROLLO A PARAMETRI DISTRIBUITI: CONDIZIONI NECESSARIE DI OTTIMALITÀ. PUNTO DI VISTA DELLA PROGRAMMAZIONE DINAMICA

di Mehmet Namik Oguztoreli *)

SUMMARY. - In [1a] we established certain sufficient conditions for the existence of an optimal policy for well-posed linear distributed parameter control systems. In this paper we investigate the properties of optimal policies and obtain certain necessary conditions for the optimality of admissible policies using the techniques of *Dynamic Programming*.

SUNTO. - In una nostra recentissima memoria [1a] presentata dall'Illustre Accademico Linceo Mauro Picone abbiamo stabilito certe condizioni sufficienti concernenti l'esistenza di una strategia ottimale per sistemi di controllo lineari ben posti con parametri distribuiti. In questo lavoro si studiano le proprietà delle strategie ottimali e si ottengono certe condizioni necessarie di ottimalità spettanti alle strategie ammissibili. Le tecniche algoritmiche usano largamente il punto di vista della *Programmazione Dinamica*.

1. Descrizione del sistema.

Sia S un sistema di controllo lineare ben posto con parametri distribuiti con un dominio spaziale fisso $\Omega(\subset E^n)$, limitato da una superficie nitida $\partial\Omega$ soddisfacente le condizioni di Liapunov. Sia $I_0 = [t_0 - \alpha, t_0]$ ($\alpha \ge 0$) l'intervallo temporale iniziale ed $I = [t_0, t_1]$ l'intervallo di tempo processuale spettanti al sistema S.

Assumiamo che

Indirizzo dell'A.: Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada.

^{*)} The author expresses his sincere thanks to the National Research Council of Canada for the generous support received to carry on this work.

(i) Lo spazio Φ di tutte le funzioni iniziali ammissibili consiste da tutte le funzioni sufficientemente nitide a valori reali $\varphi(t, x)$ definite $I_0 \times \overline{\Omega}$, tali che

$$(1.1) | \varphi(t, x) \leq \varphi_0 (t, x) \in I_0 \times \overline{\Omega},$$

ove φ_0 è un numero positivo specificato.

(ii) Lo spazio V di tutti i controlli ammissibili distribuiti consiste da tutte le funzioni sufficientemente nitide a valori reali $\nu(t, x)$ definite su $I_1 \times \overline{\Omega}$, tali che

$$(1.2) |v(t, x)| \leq v_0 (t, x) \in I \times \overline{\Omega},$$

ove con v_0 si è notato un certo numero positivo.

(iii) Lo spazio W di tutti i controlli ammissibili al contorno consiste da tutte le funzioni sufficientemente nitide a valori reali w(t, x) definite su $I_1 \times \partial \Omega$, tali che

$$(1.3) |w(t, x)| \leq w_0 (t, z) \in I \times \partial \Omega,$$

ove w_0 è un certo numero positivo.

(iv) Lo spazio di funzioni stato U consiste da tutte le funzioni sufficientemente nitide a valori reali u(t, x) definite su $I \times \overline{\Omega}$.

Il grado di nitidezza degli elementi degli spazi U, Φ , V e W è da determinarsi in ogni particolare problema in modo che siano soddisfatte le condizioni affinchè il sistema S sia ben posto. In ogni modo però assumiamo che

(v) Le funzioni $\varphi(t, x)$, $\nu(t, x)$ e w(t, x), appartenenti agli spazi Φ , V e W rispettivamente, sono almeno una volta continuamente differenziabili rispetto a t ed $x=(x_1, x_2, ..., x_n)$ nel loro dominio di definizione.

Come al solito, sia $P = \Phi \times V \times W$ lo spazio strategico per il sistema S.

Sia ora A un operatore lineare (generalmente chiuso) integro differenziale a derivate parziali e differenze finite azionante sullo spazio U, non involgente differenziazione rispetto a t e sia B un operatore lineare dato azionante nello spazio V. Si assume che

(vi) Il sistema S è descritto dalla sequente equazione di evoluzione

(1.4)
$$\frac{\partial u(t, x)}{\partial t} = A(u)(t, x) + B(v)(t, x)$$

per $v \in V$ et $(t, x) \in I \times \Omega$, soggetto alla condizione iniziale

(1.5)
$$u(t, x) = \varphi(t, x) \text{ per } (t, x) \in I_0 \times \overline{\Omega}, \ \varphi \in \Phi$$

ed alla condizione al contorno

(1.6)
$$u(t, x) = w(t, x) \text{ per } (t, x) \in I \times \partial \Omega, w \in W.$$

Si suppone che $w(t_0, x) = \varphi(t_0, x)$ per $x \in \partial \Omega$

Giacchè il sistema S è presupposto ad essere ben posto, l'equazione (1.4) ha, per $\{\varphi, v, w\} \in P$, una soluzione unica $u(t, x, t_0; \varphi, v, w)$, sod-disfacente le condizioni (1.5) e (1.6) e tale soluzione dipende continuamente dalla strategia $p = \{\varphi, v, w\}$. Si assume inoltre che

(vii) Era stata stabilita per le traiettorie del sistema S una formula di rappresentazione della forma

(1.7)
$$u(t, x, t_0; \varphi, \nu, w) = (L_1 \varphi + L_2 \nu + L_3 w)(t, x),$$

ove L_1 , L_2 e L_3 sono certi operatori lineari continui definiti rispettivamente sugli spazi Φ , V e W e tali che

(1.8)
$$L_{1}(\varphi)(t, x) = \begin{cases} \int_{t_{0}}^{\infty} \int_{\Omega}^{\infty} L_{1}(t, \sigma; x, \xi) \varphi(\sigma, \xi) dV_{\xi} d\sigma \text{ per } (t, x) \in I \times \Omega, \\ 0 \text{ per } (t, x) \in I \times \partial \Omega, \\ \varphi(t, x) \text{ per } (t, x) \in I_{0} \times \overline{\Omega}, \end{cases}$$

(1.9)
$$L_{2}(\nu)(t, x) = \begin{cases} \int_{t_{0}}^{t} \int_{\Omega} L_{2}(t, \sigma; x, \xi)\nu(\sigma, \xi)dV_{\xi}d\sigma \text{ per } (t, x) \in I \times \Omega, \\ 0 \text{ per } (t, x) \in I \times \partial \Omega, \\ 0 \text{ per } (t, x) \in I_{0} \times \overline{\Omega}, \end{cases}$$

$$(1.10) L_3(w)(t, x) = \begin{cases} \int_{t_0}^t \int_{\Omega} L_3(t, \sigma; x, \xi) w(\sigma, \xi) dV_{\xi} d\sigma \text{ per } (t, x) \in I \times \partial \Omega, \\ w(t, x) \text{ per } (t, x) \in I \times \partial \Omega, \\ 0 \text{ per } (t, x) \in I_0 \times \overline{\Omega}. \end{cases}$$

Assumiamo che i nuclei L_k (k=1,2,3) sono noti ed almeno una volta continuamente differenziabili rispetto a t ed x per $(t,x) \in I \times \Omega$, per ogni $(\sigma, \xi) \in I_0 \times \Omega$, $(\sigma, \xi) \in I \times \overline{\Omega}$ e $(\sigma, \xi) \in I \times \partial \overline{\Omega}$, $\sigma < t$ $x \neq \xi$, rispettivamente, con singolarità deboli per $t=\tau$ e $x=\xi$.

Nel nostro lavoro [1b] abbiamo dimostrato la possibilità di rappresentazione sotto la forma (1.7)-(1.10) delle traiettorie di una vasta classe di equazioni di evoluzione. In seguito di un'osservazione fatta nella nostra Nota [1a], ogniqualvolta l'integrale temporale iniziale I_0 si riduce al momento iniziale I_0 , ogni integrazione spettante all'intervallo I_1 dev'essere abolita, eseguiendosi ovvia modificazione nell'integrando. In questo caso si scrive

(1.11)
$$\varphi(x) \equiv \varphi(t_0, x), L_1(t; x, \xi) \equiv L_1(t, t_0; x, \xi)$$

e pertanto in corrispondenza di ciò, la formula (1.8) si trascriverà sotto la forma

(1.12)
$$L_{1}(\varphi)(t, x) = \begin{cases} \int_{\Omega} L_{1}(t; x, \xi) \varphi(\xi) dV_{\xi} \text{ per } (t, x) \in I \times \Omega, \\ \varphi(x) \text{ per } t = t_{0}, x \in \Omega, \\ 0 \text{ per } (t, x) \in I \times \partial \overline{\Omega}, \end{cases}$$

mentre le formule (1.9) e (1.10) rimangono tali quali.

Si tenga anche presente il fatto che ci preoccupiamo di un problema astratto di Cauchy epperciò non ne abbiamo bisogno nè dell'operatore L_3 nè delle condizioni al contorno nell (1.8), (1.9) e (1.12). Effettivamente, in questo caso, la formula di rappresentazione si presenta

(1.13)
$$u(t, x, t_0; \varphi, \nu) = (L_1 \varphi + L_2 \nu)(t, x),$$

ove

(1.14)
$$L_{1}(\varphi)(t, x) = \begin{cases} \int\int\limits_{I_{0}}^{\infty} \int\limits_{\Omega}^{I} L_{1}(t, \sigma; x, \xi) \varphi(\sigma, \xi) dV_{\xi} d\sigma \text{ per } (t, x) \in I \times \Omega, \\ \varphi(t, x) \text{ per } (t, x) \in I_{0} \times \overline{\Omega}, \end{cases}$$

е

(1.15)
$$L_2(v)(t, x) = \begin{cases} \int_{t_0}^t \int_{\Omega} L_2(t, \sigma; x, \xi) v(\sigma, \xi) dV_{\xi} d\sigma \text{ per } (t, x) \in I \times \Omega, \\ 0 \text{ per } (t, x) \in I_0 \times \overline{\Omega}, \end{cases}$$

mentre, nel caso in cui l'intervallo I_0 si riduce al momento iniziale $t=t_0$, si ha:

(1.16)
$$L_{1}(\varphi)(t, x) = \begin{cases} \int_{\Omega} L_{1}(t; x, \xi) \varphi(\xi) dV_{\xi} \text{ per } (t, x) \in I \times \Omega, \\ \varphi(x) \text{ per } t = t_{0}, x \in \overline{\Omega}, \end{cases}$$

e

(1.17)
$$L_2(\nu)(t, x) = \begin{cases} \int_{t_0}^t \int_{\Omega} L_2(t, \sigma; x, \xi) \nu(\sigma, \xi) dV_{\xi} d\sigma \text{ per } (t, x) \in I_1 \times \Omega, \\ 0 \text{ per } t = t_0, x \in \overline{\Omega}. \end{cases}$$

Dobbiamo sottolineare che vi sono alcune differenze tra le notazioni spettanti ai nuclei L_k (k=1, 2, 3) da noi utilizzati in questo lavoro e quelle che ne abbiamo adottato nel [1b].

2. Problema di ottimizzazione.

Sia S il sistema di controllo descritto nel paragrafo 1. Siano $\{\varphi, v, w\}$ una strategia ammissibile ed $u(t, x) = u(t, x, t_0; \varphi, v, w)$ la traiettoria che corrisponde al $p = \{\varphi, v, w\}$. Assumiamo che la performanza del sistema S è misurata da un funzionale costo $J(\varphi, v, w)$ avente la forma

(2.1)
$$J(\varphi, v, w) = \int_{t_0}^t Q_1(t; u(t, x_1), v(t, x_2), w(t, x_3)) dt +$$

$$+ \int_{\partial\Omega} Q_{2}(t_{1}, x; \nabla_{x}u(t_{1}, x), w(t_{1}, x))dS_{x} +$$

$$+ \int_{\Omega} Q_{3}(t_{1}, x; u(t_{1}, x), \nabla_{x}u(t_{1}, x), v(t_{1}, x))dV_{x} +$$

$$+ \int_{t_{0}}^{t_{1}} \int_{\partial\Omega} Q_{4}(t, x; \nabla_{x}u(t, x), w(t, x))dS_{x}dt +$$

$$+ \int_{t_{0}}^{t_{1}} \int_{\Omega} Q_{5}(t, x; u(t, x), \nabla_{x}u(t, x), v(t, x))dV_{x}dt,$$

ove x_1 , $x_2 \in \Omega$ e $x_3 \in \partial \Omega$ sono certi punti dati fissati e Q_k (k=1, 2, ..., 5) sono certe funzioni non negative a valori scalari date, sufficientemente nitide rispetto a tutti i loro argomenti. Assumiamo che tutte le derivate parziali delle funzioni Q_k , che vi saranno utilizzate nei nostri calcoli, esistono e sono continue. Denotiamo con $\nabla_x u(t, x)$ il vettore gradiente di u(t, x) rispetto ad $x=(x_1, x_2, ..., x_n)$.

Il problema di ottimazione considerato in questo lavoro consta nella determinazione di una strategia ammissibile con un costo minimo. Sia $\{\varphi^0, \nu^0, w^0\}$ una tale strategia. Si ha allora

(2.2)
$$J(\varphi^0, v^0, w^0) = \min_{\{\varphi, v, w\} \in P} J(\varphi, v, w),$$

e cioè

(2.3)
$$J(\varphi^0, v^0, w^0) \le J(\varphi, v, w) \text{ per ogni } \{\varphi, v, w\} \in P.$$

Ogni $\{\phi^0, \nu^0, w^0\} \in P$ avente la proprietà di cui sopra sarà chiamata, come al solito, una *strategia ottimale*.

In questo lavoro stabiliremo certe condizioni necessarie per l'ottimalità di una strategia ammissible. Studieremo il problema di ottimizzazione testè formulato in tutta la generalità per un sistema di controllo per cui intervallo di tempo iniziale I_0 si riduce all'istante iniziale t_0 . Nel nostro lavoro [1c] consideriamo il caso in cui I_0 non si riduce all'istante iniziale.

3. Principio di ottimalità.

La proprietà fondamentale concernente le strategie ottimali si esprime nel seguente principio dovuto a R E.. Bellman [2]:

Principio di Ottimalità. Una strategia ottimale possiede la proprietà che qualunque siano lo stato iniziale e la decisione iniziale, le decisioni rimanenti debbono costituire pur esse una strategia ottimale rispetto allo stato risultato dopo l'esecuzione della prima decisione.

Questo principio giocherà un ruolo di primissima importanza nell'analisi susseguente.

4. Riformulazione del problema di ottimizzazione.

L'operazione di minimizzazione nell'equazione (2.2) rispetto a $\{\varphi, \nu, w\}$ è eseguita nell'intervallo di tempo $I=(t_0, t_1)$. Per mettere in evidenza questo fatto si scrive

(4.1)
$$f(t_0, t_1) = \min_{\{\varphi, v, w\} \in P} J(\varphi, v, w).$$

Sia ora τ un momento qualunque dell'intervallo *I*. Suddividiamo l'intervallo *I* in due parti, e precisamente $I'_{\tau}=(t_0, \tau)$ e $I_{\tau}=(\tau, t_1)$ e definiamo le funzioni

(4.2)
$$\varphi_{[\tau]}(t, x) = \begin{cases} \varphi(x) \text{ per } t = t_0, x \in \overline{\Omega}, \\ u(t, x, t_0; \varphi, \nu, w) \text{ per } (t, x) \in I'_{\tau} \times \overline{\Omega}, \end{cases}$$

e

(4.3)
$$u_{[\tau]}(t, x) = \begin{cases} \varphi_{[\tau]}(t, x) & (t, x) \in I'_{\tau} \times \overline{\Omega}, \\ u(t, x, \tau; \varphi_{[\tau]}, v, w) & (t, x) \in I_{\tau} \times \overline{\Omega}, \end{cases}$$

ove $\varphi_{[\tau]} \equiv \varphi_{[\tau]}(\tau, x) = u(\tau, x, t_0; \varphi, v, w)$.

È ovvio che $u_{[\tau]}(t, x)$ è una continuazione di $\varphi_{[\tau]}(t, x)$ e $u_{[\tau]}(t, x) \equiv u(t, x, t_0; \varphi, v, w)$ per $(t, x) \in I_{\tau} \times \overline{\Omega}$.

Poniamo ora, per semplicità,

(4.4)
$$Q_1^*(t, \tau) = Q_1(t; u_{\tau}(t, x_0), v(t, x_1), w(t, x_2)) \text{ per } t \in I_{\tau},$$

(4.5)
$$Q_2^*(t, \tau, x) = Q_2(t, x; \nabla_x u_{[\tau]}(t, x), w(t, x))$$

$$\text{per } (t, x) \in I_\tau \times \partial \Omega,$$

(4.6)
$$Q_3^*(t, \tau, x) = Q_3(t, x; u_{[\tau]}(t, x), \nabla_x u_{[\tau]}(t, x), v(t, x))$$

per $(t, x) \in I_\tau \times \Omega$,

(4.7)
$$Q_4^*(t, \tau, x) = Q_4(t, x; \nabla_x u_{[\tau]}(t, x), w(t, x))$$
per $(t, x) \in I_\tau \times \partial \Omega$,

(4.8)
$$Q_5^*(t, \tau, x) = Q_5(t, x; u_{[\tau]}(t, x), \nabla_x u_{[\tau]}(t, x), \nu(t, x))$$

per $(t, x) \in I_\tau \times \Omega$.

Con le notazioni di cui sopra, l'equazione (4.1) può essere scritta sotto la forma seguente

$$(4.9) f(t_0, t_1) = \min_{\{\emptyset, v, w\} \in P \mid I_{t_0}} \left\{ \int_{t_0}^{t_1} Q_1^*(t, t_0) dt + \int_{\partial \Omega} Q_2^*(t_1, t_0, x) dS_x + \int_{\Omega} Q_3^*(t_1, t_0, x) dV_x + \int_{t_0}^{t_1} \int_{\partial \Omega} Q_4^*(t, t_0, x) dS_x dt + \int_{t_0}^{t_1} \int_{\Omega} Q_5^*(t, t_0, x) dV_x dt \right\},$$

ove con la notazione min si intende che la minimizzazione rispetto a $\{\varphi, \nu, w\}$ si eseguisce nell'intervallo $I_t = I$. Più generalmente, consideriamo la seguente funzione

(4.10)
$$f(\tau, t_1) = \min_{\{\varphi, v, w\} \in P \mid I_{\tau}} \left\{ \int_{\tau}^{t_1} Q_1^*(t, \tau) dt + \int_{\partial \Omega} Q_2^*(t_1, \tau, x) dS_x + \int_{\Omega} Q_3^*(t_1, \tau, x) dV_x + \int_{\tau}^{t_1} \int_{\Omega} Q_4^*(t, \tau, x) dS_x dt + \right\}$$

$$+\int_{0}^{t_1}\int_{0}^{t_1}Q_5^*(t, \tau, x)dV_xdt\bigg\}.$$

ove la notazione $\min_{\{\varphi, v, w\} \in P \mid I_{\tau}}$ denota che la minimizzazione rispetto a $\{\varphi, v, w\}$ si eseguisce nell'intervallo $I_{\tau} = [\tau, t_1]$.

Nei paragrafi susseguenti studieremo alcune proprietà della funzione $f(\tau, t_1)$.

5. Applicazione del principio di ottimalità.

Consideriamo l'equazione (4.10). Dividiamo l'intervallo $I_{\tau} = [\tau, t_1]$ in due parti, e precisamente $I''_{\tau} = [\tau, \tau + \Delta]$ ed $I_{\tau + \Delta} = [\tau + \Delta, t_1]$ ove Δ denota un piccolo intervallo di tempo finito. Per ipotesi, le funzioni Q_k (k=1, 2, ..., 5) sono continuamente differenziabili rispetto a tutti i suoi argomenti. Inoltre, le soluzioni $u(t, x, t_0; \varphi, v, w)$ e $u_{[\tau]}(t, x, \tau; \varphi_{[\tau]}, v, w)$ sono una volta continuamente derivabili rispetto a t e una volta continuamente differenziabili rispetto ad $x=(x_1, x_2, ..., x_n)$ per $(t, x) \in I \times \Omega$. Se ne ha anche poscia, sempre per ipotesi, che le ultime due funzioni sono continuamente differenziabili rispetto a t_0 e τ , rispettivamente. E pertanto, le funzioni Q_k^* (k=1, 2, ..., 5) sono tutte continue in t oppure in (t, x), e continuamente derivabili rispetto a τ .

È chiaro che l'equazione (4.10) può essere scritta sotto la forma seguente:

(5.1)
$$f(\tau, t_{1}) = \min_{\{\varphi, v, w\} \in P \mid I_{\tau}} \left\{ \int_{\tau}^{\tau + \Delta} Q_{1}^{*}(t, \tau) dt + \int_{\tau + \Delta}^{t_{1}} Q_{1}^{*}(t, \tau, x) dV_{x} + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dS_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dS_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, \tau, x) dV_{x} dt + \int_{\tau + \Delta}^{\tau + \Delta} Q_{2}^{*}(t, \tau, \tau, x) dV_{x} dt + \int_{$$

In conformità con le osservazioni di cui sopra, abbiamo

(5.2)
$$\int_{\tau}^{\tau+\Delta} Q_1^*(t, \tau) dt = \Delta Q_1^*(\tau, \tau) + O(\Delta^2),$$

(5.3)
$$\int_{\tau+\Delta}^{t_1} Q_1^*(t, \tau) dt = \int_{\tau+\Delta}^{t_1} Q_1^*(t, \tau+\Delta) dt - \Delta \int_{\tau+\Delta}^{t_1} \frac{\partial}{\partial \tau} Q_1^*(t, \tau) dt + O(\Delta^2),$$

(5.4)
$$\int_{\partial\Omega} Q_2^*(t_1, \tau, x) dS_x =$$

$$= \int_{\partial\Omega} Q_2^*(t_1, \tau + \Delta, x) dS_x - \Delta \int_{\partial\Omega} \frac{\partial}{\partial\tau} Q_2^*(t_1, \tau, x) dS_x + O(\Delta^2),$$

(5.5)
$$\int_{\Omega} Q_3^*(t_1, \tau, x) dV_x =$$

$$= \int_{\Omega} Q_3^*(t_1, \tau + \Delta, x) dV_x - \Delta \int_{\Omega} \frac{\partial}{\partial \tau} Q_3^*(t_1, \tau, x) dV_x + O(\Delta^2),$$

(5.6)
$$\int_{\tau}^{\tau+\Delta} \int_{\partial\Omega} Q_4^*(t, \tau, x) dS_x dt = \Delta \int_{\partial\Omega} Q_4^*(\tau, \tau, x) dS_x + O(\Delta^2),$$

(5.7)
$$\int_{\tau+\Delta}^{t_1} \int_{\partial\Omega} Q_4^*(t, \tau, x) dS_x dt = \int_{\tau+\Delta}^{t_1} \int_{\partial\Omega} Q_4^*(t, \tau+\Delta) dS_x dt - -\Delta \int_{\tau+\Delta}^{t_1} \int_{\partial\Omega} \frac{\partial}{\partial\tau} Q_4^*(t, \tau, x) dS_x dt + O(\Delta^2),$$

(5.8)
$$\int_{\tau}^{\tau+\Delta} \int_{\Omega} Q_5^*(t, \tau, x) dV_x dt = \Delta \int_{\Omega} Q_5^*(\tau, \tau, x) dV_x + O(\Delta^2),$$

e

(5.9)
$$\int_{\tau+\Delta}^{t_1} \int_{\Omega} Q_5^*(t, \tau, x) dV_x dt = \int_{\tau+\Delta}^{t_1} \int_{\Omega} Q_5^*(t, \tau+\Delta, x) dV_x dt - \Delta \int_{\tau+\Delta}^{t_1} \int_{\Omega} \frac{\partial}{\partial \tau} Q_5^*(t, \tau, x) dV_x dt + O(\Delta^2).$$

Poniamo ora

$$(5.10) G(\tau, \Delta) = Q_1^*(\tau, \tau) - \int_{\tau+\Delta}^{t_1} \frac{\partial}{\partial \tau} Q_1^*(t, \tau) dt -$$

$$- \int_{\partial \Omega} \frac{\partial}{\partial \tau} Q_2^*(t_1, \tau, x) dS_x - \int_{\Omega} \frac{\partial}{\partial \tau} Q_3^*(t_1, \tau, x) dV_x +$$

$$+ \int_{\partial \Omega} Q_4^*(\tau, \tau, x) dS_x + \int_{\Omega} \frac{\partial}{\partial \tau} Q_5^*(\tau, \tau, x) dV_x -$$

$$- \int_{\tau+\Delta}^{t_1} \int_{\partial \Omega} \frac{\partial}{\partial \tau} Q_4^*(t, \tau, x) dS_x dt - \int_{\tau+\Delta}^{t_1} \int_{\Omega} \frac{\partial}{\partial \tau} Q_5^*(t, \tau, x) dV_x dt.$$

E pertanto, l'equazione (5.1) può essere scritta sotto la forma seguente:

(5.11)
$$f(\tau, t_1) = \min_{\{\varphi, \nu, w\} \in P \mid I_{\tau}} \{ H(\tau, \Delta) + \Delta G(\tau, \Delta) + O(\Delta^2) \},$$

ove

(5.12)
$$H(\tau, \Delta) = \int_{\tau+\Delta}^{t_1} Q_1^*(t, \tau+\Delta)dt + \int_{\partial\Omega} Q_2^*(t_1, \tau+\Delta, x)dS_x + \int_{\Omega} Q_3^*(t_1, \tau+\Delta, x)dV_x + \int_{\tau+\Delta}^{t_1} \int_{\partial\Omega} Q_4^*(t, \tau+\Delta, x)dS_x dt + \int_{\tau+\Delta}^{t_1} \int_{\Omega} Q_5^*(t, \tau+\Delta, x)dV_x dt.$$

Notiamo che dalla continuità delle funzioni Q_k (k=1, 2, ..., 5) rispetto a τ risulta

(5.13)
$$\lim_{\Delta \to 0} H(\tau, \Delta) = H(\tau, 0)$$

e che, in virtù delle equazioni (4.10) e (5.12), si ha

$$(5.14) f(\tau + \Delta, t_1) = \min_{\{\varphi, v, w\} \in P \mid I_{\tau + \Delta}} H(\tau, \Delta).$$

Scriviamo ora

$$\min_{\{\varphi,\,\nu,\,w\}\in P\,|\,I_{\tau}}\left\{\,\cdot\,\right\} \qquad = \min_{\{\varphi,\,\nu,\,w\}\in P\,|\,I_{\tau_{\tau}}^{\prime\prime}\,\{\varphi,\,\nu,\,w\}\in P\,|\,I_{\tau_{\tau}+\Delta}^{\prime\prime}}$$

Applicando il principio di ottimalità di Bellman al secondo membro dell'equazione (5.11) e facendone uso dell'equazione (5.14), si trova

(5.15)
$$f(\tau, t_1) = f(\tau + \Delta, t_1) + \Delta \min_{\{\varphi, v, w\} \in P \mid I_{\tau}} [G(\tau, \Delta) + O(\Delta)].$$

Si è ottenuta in tal modo la forma discreta funzionale di Bellman spettante dal nostro problema di ottimizzazione.

Dividiamo ora ambi membri dell'equazione (5.15) per Δ e passiamo al limite $\Delta \rightarrow 0$. Si ottiene allora la seguente equazione funzionale

(5.16)
$$\frac{\partial f(\tau, t_1)}{\partial \tau} \min_{\{\emptyset, \nu, w\} \in P \mid I_{\tau}} G(\tau, 0),$$

$$(5.17) F(\varphi, \nu, w) = G(\tau, 0) =$$

$$= Q_1^*(\tau, \tau) - \int_{\tau}^{t_1} \frac{\partial}{\partial \tau} Q_1^*(t, \tau) dt -$$

$$- \int_{\partial \Omega} \frac{\partial}{\partial \tau} Q_2^*(t_1, \tau, x) dS_x - \int_{\Omega} \frac{\partial}{\partial \tau} Q_3^*(t_1, \tau, x) dV_x +$$

$$+ \int_{\partial \Omega} Q_4^*(\tau, \tau, x) dS_x + \int_{\Omega} Q_5^*(\tau, \tau, x) dV_x -$$

$$- \int_{\tau}^{t_1} \int_{\partial \Omega} \frac{\partial}{\partial \tau} Q_4^*(t, \tau, x) dS_x dt - \int_{\tau}^{t_1} \int_{\Omega} \frac{\partial}{\partial \tau} Q_5^*(t, \tau, x) dV_x dt$$

e supprimendo nell'operazione di minimizzazione la notazione I_{τ} , si ottiene

(5.18)
$$\frac{\partial f(\tau, t_1)}{\partial \tau} = \min_{\{\varphi, v, w\} \in P} F(\varphi, v, w), \ \tau \in I_1.$$

Mentoviamo pure che ,in virtù dell'equazione (4.10), si ha

(5.19)
$$f(t_1, t_1) = \min_{\{\varphi, v, w\} \in \mathbb{P}} \left\{ \int_{\partial \Omega} Q_2^*(t_1, t_1, x) dS_x + \int_{\Omega} Q_3^*(t_1, t_1, x) dV_x \right\}.$$

È ovvio che la soluzione del nostro problema di ottimizzazione è equivalente alla risoluzione dell'equazione funzionale (5.18) soggetta alla condizione al limite (5.19).

È chiaro che, per una strategia ottimale deve annullarsi la prima variazione del funzionale $F(\varphi, \nu, w)$. Siano $\delta_{\varphi}F$, $\delta_{\nu}F$ e $\delta_{w}F$ le prime variazioni di F rispetto a φ , ν e w. E dunque, per una strategia ottimale $\{\varphi^{0}, \nu^{0}, w^{0}\}$ si ha

(5.20)
$$\delta_{\sigma}F(\varphi^{0}, \nu^{0}, w^{0}) = 0, \ \delta_{\nu}F(\varphi^{0}, \nu^{0}, w^{0}) = 0, \ \delta_{w}F(\varphi^{0}, \nu^{0}, w^{0}) = 0.$$

Le equazioni (5.20) rappresentano le condizioni necessarie di ottimalità per una strategia ammissibile.

Nei paragrafi susseguenti stabiliremo le prime variazioni del funzional $F(\varphi, v, w)$.

6. Rappresentazione della $u_{[\tau]}(t, x)$.

Consideriamo le funzioni $\varphi_{[\tau]}(t, x)$ e $u_{[\tau]}(t, x)$ definite, rispettivamente, tramite le equazioni (4.2) e (4.3). Poichè il problema misto, formulato nel paragrafo 2, e cioè il problema di determinazione della soluzione dell'equazione (1.4) soddisfacente la condizione iniziale (1.5) e la condizione al contorno (1.6) è ben posto nel senso di Hadamard, la funzione $\varphi_{[\tau]}(t, x)$ dipende continuamente dalla strategia $\{\varphi, v, w\}$ e la funzione $u_{[\tau]}(t, x)$ dipende continuamente dalla strategia $\{\varphi_{[\tau]}, v, w\}$. E pertanto, in virtù del teorema di rappresentazione di Riesz, $u_{[\tau]}(t, x)$ può essere rappresentata, per $(t, x) \in I_{\tau} \times \overline{\Omega}$, sotto la forma

(6.1)
$$u_{[\tau]}(t, x) = \int_{\Omega} L_{1}^{(\tau)}(t; x, \xi) \varphi(\xi) dV_{\xi} + \int_{\tau}^{t} \int_{\Omega} L_{2}^{(\tau)}(t, \sigma; x, \xi) \nu(\sigma, \xi) dV_{\xi} d\sigma + \int_{\tau}^{t} \int_{\Omega} L_{3}^{(\tau)}(t, \sigma; x, \xi) w(\sigma, \xi) dS_{\xi} d\sigma$$

ove i nuclei $L_1^{(\tau)}$, $L_2^{(\tau)}$ e $L_3^{(\tau)}$ sono unicamente determinati tramite l'equazione (1.4), essendovi $I_{\tau} = [\tau, t_1]$, $\tau \in I$, $I = [t_0, t_1]$. Si noti che si ha, in virtù delle equazioni (1.7)-(1.10) e (4.2)-(4.3),

(6.2)
$$u_{[\tau]}(t, x) = \begin{cases} \varphi(x) \text{ per } t = t_0, x \in \overline{\Omega}, \\ \int_{\Omega} L_1(t, x, \xi) \varphi(\xi) dV_{\xi} + \\ + \int_{t_0}^{t} \int_{\Omega} L_2(t, \sigma; x, \xi) \nu_{J}\sigma, \xi) dV_{\xi} d\sigma + \\ + \int_{t_0}^{t} \int_{\partial \Omega} L_3(t, \sigma; x, \xi) \nu(\sigma, \xi) dS_{\xi} d\sigma \\ \text{per } (t, x) \in I'_{\tau} \times \overline{\Omega}, \end{cases}$$

ove $I'_{\tau} = [t_0, \tau], \tau \in I$.

Rammentiamo che $u_{[\tau]}(t, x)$ è una continuazione di u(t, x) ed è continuamente derivabile rispetto a τ :

(6.3)
$$\frac{\partial u_{[\tau]}(t, x)}{\partial \tau} = \int_{\Omega} \frac{\partial L_1^{(\tau)}(t; x, \xi)}{\partial \tau} \varphi(\xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \nu(\tau, \xi) dV_{\xi} - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi)$$

$$-\int_{\partial\Omega} L_3^{(\tau)}(t, \tau; x, \xi)w(\tau, \xi)dS_{\xi} +$$

$$+\int_{\tau}^{t_1} \int_{\Omega} \frac{\partial L_2^{(\tau)}(t, \sigma; x, \xi)}{\partial \tau} v(\sigma, \xi)dV_{\xi}d\sigma +$$

$$+\int_{\tau}^{t_1} \int_{\partial\Omega} \frac{\partial L_3^{(\tau)}(t, \sigma; x, \xi)}{\partial \tau} w(\sigma, \xi)dS_{\xi}d\sigma.$$

7. Prime variazioni di u, $u_{[\tau]}$, $\nabla_x u$ e $\nabla_x u_{[\tau]}$.

Si può scrivere senza difficoltà le prime variazioni di u(t, x), $u_{[\tau]}(t, x)$, $\nabla_x u(t, x)$ e $\nabla_x u_{[\tau]}(t, x)$. Per far ciò, diamo un incremento $\delta \varphi = \varepsilon \varphi^*(x)$ alla $\varphi(x)$, ove $|\varepsilon|$ è un numero suficcientemente piccolo e $\varphi^*(x)$ è una funzione arbitraria appartenente allo spazio Φ nulla sulla frontiera $\partial \Omega$:

$$(7.1) \qquad \varphi^*(x) \in \Phi, \ \varphi^*(x) \mid_{\partial \Omega} = 0.$$

Si ha poscia

(7.2)
$$\delta_{\varphi}u(t, x) = \varepsilon u(t, x, t_0; \varphi^*, 0, 0) =$$

$$= \varepsilon \int_{0}^{\infty} L_1(t; x, \xi) \varphi^*(\xi) dV_{\xi}$$

e

(7.3)
$$\delta_{\varphi} u_{[\tau]}(t, x) = \varepsilon \int_{\Omega} L_{1}^{(\tau)}(t; x, \xi) \varphi^{*}(\xi) dV_{\xi}.$$

Sia ora $v^*(t, x)$ una funzione arbitraria appartenente a V nulla sulla frontiera $\partial\Omega$ e tale che per $t=t_0$ si abbia

(7.4)
$$v^*(t, x) \in V, v^*(t, x) |_{\partial \Omega} = 0, t \in I, v^*(t_0, x) = 0, x \in \overline{\Omega},$$

e sia $w^*(t, x)$ una funzione arbitraria appartenente a W e tale che si

abbia

$$(7.4^*) w^*(t, x) \in W, w^*(t_0, x) = 0 \text{ per } x \in \partial \Omega.$$

Diamo alla v(t, x) ed alla w(t, x), rispettivamente, gli incrementi $\delta v = \varepsilon v^*(t, x)$ e $\delta w = \varepsilon w^*(t, x)$. Troviamo nuovamente, data la linearità di u(t, x) e $u_{[\tau]}(t, x)$ rispetto a $v \in w$,

(7.5)
$$\delta_{\nu}u(t, x) = \varepsilon u(t, x, t_0; 0, \nu^*, 0)$$

$$= \varepsilon \int_{t_0}^{t} \int_{\Omega} L_2(t, \sigma; x, \xi) \nu^*(\sigma, \xi) dV_{\xi}\sigma,$$

(7.6)
$$\delta_{w}u(t, x) = \varepsilon u(t, x, t_{0}; 0, 0, w^{*}) =$$

$$= \varepsilon \int_{t_{0}}^{t} \int_{\partial \Omega} L_{3}(t, \sigma; x, \xi)w^{*}(\sigma, \xi)dS_{\xi}d\sigma,$$

(7.7)
$$\delta_{\nu}u_{[\tau]}(t, x) = \varepsilon \int_{\tau}^{t} \int_{\Omega} L_{2}^{(\tau)}(t, \sigma; x, \xi) \nu^{*}(\sigma, \xi) dV_{\xi} d\sigma$$

(7.8)
$$\delta_w u_{[\tau]}(t, x) = \varepsilon \int_{\tau}^{t} \int_{\partial \Omega} L_3^{(\tau)}(t, \sigma; x, \xi) w^*(\sigma, \xi) dS_{\xi} d\sigma.$$

Si può facilmente vedere poi che

(7,9)
$$\nabla_x \delta_{\varphi} = \delta_{\varphi} \nabla_x, \ \nabla_x \delta_{\nu} = \delta_{\nu} \nabla_x, \ \nabla_x \delta_{w} = \delta_{w} \nabla_x.$$

E pertanto, le prime variazioni di $\nabla_x u$ e di $\nabla_x u_{[\tau]}$ possono essere scritte senz'altro facendone l'uso delle equazioni (7.2), (7.3), (7.4)-(7.9).

8. Prime variazioni di $Q_1^*(\tau, \tau)$ e $\frac{\partial}{\partial \tau} Q_1^*(t, \tau)$.

All'uopo di calcolare le variazioni di $F(\varphi, \nu, w)$, incominciamone con

le prime variazioni di $Q_1^*(\tau, \tau)$ e $\frac{\partial}{\partial \tau} Q_1^*(t, \tau)$. Notiamo innanzitutto che

(8.1)
$$\delta_{\star} \frac{\partial}{\partial \tau} = \frac{\partial}{\partial \tau} \delta_{\star}, \ \delta_{\star} \frac{\partial}{\partial \tau} = \frac{\partial}{\partial \tau} \delta_{\star} \qquad (i = 1, 2, ..., n),$$

ove δ* denota δ_{φ} , δ_{ν} ovvero δ_{w} . Si ha poi $u_{[\tau]}(\tau, x) = u(\tau, x)$. Giacchè

(8.2)
$$Q_1^*(t, \tau) \equiv Q_1(t; u_{[\tau]}(t, x_0), v(t, x_1), w(t, x_2)),$$

si può scrivere immediatamente, in virtù dell'equazione (4.4), ove x_0 , $x_1 \in \Omega$, $x_2 \in \partial \Omega$,

(8.3)
$$\delta_{\varphi}Q_1^{\star}(t, \tau) = \frac{\partial Q_1^{\star}(t, \tau)}{\partial u_{[\tau]}} \delta_{\varphi}u_{[\tau]}(t, x_0),$$

(8.4)
$$\delta_{\nu} Q_{1}^{*}(t, \tau) = \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} \delta_{\nu} u_{[\tau]}(t, x_{0}) + \frac{\partial Q_{1}^{*}(t, \tau)}{\partial \nu} \delta_{\nu} u_{t}(t, x_{1}),$$

(8.5)
$$\delta_{w}Q_{1}^{*}(t, \tau) = \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} \delta_{w}u_{[\tau]}(t, x_{0}) + \frac{\partial Q_{1}^{*}(t, \tau)}{\partial w} \delta_{w}(t, x_{2});$$

(8.6)
$$\delta_{\varphi} \left[\frac{\partial Q_{1}^{*}(t, \tau)}{\partial \tau} \right] = \frac{\partial}{\partial \tau} \left[\delta_{\varphi} Q_{1}^{*}(t, \tau) \right] =$$

$$= \frac{\partial^{2} Q_{1}^{*}(t, \tau)}{\partial \tau \partial u_{[\tau]}} \delta_{\varphi} u_{[\tau]}(t, x_{0}) + \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} \delta_{\varphi} \left[\frac{\partial u_{[\tau]}(t, x_{0})}{\partial \tau} \right],$$

(8.7)
$$\delta_{\nu} \left[\frac{\partial Q_{1}^{*}(t, \tau)}{\partial \tau} \right] = \frac{\partial}{\partial \tau} \left[\delta_{\varphi} Q_{1}^{*}(t, \tau) \right] =$$

$$= \frac{\partial^{2} Q_{1}^{*}(t, \tau)}{\partial \tau \partial u_{[\tau]}} \delta_{\nu} u_{[\tau]}(t, x_{0}) + \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} \delta_{\nu} \left[\frac{\partial u_{[\tau]}(t, x_{0})}{\partial \tau} \right] +$$

$$+ \frac{\partial^{2} Q_{1}^{*}(t, \tau)}{\partial \tau \partial \nu} \delta_{\nu}(t, x_{1}),$$

(8.8)
$$\delta_{w} \left[\frac{\partial Q_{1}^{*}(t, \tau)}{\partial \tau} \right] = \frac{\partial}{\partial \tau} \left[\delta_{\varphi} Q_{1}^{*}(t, \tau) \right] =$$

$$= \frac{\partial^{2} Q_{1}^{*}(t, \tau)}{\partial \tau \partial u_{[\tau]}} \delta_{w} u_{[\tau]}(t, x_{0}) + \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} \delta_{w} \left[\frac{\partial u_{[\tau]}(t, x_{0})}{\partial \tau} \right] +$$

$$+ \frac{\partial^{2} Q_{1}^{*}(t, \tau)}{\partial \tau \partial w} \delta_{w}(t, x_{2}).$$

- 9. Prime variazioni di $Q_{\nu}^{*}(t, \tau, x)$ e $\frac{\partial}{\partial \tau} Q_{\nu}^{*}(t, \tau, x)$ ($\nu=2, 4$). Consideriamo le funzioni
- (9.1) $Q_{\nu}^{*}(t, \tau, x) \equiv Q_{\nu}(t, x; \nabla_{x} u_{[\tau]}(t, x), w(t, x))$ ($\nu = 2, 4$).

 Il calcolo diretto ci conduce ai seguenti risultati:

(9.2)
$$\delta_{\varphi}Q_{\nu}^{*}(t, \tau, x) = \sum_{j=1}^{n} \frac{\partial Q_{\nu}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{i}}\right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\varphi}u_{[\tau]}(t, x)\right],$$

(9.3)
$$\delta_{\nu}Q_{\nu}^{*}(t, \tau, x) = \sum_{j=1}^{n} \frac{\partial Q_{\nu}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\nu}u_{[\tau]}(t, x)\right],$$

(9.4)
$$\delta_{w}Q_{v}^{*}(t, \tau, x) = \sum_{j=1}^{n} \frac{\partial Q_{v}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\delta}{\partial x_{j}} \left[\delta_{w}u_{[\tau]}(t, x)\right] + \frac{\partial Q_{v}^{*}(t, \tau, x)}{\partial w} \partial w(t, x);$$

(9.5)
$$\delta_{\varphi} \left[\frac{\partial Q_{v}^{*}(t, \tau, x)}{\partial \tau} \right] = \frac{\partial}{\partial \tau} \left[\delta_{\varphi} Q_{v}^{*}(t, \tau, x) \right] =$$

$$= \sum_{n}^{j=1} \left\{ \frac{\partial^{2} Q^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\varphi} u_{[\tau]}(t, x) \right] + \right\}$$

$$+ \frac{\partial Q_{\nu}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{i}}\right)} \frac{\partial \tau \partial x_{i}}{\partial^{2}} \left[\delta_{\nu} u_{[\tau]}(t, x)\right] \right\},$$

$$(9.6) \qquad \partial_{\nu} \left[\frac{\partial Q_{\nu}^{*}(t, \tau, x)}{\partial \tau}\right] = \frac{\partial}{\partial \tau} \left[\delta_{\nu} Q_{\nu}^{*}(t, \tau, x)\right] =$$

$$= \sum_{j=1}^{n} \left\{\frac{\partial^{2} Q_{\nu}^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{i}}\right)} \frac{\partial}{\partial x_{i}} \left[\delta_{\nu} u_{[\tau]}(t, x)\right] +$$

$$+ \frac{\partial Q_{\nu}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{i}}\right)} \frac{\partial^{2}}{\partial \tau \partial x_{i}} \left[\delta_{\nu} u_{[\tau]}(t, x)\right] \right\},$$

$$(9.7) \qquad \delta_{w} \left[\frac{\partial Q_{\nu}^{*}(t, \tau, x)}{\partial \tau}\right] = \frac{\partial}{\partial \tau} \left[\delta_{w} Q_{\nu}^{*}(t, \tau, x)\right] =$$

$$= \sum_{j=1}^{n} \left\{\frac{\partial^{2} Q_{\nu}^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{i}}\right)} \frac{\partial}{\partial x_{i}} \left[\delta_{w} u_{[\tau]}(t, x)\right] +$$

$$+ \frac{\partial Q_{\nu}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{i}}\right)} \frac{\partial^{2}}{\partial \tau \partial x_{i}} \left[\delta_{w} u_{[\tau]}(t, x)\right] +$$

$$+ \frac{\partial Q_{\nu}^{*}(t, \tau, x)}{\partial \tau \partial w} \delta_{w}(t, x), \qquad (v=2,4).$$

10. Prime variazioni di $Q_k^*(t, \tau, x)$ e $\frac{\partial}{\partial \tau} Q_k^*(t, \tau, x)$ (k=3, 5). Le prime variazioni delle funzioni

(10.1)
$$Q_k^*(t, \tau, x) \equiv Q_k(t, x; u_{[\tau]}(t, x), \nabla_x u_{[\tau]}(t, x), v(t, x))$$
 ($k = 3, 5$) sono dati qui sotto

(10.2)
$$\delta_{\varphi}Q_{k}^{*}(t, \tau, x) = \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial u_{[\tau]}} \delta_{\varphi}u_{[\tau]}(t, x) + \sum_{j=1}^{n} \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\varphi}u_{[\tau]}(t, x)\right],$$

(10.3)
$$\delta_{\nu}Q_{k}^{*}(t, \tau, x) = \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial u_{[\tau]}} \delta_{\nu}u_{[\tau]}(t, x) + \sum_{j=1}^{n} \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\nu}u_{[\tau]}(t, x)\right] + \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial \nu} \delta\nu(t, x).$$

(10.4)
$$\delta_{w}Q_{k}^{*}(t, \tau, x) = \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial u_{[\tau]}} \delta_{w}u_{[\tau]}(t, x) + \sum_{j=1}^{n} \frac{\partial K_{k}^{F}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\partial}{\partial x_{j}} \left[\delta_{w}u_{[\tau]}(t, x)\right];$$

(10.5)
$$\delta_{\varphi} \left[\frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial \tau} \right] = \frac{\partial}{\partial \tau} \left[\delta_{\varphi} Q_{k}^{*}(t, \tau, x) \right] =$$

$$= \frac{\partial^{2} Q_{k}^{*}(t, \tau, x)}{\partial \tau \partial u_{[\tau]}} \left[\delta_{\varphi} u_{[\tau]}(t, x) \right] + \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial u_{[\tau]}} \frac{\partial}{\partial \tau} \left[\delta_{\varphi} u_{[\tau]}(t, x) \right] +$$

$$+ \sum_{j=1}^{n} \left\{ \frac{\partial^{2} Q_{k}^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \delta_{\varphi} u_{[\tau]}(t, x) +$$

$$+ \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{\varphi} u_{[\tau]}(t, x) \right] \right\},$$

$$(10.6) \qquad \delta_{\nu} \left[\frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial \tau} \right] = \frac{\partial}{\partial \tau} \left[\delta_{\nu} Q_{k}^{*}(t, \tau, x) \right] =$$

$$= \frac{\partial^{2} Q_{k}^{*}(t, \tau, x)}{\partial \tau \partial u_{[\tau]}} \delta_{\nu} u_{[\tau]}(t, x) + \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial u_{[\tau]}} \frac{\partial}{\partial \tau} \left[\delta_{\nu} u_{[\tau]}(t, x) \right] +$$

$$+ \sum_{j=1}^{n} \left\{ \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\nu} u_{[\tau]}(t, x) \right] +$$

$$+ \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{\nu} u_{[\tau]}(t, x) \right] \right\} +$$

$$+ \frac{\partial^{2} Q_{k}^{*}(t, \tau, x)}{\partial \tau \partial \nu} \delta_{\nu}(t, x),$$

$$(10.7) \qquad \delta_{w} \left[\frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial \tau} \delta_{\nu}(t, x) \right] = \frac{\partial}{\partial \tau} \left[\delta_{w} Q_{k}^{*}(t, \tau, x) \right] =$$

$$= \frac{\partial^{2} Q_{k}^{*}(t, \tau, x)}{\partial \tau \partial u_{[\tau]}} \delta_{w} u_{[\tau]}(t, x) + \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial u_{[\tau]}} \frac{\partial}{\partial \tau} \left[\delta_{w} u_{[\tau]}(t, x) \right] +$$

$$+ \sum_{j=1}^{n} \left\{ \frac{\partial^{2} Q_{k}^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{w} u_{[\tau]}(t, x) \right] +$$

$$+ \frac{\partial Q_{k}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{w} u_{[\tau]}(t, x) \right] \right\}, \qquad (k=3, 5).$$

11. Prime variazioni del funzionale $F(\varphi, \nu, w)$.

Stabiliremo in questo paragrafo le prime variazioni del funzionale $F(\varphi, \nu, w)$ definito tramite l'equazione (5.17). È chiaro che

(11.1)
$$\delta \cdot F(\varphi, v, w) = \delta \cdot Q_1^*(\tau, \tau) - \int_{-\tau}^{t_1} \delta \cdot \left[\frac{\partial}{\partial \tau} Q_1^*(t, \tau) \right] dt -$$

$$-\int_{\partial\Omega} \delta \cdot \left[\frac{\partial}{\partial \tau} Q_{2}^{*}(t_{1}, \tau, x) \right] dS_{x} - \int_{\Omega} \delta \cdot \left[\frac{\partial}{\partial \tau} Q_{3}^{*}(t_{1}, \tau, x) \right] dV_{x} +$$

$$+ \int_{\partial\Omega} \delta \cdot Q_{4}^{*}(\tau, \tau, x) dS_{x} + \int_{\Omega} \delta \cdot Q_{5}^{*}(\tau, \tau, x) dV_{x} -$$

$$- \int_{\tau} \int_{\partial\Omega} \delta \cdot \left[\frac{\partial}{\partial \tau} Q_{4}^{*}(t, \tau, x) \right] dS_{x} dt - \int_{\tau} \int_{\Omega} \delta \cdot \left[\frac{\partial}{\partial \tau} Q_{5}(t, \tau, x) \right] dV_{x} dt,$$

ove δ_* rappresenta δ_{ϕ} , δ_{v} oppure δ_{w} .

Combinando prima le equazioni (8.3), (8.6), (9.2), (9.5), (10.2), (10.5) e (11.1), si ottiene

$$(11.2) \qquad \delta_{\varphi}(F(\varphi, \nu, w)) = \frac{\partial Q_{1}^{\uparrow}(\tau, \tau)}{\partial u} \delta_{\varphi}u(\tau, x_{0}) - \int_{\tau}^{t_{1}} \left\{ \frac{\partial^{2}Q_{1}^{*}(t, \tau, x)}{\partial \tau \partial u_{[\tau]}} \delta_{\varphi}u_{[\tau]}(t, x_{0}) + \frac{\partial Q_{1}^{*}(t, \tau, x)}{\partial u_{[\tau]}} \frac{\partial}{\partial \tau} \left[\delta_{\varphi}u_{[\tau]}(t, x_{0}) \right] \right\} dt - \\ - \int_{\sigma} \left[\sum_{j=1}^{n} \left\{ \frac{\partial^{2}Q_{2}^{*}(t_{1}, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\varphi}u_{[\tau]}(t_{1}, x) \right] + \right. \\ + \left. \frac{\partial Q_{2}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{\varphi}u_{[\tau]}(t_{1}, x) \right] \right\} dS_{x} - \\ - \int_{\Omega} \left\{ \frac{\partial^{2}Q_{3}^{*}(t_{1}, \tau, x)}{\partial \tau \partial u_{[\tau]}} \delta_{\varphi}u_{[\tau]}(t_{1}, x) + \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial u_{[\tau]}} \frac{\partial}{\partial \tau} \left[\delta_{\varphi}u_{[\tau]}(t_{1}, x) \right] + \\ + \sum_{j=1}^{n} \left[\frac{\partial^{2}Q_{3}^{*}(t_{1}, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial}{\partial \tau} \left[\delta_{\varphi}u_{[\tau]}(t_{1}, x) \right] + \\ + \left. \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{\varphi}u_{[\tau]}(t_{1}, x) \right] \right\} dV_{x} +$$

$$+ \int_{\partial\Omega} \left\{ \sum_{j=1}^{n} \frac{\partial Q_{4}^{*}(\tau, \tau, x)}{\partial \left(\frac{\partial u}{\partial x_{j}}\right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\varphi} u(\tau, x) \right] \right\} dS_{x} +$$

$$+ \int_{\Omega} \left\{ \frac{\partial Q_{5}^{*}(\tau, \tau, x)}{\partial u} \delta_{\varphi} u(\tau, x) + \sum_{j=1}^{n} \frac{\partial Q_{5}^{*}(\tau, \tau, x)}{\partial \left(\frac{\partial u}{\partial x_{j}}\right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\varphi} u(\tau, x) \right] \right\} dV_{x} -$$

$$- \int_{\tau}^{t_{j}} \int_{\Omega} \left[\sum_{j=1}^{n} \left\{ \frac{\partial^{2} Q_{4}^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\varphi} u_{[\tau]}(t, x) \right] +$$

$$+ \frac{\partial Q_{4}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{\varphi} u_{[\tau]}(t, x) \right] \right\} dS_{x} dt -$$

$$- \int_{\tau}^{t_{j}} \int_{\Omega} \left\{ \frac{\partial^{2} Q_{5}^{*}(t, \tau, x)}{\partial \tau \partial u_{[\tau]}} \delta_{\varphi} u_{[\tau]}(t, x) + \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial u_{[\tau]}} \frac{\partial}{\partial \tau} \left[\delta_{\varphi} u_{[\tau]}(t, x) \right] +$$

$$+ \sum_{j=1}^{n} \left\{ \frac{\partial^{2} Q_{5}^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\varphi} u_{[\tau]}(t, x) \right] +$$

$$+ \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \left[\delta_{\varphi} u_{[\tau]}(t, x) \right] \right\} dV_{x} dt.$$

Similmente, combinando le equazioni (8.4), (8.7), (9.3), (9.6), (10.3), (10.6) e (11.1), si trova

(11.3)
$$\delta_{\nu}F(\varphi, \nu, w) = \frac{\partial Q_{1}^{*}(\tau, \tau)}{\partial u} \delta_{\nu}u(\tau, x_{0}) + \frac{\partial Q_{1}^{*}(\tau, \tau)}{\partial \nu} \delta_{\nu}(\tau, x_{1}) - \int_{\tau}^{t_{1}} \left\{ \frac{\partial^{2}Q_{1}^{*}(t, \tau)}{\partial \tau \partial u_{[\tau]}} \delta_{\nu}u_{[\tau]}(t, x_{0}) + \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} \delta_{\nu} \left[\frac{\partial u_{[\tau]}(t, x_{0})}{\partial \tau} \right] + \right. \\ \left. + \frac{\partial^{2}Q_{1}^{*}(t, \tau)}{\partial \tau \partial \nu} \delta_{\nu}(t, x_{1}) \right\} dt -$$

$$\begin{split} &-\int_{\partial\Omega} \left[\sum_{j=1}^{n} \left\{ \frac{\partial^{2}Q_{z}^{*}(t_{1}, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{v} u_{[\tau]}(t_{1}, x) \right] + \right. \\ &+ \frac{\partial Q_{z}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{v} u_{[\tau]}(t_{1}, x) \right] \right\} \right] dS_{x} - \\ &- \int_{\Omega} \left[\frac{\partial^{2}Q_{z}^{*}(t_{1}, \tau, x)}{\partial \tau \partial u_{[\tau]}} \delta_{v} u_{[\tau]}(t_{1}, x) + \frac{\partial Q_{z}^{*}(t_{1}, \tau, x)}{\partial u_{[\tau]}} \frac{\partial}{\partial \tau} \left[\delta_{v} u_{[\tau]}(t_{1}, x) \right] + \right. \\ &+ \sum_{j=1}^{n} \left\{ \frac{\partial^{2}Q_{z}^{*}(t_{1}, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{v} u_{[\tau]}(t_{1}, x) \right] + \right. \\ &+ \frac{\partial Q_{z}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{v} u_{[\tau]}(t_{1}, x) \right] \right\} + \\ &+ \frac{\partial^{2}Q_{z}^{*}(t_{1}, \tau, x)}{\partial \tau \partial v} \delta_{v}(t_{1}, x) \right] dV_{x} + \\ &+ \int_{\partial\Omega} \left\{ \sum_{j=1}^{n} \frac{\partial Q_{z}^{*}(\tau, \tau, x)}{\partial \left(\frac{\partial u}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{v} u(\tau, x) \right] \right\} dS_{x} + \\ &+ \int_{\Omega} \left\{ \frac{\partial Q_{z}^{*}(\tau, \tau, x)}{\partial u} \delta_{v}(\tau, x) \delta_{v}(\tau, x) + \sum_{j=1}^{n} \frac{\partial Q_{z}^{*}(\tau, \tau, x)}{\partial \left(\frac{\partial u}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{v} u(\tau, x) \right] + \\ &+ \frac{\partial Q_{z}^{*}(\tau, \tau, x)}{\partial v} \delta_{v}(\tau, x) \right\} dV_{x} - \\ &- \int_{\tau} \int_{\partial\Omega} \left\{ \sum_{j=1}^{n} \left\{ \frac{\partial^{2}Q_{z}^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{v} u_{[\tau]}(t, x) \right] + \\ &- \int_{\tau} \int_{\partial\Omega} \left\{ \sum_{j=1}^{n} \left\{ \frac{\partial^{2}Q_{z}^{*}(t, \tau, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{v} u_{[\tau]}(t, x) \right] + \right. \end{aligned}$$

$$+ \frac{\partial Q_{4}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{\nu} u_{[\tau]}(t, x)\right] \right\} dS_{x} dt -$$

$$- \int_{\tau}^{t_{1}} \int_{\Omega} \left[\frac{\partial^{2} Q_{5}^{*}(t, \tau, x)}{\partial \tau \partial u_{[\tau]}} \delta_{\nu} u_{[\tau]}(t, x) + \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial u_{[\tau]}} \frac{\partial}{\partial \tau} \left[\delta_{\nu} u_{[\tau]}(t, x)\right] +$$

$$+ \sum_{j=1}^{n} \left\{\frac{\partial^{2} Q_{5}^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\partial}{\partial x_{j}} \left[\delta_{\nu} u_{[\tau]}(t, x)\right] +$$

$$+ \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{\nu} u_{[\tau]}(t, x)\right] \right\} +$$

$$+ \frac{\partial^{2} Q_{5}^{*}(t, \tau, x)}{\partial \tau \partial \nu} \delta_{\nu}(t, x) dV_{x} dt.$$

Combinando, in fine, le equazioni (8.5), (8.8), (9.4), (9.7), (10.4), (10.7) e (11.1), si ottiene

(11.4)
$$\delta_{w}F(\varphi, v, w) = \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u} \delta_{w}u(\tau, x_{0}) + \frac{\partial Q_{1}^{*}(\tau, \tau)}{\partial w} \delta_{w}(\tau, x_{2}) - \int_{\tau}^{t_{1}} \left\{ \frac{\partial^{2}Q_{1}^{*}(t, \tau)}{\partial \tau \partial u_{[\tau]}} \delta_{w}u_{[\tau]}(t, x_{0}) + \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} \delta_{w} \left[\frac{\partial}{\partial \tau} u_{[\tau]}(t, x_{0}) \right] + \frac{\partial^{2}Q_{1}^{*}(t, \tau)}{\partial \tau \partial w} \delta_{w}(t, x_{2}) \right\} dt -$$

$$\begin{split} &-\int_{\partial\Omega} \left\{ \sum_{i=1}^{n} \left\{ \frac{\partial^{2}Q_{z}^{*}(t_{1},\tau,x)}{\partial \tau \partial \left(\frac{\partial u_{(\tau)}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{w} u_{(\tau)}(t_{1},x) \right] + \right. \\ &+ \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial \left(\frac{\partial u_{(\tau)}}{\partial x_{j}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{w} u_{(\tau)}(t_{1},x) \right] \right\} + \\ &+ \frac{\partial^{2}Q_{z}^{*}(t_{1},\tau,x)}{\partial \tau \partial w} \delta_{w}(t_{1},x) \right] dS_{x} - \\ &- \int_{\Omega} \left\{ \frac{\partial^{2}Q_{z}^{*}(t_{1},\tau,x)}{\partial \tau \partial u_{(\tau)}} \delta_{w} u_{(\tau)}(t_{1},x) + \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial u_{(\tau)}} \frac{\partial}{\partial \tau} \left[\delta_{w} u_{(\tau)}(t_{1},x) \right] + \right. \\ &+ \sum_{i=1}^{n} \left\{ \frac{\partial^{2}Q_{z}^{*}(t_{1},\tau,x)}{\partial \tau \partial \left(\frac{\partial u_{(\tau)}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{w} u_{(\tau)}(t_{1},x) \right] + \right. \\ &+ \left. + \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial \left(\frac{\partial u_{(\tau)}}{\partial x_{j}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{w} u_{(\tau)}(t_{1},x) \right] \right\} dV_{x} + \\ &+ \int_{\partial\Omega} \left\{ \sum_{i=1}^{n} \frac{\partial Q_{z}^{*}(\tau,\tau,x)}{\partial \left(\frac{\partial u}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{w} u_{(\tau,x)} \right] + \frac{\partial Q_{z}^{*}(\tau,\tau,x)}{\partial w} \delta_{w}(\tau,x) \right\} dS_{x} + \\ &+ \int_{\Omega} \left\{ \frac{\partial Q_{z}^{*}(\tau,\tau,x)}{\partial u} \delta_{w} u_{(\tau,x)} + \sum_{i=1}^{n} \frac{\partial Q_{z}^{*}(\tau,\tau,x)}{\partial \left(\frac{\partial u}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{w} u_{(\tau)}(t,x) \right] + \\ &- \int_{\tau} \int_{z_{0}}^{t_{1}} \left[\sum_{j=1}^{n} \left\{ \frac{\partial^{2}Q_{z}^{*}(t_{1},\tau,x)}{\partial \tau \partial \left(\frac{\partial u_{(\tau)}}{\partial x_{j}} \right)} \frac{\partial}{\partial x_{j}} \left[\delta_{w} u_{(\tau)}(t,x) \right] + \\ &+ \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial \left(\frac{\partial u}{\partial x_{i}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{w} u_{(\tau)}(t,x) \right] \right\} + \\ &+ \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial \left(\frac{\partial u}{\partial x_{i}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{w} u_{(\tau)}(t,x) \right] \right\} + \\ &+ \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial \left(\frac{\partial u}{\partial x_{i}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{w} u_{(\tau)}(t,x) \right] \right\} + \\ &+ \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial \left(\frac{\partial u}{\partial x_{i}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{w} u_{(\tau)}(t,x) \right] \right\} + \\ &+ \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial \left(\frac{\partial u}{\partial x_{i}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{w} u_{(\tau)}(t,x) \right] \right\} + \\ &+ \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial \left(\frac{\partial u}{\partial x_{i}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{j}} \left[\delta_{w} u_{(\tau)}(t,x) \right] + \\ &+ \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial t} \frac{\partial^{2}}{\partial t} \left[\delta_{w} u_{(\tau)}(t,x) \right] + \\ &+ \frac{\partial Q_{z}^{*}(t_{1},\tau,x)}{\partial t} \frac{\partial^{2}}{\partial t} \left[\delta_{w} u_{(\tau)}(t,x) \right] + \\ &+ \frac{\partial Q_{z}^{*$$

$$+ \frac{\partial^{2}Q_{4}^{*}(t, \tau, x)}{\partial \tau \partial w} \delta w(t, x) dS_{x}dt -$$

$$- \int_{\tau}^{t_{1}} \int_{\Omega} \left[\frac{\partial^{2}Q_{5}^{*}(t, \tau, x)}{\partial \tau \partial u_{[\tau]}} \delta_{w} u_{[\tau]}(t, x) + \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial u_{[\tau]}} \frac{\partial}{\partial \tau} \left[\delta_{w} u_{[\tau]}(t, x) \right] +$$

$$+ \sum_{i=1}^{n} \left\{ \frac{\partial^{2}Q_{k}^{*}(t, \tau, x)}{\partial \tau \partial \left(\frac{\partial u_{[\tau]}}{\partial x_{i}} \right)} \frac{\partial}{\partial x_{i}} \left[\delta_{w} u_{[\tau]}(t, x) \right] +$$

$$+ \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{i}} \right)} \frac{\partial^{2}}{\partial \tau \partial x_{i}} \left[\delta_{w} u_{[\tau]}(t, x) \right] \right\} dV_{x}dt.$$

Facendo ora uso delle rappresentazioni (7.2) e (7.3), l'equazione (11.2) può essere scritta sotto la forma seguente:

(11.5)
$$\delta_{\varphi}F(\varphi, v, w) = \varepsilon \int_{\Omega} T_{1}(\tau; \xi) \varphi^{*}(\xi) dV_{\xi},$$

ove

(11.6)
$$T_{1}(\tau; \xi) = L_{1}(\tau; x_{0}, \xi) \frac{\partial Q_{1}^{*}(\tau, \tau)}{\partial u} - \int_{\tau}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ L_{1}^{(\tau)}(t; x_{0}, \xi) \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} \right\} dt - \int_{\sigma}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial x_{j}} \frac{\partial Q_{2}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dS_{x} - \int_{\Omega}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ L_{1}^{(\tau)}(t_{1}; x, \xi) \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial u_{[\tau]}} \right\} dV_{x} - \int_{\Omega}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial x_{j}} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} + \int_{\Omega}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial x_{j}} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} + \int_{\Omega}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial x_{j}} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} + \int_{\Omega}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial x_{j}} \frac{\partial}{\partial t} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} + \int_{\Omega}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial x_{j}} \frac{\partial}{\partial t} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} + \int_{\Omega}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial x_{j}} \frac{\partial}{\partial t} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} + \int_{\Omega}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial t} \frac{\partial}{\partial \tau} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial t} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial t} \frac{\partial}{\partial \tau} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t_{1}; x, \xi)}{\partial t} \frac{\partial}{\partial \tau} \right\} \right\} dV_{x} + \int_{\Omega}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial}{\partial \tau} \left\{ \sum$$

$$+ \int_{\partial\Omega} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}(\tau; x, \xi)}{\partial x_{j}} \frac{\partial Q_{4}^{*}(\tau, \tau, x)}{\partial \left(\frac{\partial u}{\partial x_{j}}\right)} \right\} dS_{x} +$$

$$+ \int_{\Omega} \left\{ L_{1}(\tau; x, \xi) \frac{\partial Q_{5}^{*}(\tau, \tau, x)}{\partial u} + \sum_{j=1}^{n} \frac{\partial L_{1}(\tau, x, \xi)}{\partial x_{j}} \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial \left(\frac{\partial x_{j}}{\partial u}\right)} \right\} dV_{x} -$$

$$- \int_{\tau}^{t_{1}} \int_{\partial\Omega} \frac{\partial}{\partial \tau} \left\{ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t; x, \xi)}{\partial x_{j}} \frac{\partial Q_{4}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dS_{x} dt -$$

$$- \int_{\tau}^{t_{1}} \int_{\Omega} \frac{\partial}{\partial \tau} \left\{ L_{1}^{(\tau)}(t; x, \xi) \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial u_{[\tau]}} + \right.$$

$$+ \sum_{j=1}^{n} \frac{\partial L_{1}^{(\tau)}(t; x, \xi)}{\partial x_{j}} \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} dt.$$

In modo simile, facendo uso delle rappresentazioni (7.5) e (7.7), come pure della formula

(11.7)
$$\delta_{\nu} \left[\frac{\partial u_{[\tau]}(t, x)}{\partial \tau} \right] = \int_{\tau}^{t_1} \int_{\Omega} \frac{\partial L_2^{(\tau)}(t, \sigma; x, \xi)}{\partial \tau} \delta_{\nu}(\sigma, \xi) dV_{\xi} d\sigma - \int_{\Omega} L_2^{(\tau)}(t, \tau; x, \xi) \delta_{\nu}(t\tau, \xi) dV_{\xi},$$

l'equazione (11.3) può essere scritta sotto la forma seguente:

(11.8)
$$\delta_{\nu}F(\varphi, \nu, w) = \varepsilon \left\{ \frac{\partial Q_{1}(\tau, \tau)}{\partial \nu} \nu^{*}(\tau, x_{1}) - \int_{\tau}^{t_{1}} \frac{\partial^{2}Q_{1}(t, \tau)}{\partial \tau \partial \nu} \nu^{*}(t, x_{1}) dt - \int_{\Omega}^{t_{1}} \frac{\partial^{2}Q_{3}(t_{1}, \tau, x)}{\partial \tau \partial \nu} \nu^{*}(t_{1}, x) dV_{x} + \right\}$$

$$+ \int_{\Omega} T_{2}(\tau; \xi) v^{*}(\tau, \xi) dV_{\xi} +$$

$$+ \int_{t_{0}}^{\tau} \int_{\Omega} T_{3}(\tau; \sigma, \xi) v^{*}(\sigma, \xi) dV_{\xi} d\sigma +$$

$$+ \int_{\tau}^{t_{1}} \int_{\Omega} T_{4}(\tau; \sigma, \xi) v^{*}(\sigma, \xi) dV_{\xi} d\sigma \bigg\} ,$$

ove

$$(11.9) T_{2}(\tau; \xi) = \frac{\partial Q_{5}(\tau, \tau, x)}{\partial v} +$$

$$+ \int_{\tau}^{t_{1}} L_{2}^{(\tau)}(t, \tau; x_{0}, \xi) \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} dt +$$

$$+ \int_{\partial \Omega} \left\{ \sum_{j=1}^{n} \frac{\partial L_{2}^{(\tau)}(t_{1}, \tau; x, \xi)}{\partial x_{j}} \frac{\partial Q_{2}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dS_{x} +$$

$$+ \int_{\Omega} \left\{ L_{2}^{(\tau)}(t_{1}, \tau; x, \xi) \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial u_{[\tau]}} +$$

$$+ \sum_{j=1}^{n} \frac{\partial L_{2}^{(\tau)}(t_{1}, \tau; x, \xi)}{\partial x_{j}} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} +$$

$$+ \int_{\tau}^{t_{1}} \int_{\partial \Omega} \left\{ \sum_{j=1}^{n} \frac{\partial L_{2}^{(\tau)}(t, \tau; x, \xi)}{\partial x_{j}} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dS_{x} dt +$$

$$+ \int_{\tau}^{t_{1}} \int_{\Omega} \left\{ L_{2}^{(\tau)}(t, \tau; x, \xi) \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial u_{[\tau]}} +$$

$$+ \sum_{j=1}^{u} \frac{\partial L_{2}^{(\tau)}(t, \tau; x, \xi)}{\partial x_{j}} \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x}\right)} \right\} dV_{x} dt,$$

(11.10)
$$T_{3}(\tau; \sigma, \xi) = L_{2}(\tau, \sigma; x_{0}, \xi) \frac{\partial Q_{1}^{*}(\tau, \tau)}{\partial u} +$$

$$+ \int_{\partial \Omega} \left\{ \sum_{j=1}^{n} \frac{\partial L_{2}(\tau, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{4}^{*}(\tau, \tau, x)}{\partial \left(\frac{\partial u}{\partial x_{j}}\right)} \right\} dS_{x} +$$

$$+ \int_{\Omega} \left\{ L_{2}(\tau, \sigma; \xi, x) \frac{\partial Q_{5}^{*}(\tau, \tau, x)}{\partial u} +$$

$$+ \sum_{j=1}^{n} \frac{\partial L_{2}(\tau, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{5}^{*}(\tau, \tau, x)}{\partial \left(\frac{\partial u}{\partial x}\right)} \right\} dV_{x},$$

e

$$(11.11) T_{4}(\tau; \sigma, \xi) = -\int_{\tau}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ L_{2}^{(\tau)}(t, \sigma; x, \xi) \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} \right\} dt -$$

$$-\int_{\partial \Omega} \left\{ \frac{\partial}{\partial \tau} \sum_{i=1}^{n} \frac{\partial L_{2}^{(\tau)}(t_{1}, \sigma; x, \xi)}{\partial x_{i}} \frac{\partial Q_{2}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dS_{x} -$$

$$-\int_{\Omega} \left\{ \frac{\partial}{\partial \tau} \left\{ L_{2}^{(\tau)}(t_{1}, \sigma; x, \xi) \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial u_{[\tau]}} + \right.$$

$$+ \sum_{j=1}^{n} \frac{\partial L_{2}^{(\tau)}(t_{1}, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} -$$

$$-\int_{\tau}^{t_{1}} \int_{\partial \Omega} \left\{ \frac{\partial}{\partial \tau} \sum_{j=1}^{n} \frac{\partial L_{2}^{(\tau)}(t, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{4}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dS_{x} dt -$$

$$-\int_{\tau}^{t_{1}} \int_{\Omega} \left\{ \frac{\partial}{\partial \tau} \left[L_{2}^{(\tau)}(t, \sigma; x, \xi) \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial u_{[\tau]}} + \right.$$

$$+ \sum_{j=1}^{n} \frac{\partial L_{2}^{(\tau)}(t, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} dt.$$

Nello stesso modo, combinando (7.6), (7.8), (11.4) e

(11.12)
$$\delta_{w} \left[\frac{\partial u_{[\tau]}(t, x)}{\partial \tau} \right] = \int_{\tau}^{t_{1}} \int_{\partial \Omega} \frac{\partial L_{3}^{(\tau)}(t, \sigma; x, \xi)}{\partial \tau} \delta_{w}(\sigma, \xi) dS_{\xi} d\sigma - \int_{\partial \Omega} L_{3}^{(\tau)}(t, \tau; x, \xi) \delta_{w}(\tau, \xi) dS_{\xi},$$

si trova

(11.13)
$$\partial_{w}F(\varphi, v, w) = \varepsilon \left\{ \frac{\partial Q_{1}^{*}(\tau, \tau)}{\partial w} w^{*}(\tau, x_{2}) - \int_{\tau}^{t_{1}} \frac{\partial^{2}Q_{1}^{*}(t, \tau)}{\partial \tau \partial w} w^{*}(t, x_{2})dt - \int_{\sigma\Omega} \frac{\partial^{2}Q_{2}^{*}(t_{1}, \tau, x)}{\partial \tau \partial w} w^{*}(t_{1}, x)dS_{x} + \int_{\sigma\Omega} T_{5}(\tau, \xi)w^{*}(\tau, \xi)dS_{\xi} + \int_{t_{0}}^{\tau} \int_{\partial\Omega} T_{6}(\tau; \sigma, \xi)w^{*}(\sigma, \xi)dS_{\xi}d\sigma + \int_{\tau}^{t_{1}} \int_{\partial\Omega} T_{7}(\tau; \sigma, \xi)w^{*}(\sigma; \xi)dS_{\xi}d\sigma \right\},$$

ove

(11.14)
$$T_{5}(\tau; \xi) = \frac{\partial Q_{4}^{*}(\tau, \tau, \xi)}{\partial w} + \int_{\tau}^{t_{1}} L_{3}^{(\tau)}(t, \tau; x_{0}, \xi) \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} dt + \int_{\partial \Omega} \left\{ \sum_{j=1}^{n} \frac{\partial L_{3}^{(\tau)}(t_{1}, \tau; x, \xi)}{\partial x_{j}} \frac{\partial Q_{2}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dS_{x} +$$

$$+ \int_{\Omega} \left\{ L_{3}^{(\tau)}(t_{1}, \tau; x, \xi) \frac{\partial Q_{2}^{*}(t_{1}, \tau, x)}{\partial u_{[\tau]}} + \right.$$

$$+ \sum_{j=1}^{n} \frac{\partial L_{3}^{(\tau)}(t_{1}, \tau; x, \xi)}{\partial x_{j}} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} +$$

$$+ \int_{\tau}^{t_{1}} \int_{\partial\Omega} \left\{ \sum_{j=1}^{n} \frac{\partial L_{3}^{(\tau)}(t, \tau; x, \xi)}{\partial x_{j}} \frac{\partial Q_{4}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dS_{x} dt +$$

$$+ \int_{\tau}^{t_{1}} \int_{\Omega} \left\{ L_{3}^{(\tau)}(t, \sigma; x, \xi) \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial u_{[\tau]}} + \right.$$

$$+ \sum_{j=1}^{n} \frac{\partial L_{3}^{(\tau)}(t, \tau; x, \xi)}{\partial x_{j}} \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} dt,$$

(11.15)
$$T_{6}(\tau; \sigma, \xi) = L_{3}(\tau, \sigma; x_{0}, \xi) \frac{\partial Q_{1}^{*}(\tau, \tau)}{\partial u} +$$

$$+ \int_{\partial \Omega} \left\{ \sum_{j=1}^{n} \frac{\partial L_{3}(\tau, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{4}^{*}(\tau, \tau, x)}{\partial \left(\frac{\partial u}{\partial x_{j}}\right)} \right\} dS_{x} +$$

$$+ \int_{\Omega} \left\{ L_{3}(\tau, \sigma; x, \xi) \frac{\partial Q_{5}^{*}(\tau, \tau, x)}{\partial u} +$$

$$+ \sum_{j=1}^{n} \frac{\partial L_{3}(\tau, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{5}^{*}(\tau, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x},$$

e

$$(11.16) T_{7}(\tau; \sigma, \xi) = -\int_{\tau}^{t_{1}} \frac{\partial}{\partial \tau} \left\{ L_{3}^{(\tau)}(t, \sigma; x_{0}, \xi) \frac{\partial Q_{1}^{*}(t, \tau)}{\partial u_{[\tau]}} \right\} dt -$$

$$-\int_{\partial \Omega} \left\{ \frac{\partial}{\partial \tau} \sum_{j=1}^{n} \frac{\partial L_{3}^{(\tau)}(t_{1}, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{2}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dS_{x} -$$

$$-\int_{\Omega} \left\{ \frac{\partial}{\partial \tau} \left\{ L_{3}^{(\tau)}(t_{1}, \sigma; x, \xi) \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial u_{[\tau]}} + \right. \right.$$

$$+ \sum_{j=1}^{n} \frac{\partial L_{3}^{(\tau)}(t_{1}, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{3}^{*}(t_{1}, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} -$$

$$- \int_{\tau}^{t_{1}} \int_{\partial \Omega} \left\{ \frac{\partial}{\partial \tau} \sum_{j=1}^{n} \frac{\partial L_{3}^{(\tau)}(t, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{4}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dS_{x} dt -$$

$$- \int_{\tau}^{t_{1}} \int_{\Omega} \left\{ \frac{\partial}{\partial \tau} \left[L_{3}^{(\tau)}(t, \tau; x, \xi) \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial u_{[\tau]}} + \right. \right.$$

$$+ \sum_{j=1}^{n} \frac{\partial L_{3}^{(\tau)}(t, \sigma; x, \xi)}{\partial x_{j}} \frac{\partial Q_{5}^{*}(t, \tau, x)}{\partial \left(\frac{\partial u_{[\tau]}}{\partial x_{j}}\right)} \right\} dV_{x} dt.$$

12. Condizioni necessarie di ottimalità.

Nel paragrafo precedente abbiamo stabilito le prime variazioni del funzionale $F = F(\varphi, \nu, w)$, definito tramite l'equazione (5.17), rispetto a φ , ν e w. Secondo ciò che è stato detto dalla fine del paragrafo 5, le equazioni

$$\delta_{\varphi}F = \delta_{\nu}F = \delta_{w}F = 0$$

sono soddisfatte, per una strategia ottimale $\{\varphi, \nu, w\}$, per ogni φ^*, ν^* e w^* soddisfacenti, rispettivamente, le condizioni

(12.2)
$$\varphi^*(x) \in \Phi, \ \varphi^*(x) \mid_{\partial \Omega} = 0,$$

(12.3)
$$v^*(t, x) \in V$$
, $v^*(t, x) \mid_{\partial\Omega} = 0$ per $t \in I$, $v^*(t_0, x) = 0$ per $x \in \overline{\Omega}$

e

(12.4)
$$w^*(t, x) \in W, \ w^*(t_0, x) = 0 \text{ per } x \in \partial \Omega.$$

Consideriamo in primo luogo la variazione $\delta_{\varphi}F(\varphi, \nu, w)$, data dall'equazione (11.5). Per un ben noto lemma del Calcolo delle Variazioni, $\delta_{\varphi}F(\varphi, \nu, w)=0$ per ogni $\varphi^*(x)$ soddisfacente le condizioni (12.2) allora ed allora soltanto se

(12.5)
$$T_1(\tau; \xi) = 0 \text{ per } \xi \in \Omega \text{ e } \tau \in I$$
,

ove $T_1(\tau, \xi)$ è continua ed è definita tramite l'equazione (11.6).

Si consideri ora la variazione $\delta_{\nu}F(\varphi, \nu, w)$, data dall'equazione (11.8). La condizione necessaria per una strategia ottimale $\{\varphi, \nu, w\}$ consta nel fatto che l'eguaglianza $\delta_{\nu}F(\varphi, \nu, w)=0$ dev'essere soddisfatta per ogni $\nu^*(t, x)$ che soddisfa le condizioni (12.3). Ciò che implica le seguenti equazioni

(12.6)
$$\frac{\partial Q_1^*(\tau, \tau)}{\partial \nu} = 0 \text{ per tutti } \tau \in (t_0, t_1),$$

(12.7)
$$\frac{\partial^2 Q_1^*(t, \tau)}{\partial \tau \partial v} = 0 \text{ per } t \in I_\tau,$$

(12.8)
$$\frac{\partial^2 Q_3^*(t_1, \tau, x)}{\partial \tau \partial \nu} = 0 \text{ per } x \in \Omega,$$

(12.9)
$$T_2(\tau, \xi) = 0$$
 per $\xi \in \Omega$, ove $T_2(\tau; \xi)$ è continua,

(12.10)
$$T_3(\tau; \sigma, \xi) = 0$$
 per $(\sigma, \xi) \in I'_{\tau} \times \Omega$, ove $T_3(\tau; \sigma, \xi)$ è continua e

(12.11)
$$T_4(\tau; \sigma, \xi) = 0$$
 per $(\sigma, \xi) \in I_{\tau} \times \Omega$, ove $T_4(\tau; \sigma, \xi)$ è continua,

per tutti $\tau \in (t_0, t_1)$ ove, come precedentemente $I = [t_0, t_1], I'_{\tau} = [t_0, \tau]$ e $I_{\tau} = [\tau, t_1]$.

Dimostriamo ora separatemente ciascuna delle eguaglianze (12.6)-(12.11).

Consideriamo dapprima l'equazione (12.6) e supponiamo che per qualcun $\tau \in (t_0, t_1)$ si abbia

(12.12)
$$\frac{\partial Q_1^*(\tau, \tau)}{\partial \nu} \neq 0.$$

Nella discussione che segue si considererà soltanto questo particolare τ . Scegliamo ora una funzione $\nu_1(t)$ continua nell'intervallo I ed avente le seguenti proprietà:

(12.13)
$$v_1(t_0) = v_1(t_1) = 0$$
, $|v_1(t)| \le v_0$, $v_1(\tau) = v_0 \operatorname{sgn}\left(\frac{\partial Q_1^*(\tau, \tau)}{\partial v}\right)$,

ove v_0 è il numero che ne figura in (2.2). Ad esempio, la seguente funzione

(12.14)
$$v_1(t) = v_0 \sin\left(\frac{(t-t_0)(t-t_1)}{(\tau-t_0)(\tau-t_1)} \frac{\pi}{2}\right) \operatorname{sgn}\left(\frac{\partial Q_1^*(\tau, \tau)}{\partial \nu}\right)$$

soddisfa le proprietà di cui sopra.

Sia ora $\theta(x)$ una funzione continua su $\overline{\Omega}$ soddisfacente le condizioni

(12.15
$$0 \le \theta(x) \le 1 \text{ per } x \in \overline{\Omega}, \ \theta(x_1) = 1, \ \theta(x) \mid_{\partial \Omega} = 0.$$

Una tale funzione è, ad esempio, la seguente

(12.16)
$$\theta(x) = e \psi \left(\frac{x - x_1}{\varepsilon} \right),$$

ove ε è un numero positivo sufficientemente piccolo tale che la ε -vicinanza $N_{\varepsilon}(x_1)$ del punto $x_1(x_1 \in \Omega)$ sia contenuta in Ω , e

(12.17)
$$\psi(x) = \begin{cases} \exp\left(-\frac{1}{1-|x|^2}\right) & \text{per } |x| < 1, \\ 0 & \text{per } |x| \ge 1, \end{cases}$$

ove

$$|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Si può verificare facilmente che la funzione

(12.19)
$$v^{*}(t, x) = v_{1}(t)\theta(x)$$

soddisfa tutte le condizioni (12.3). E pertanto, tale funzione può essere utilizzata come funzione testo nella formula (11.8). Abbiamo, per conse-

guenza, una strategia ottimale $\{\varphi, \nu, w\}$,

(12.20)
$$v_0 \left| \frac{\partial Q_1^*(\tau, \tau)}{\partial \nu} \right| = \int_{\tau}^{t_1} \frac{\partial^2 Q_1^*(t, \tau)}{\partial \tau \partial \nu} v_1(t) dt -$$

$$- v_1(\tau) \int_{\Omega} T_2(\tau; \xi) \theta(\xi) dV_{\xi} -$$

$$- \int_{t_0}^{\tau} \int_{\Omega} T_3(\tau; \sigma, \xi) v_1(\sigma) \theta(\xi) dV_{\xi} d\sigma -$$

$$- \int_{\tau}^{t_1} \int_{\Omega} T_4(\tau; \sigma, \xi) v_1(\sigma) \theta(\xi) dV_{\xi} d\sigma.$$

Siccome il primo membro dell'equazione (12.20) è indipendente da $v_1(t)$ e $\theta(x)$ ma il secondo membro di essa dipende continuamente da tali funzioni, si può sempre trovare un paio di funzioni $v_1(t)$ e $\theta(x)$ aventi, rispettivamente, le proprietà (12.13) e (12.15), tali che il segno di eguaglianza nella (12.20) non sia valido. E dunque, l'ipotesi (12.12) ci conduce ad una contradizione. Risulta che l'equazione (12.6) è vera per tutti $\tau \in (t_0, t_1)$ per una strategia ottimale $\{\varphi, v, w\}$.

Dimostriamo ora l'equazione (12.7). Supponiamo che l'equazione (12.7) non sia vera ed assumiamo che per qualcun $t^* \in I_{\tau}$, ove $\tau \in I$, si abbia

(12.21)
$$\frac{\partial^2 Q_1^*(t, \tau)}{\partial \tau \partial v} \neq 0.$$

Conserviamo tale t* fissato. Data la continuità di

$$\frac{\partial^2 Q_1^*(t, \tau)}{\partial \tau \partial \nu},$$

risulta l'esistsenza di una δ -vicinanza $N_{\delta}(t^*)$ di t^* contenuta in I_{τ} e tale che

(12.22)
$$\frac{\partial^2 Q_1^*(t, \tau)}{\partial \tau \partial v} \neq 0 \text{ per } t \in N_\delta(t^*).$$

Consideriamo la funzione

(12.23)
$$v^{\star}(t, x) = v_2(t)\theta(x) \frac{\partial^2 Q_1^{\star}(t, \tau)}{\partial \tau \partial v},$$

ove $\theta(x)$ è una funzione continua su $\overline{\Omega}$ soddisfacente le condizioni (12.15) e $v_2(t)$ è una funzione continua su I avente le seguenti proprietà:

(12.24)
$$v_2(t) > 0 \text{ per } t \in N_\delta(t^*), v_2(t) = 0 \text{ per } t \in I - N_\delta(t^*)$$

е

$$(12.25) | v_2(t) | \leq \frac{v_0}{m} per t \in N_{\delta}(t_0),$$

ove

(12.26)
$$m = \max_{T \in N_E(t^*)} \left| \frac{\partial^2 Q_1^*(t, \tau)}{\partial \tau \partial \nu} \right|$$

è un numero positivo in virtù delle ipotesi (12.22). È chiaro che in virtù delle (12.24) si ha $v_2(\tau) = v_2(t_1) = 0$. Una tale funzione è, ad esempio,

$$v_2(t) = \frac{ev_0}{m} \psi \left(\frac{t - t^*}{\delta} \right),$$

ove ψ è definito tramite l'equazione (12.17). Si può dimostrare senza difficoltà che la funzione $v^*(t, x)$, definita tramite l'equazione (12.23), soddisfa tutte le conzioni (12.3). E pertanto, essa può essere utilizzata come funzione testo nella formula (11.8). Per conseguenza, rammentandoci che l'equazione (12.6) era stata già stabilita, si trova, per una strategia ottimale $\{\varphi, v, w\}$,

(12.27)
$$\int_{N_{\delta}(t^{*})} \left(\frac{\partial^{2}Q_{1}^{*}(t, \tau)}{\partial \tau \partial \nu}\right)^{2} \nu_{2}(t) dt =$$

$$= \int_{N_{\delta}(t^{*})} \int_{\Omega} T_{4}(\tau; \sigma, \xi) \nu_{2}(\sigma) \theta(\xi) \frac{\partial^{2}Q_{1}^{*}(\sigma, \tau)}{\partial \tau \partial \nu} dV_{\xi} d\sigma.$$

Il primo membro dell'equazione (12.27) ha un valore positivo determi-

nato per ogni scelta della funzione $v_2(t)$, indipendentemente dalla selezione della funzione $\theta(x)$, mentre il secondo membro di essa equazione varia continuamente per ogni scelta di $\theta(x)$ e per ogni scelta di $v_2(t)$. E pertanto, è sempre possibile di trovare una funzione $\theta(x)$, per ogni data $v_2(t)$, tale che la (12.27) vi sarà un'ineguaglianza invece di essere un'eguaglianza. E dunque, l'ipotesi (12.22) ci conduce ad una contradizione. Per conseguenza, l'equazione (12.7) è vera per tutti $t \in I_{\tau}$ e $\tau \in I$ per una strategia ottimale $\{\varphi, v, w\}$.

Dimostriamo ora la validità dell'equazione (12.8). Supponiamo il contrario ed assumiamo che, per qualcun $x^* \in \Omega$ e per qualcun $\tau^* \in I$, si abbia

(12.28)
$$\frac{\partial^2 Q_3^*(t_1, \tau; x)}{\partial \tau \partial v} \neq 0.$$

Siccome la funzione

$$\frac{\partial^2 Q_3^*(t_1, \tau; x)}{\partial \tau \partial \nu}$$

è continua rispetto ad x e τ , esistono ε -vicinanze di x^* e di τ^* contenute interamente in Ω e I rispettivamente, tali che

(12.29)
$$\frac{\partial^2 Q_3^*(t_1, \tau; x)}{\partial \tau \partial \nu} \neq 0 \text{ per } x \in N_{\varepsilon}(x^*), \ \tau \in N_{\varepsilon}(\tau^*).$$

Consideriamo la funzione

(12.30)
$$v^{*}(t, x) = v_{3}(t)\theta(x) \frac{\partial^{2}Q_{3}^{*}(t_{1}, \tau, x)}{\partial \tau \partial \nu},$$

ove

(12.31)
$$\theta(x) = e\psi\left(\frac{x-x^*}{\varepsilon}\right),$$

essendovi $\psi(x)$ definito tramite l'equazione (12.17) e $v_3(t)$ essendo una funzione continua nell'intervallo I e tale che

(12.32)
$$v_3(t) = 0 \text{ per } t \in I'_{\tau} \text{ per } \tau \in N_{\varepsilon}(\tau^*), \ v_3(t_I) = \frac{v_0}{m}$$

ed arbitraria nell'intervallo $\tau < t < t_1$, mentre

(12.32)
$$m = \max_{x \in N_{\varepsilon}(x^*), \ \tau \in N_{\varepsilon}(\tau^*)} \left| \frac{\partial^2 Q_3^*(t_1, \tau, x)}{\partial \tau \partial \nu} \right|.$$

Anche qui v_0 è il medesimo numero che ne comparisce in (2.2). Notiamo che, in conformità con (12.29), m>0. Si può costruire facilmente funzioni $v_3(t)$ aventi le proprietà di cui sopra.

Si può facilmente verificare che la funzione $v^*(t, x)$ definita tramite l'equazione (12.30) soddisfa tutti i requisiti di (12.3) e ne può conseguentemente essere utilizzata come funzione testo nella formula (11.8). E pertanto, tenendo conto delle equazioni (12.6) e (12.7), abbiamo, per una strategia ottimale $\{\varphi, v, w\}$,

(12.34)
$$\frac{v_0}{m} \int_{N_2(x^*)} \left(\frac{\partial^2 Q_3^*(t_1, \tau, x)}{\partial \tau \partial \nu} \right)^2 \theta(x) dV_x =$$

$$= \int_{\tau}^{t_1} \int_{N_{\xi}(x^*)} T_4(\tau; \sigma, \xi) \frac{\partial^2 Q_3^*(t_1, \tau, x)}{\partial \tau \partial \nu} v_3(\sigma) \theta(\xi) dV_{\xi} d\sigma.$$

Giacchè il primo membro dell'equazione (12.34) è indipendente dalla selezione della funzione $v_3(t)$, mentre il secondo membro dipende effettivamente in modo continuo dalla funzione $v_3(t)$ sopraddetta, si può sempre trovare una funzione $v_3(t)$ tale che il valore del secondo membro dell'equazione (12.34) differisca dal valore del primo membro di essa equazione. E dunque, l'ipotesi (12.28) conduce ad una contradizione. Ciò prova la validità dell'equazione (12.8).

Passiamo ora alla dimostrazione dell'equazione (12.9). Per far ciò supponiamo che essa non si avveri ed assumiamo che per qualcun $\xi^* \in \Omega$ per cui $T_2(\tau, \xi)$ è continua e per qualcun $\tau^* \in (t_0, t_1)$ si abbia

(12.35)
$$T_2(\tau, \xi) \neq 0.$$

Data la continuità di $T_2(\tau^*, \xi)$ per ξ^* , esiste una ϵ -vicinanza $N_{\epsilon}(\xi^*)$ del punto ξ^* contenuta in Ω tale che

(12.36)
$$T_2(\tau^*; \xi) \neq 0 \text{ per } \xi \in N_{\varepsilon}(\xi^*).$$

Consideriamo la funzione

(12.37)
$$v^*(\sigma, \xi) = v_4(\sigma)T_2(\tau^*; \xi)\theta(\xi),$$

ove

(12.38)
$$\theta(\xi) = e\psi\left(\frac{\xi - \xi^*}{\varepsilon}\right),$$

essendovi $\psi(x)$ definita dall'equazione (12.17) e $\nu_4(\sigma)$ una funzione continua nell'intervallo I ed avente le seguenti proprietà:

(12.39)
$$v_4(t_0) = 0, \ v_4(\tau^*) = -\frac{v_0}{m}, \ |v_4(t)| \le \frac{v_0}{m} \text{ per } t \in I,$$

ove

(12.40)
$$m = \max_{\xi \in N_{\rho}(\xi^*)} |T_2(\tau^*; \xi)|.$$

È chiaro che in virtù dell'ineguaglianza (12.35) m è un numero positivo. Anche qui v_0 è il medesimo numero che ne comparisce in (2.2). Ad esempio, una tale funzione è

$$v_4(t) = -\frac{v_0}{m} \sin\left(\frac{t-t_0}{\tau^*-t_0}\frac{\pi}{2}\right).$$

Si può facilmente verificare che la funzione $v^*(t, x)$, definita tramite l'equazione (12.37), può essere utilizzata come funzione testo nella formula (11.8). Consideriamo l'equazione (11.8) per $\tau = \tau^*$ e per una strategia ottimale $\{\varphi, \nu, w\}$. Poichè le equazioni (12.6)-(12.8) sono state già stabilite, si trova

(12.41)
$$m \int_{N_{\varepsilon}(\xi^{*})} [T_{2}(\tau^{*}; \xi)]^{2} \theta(\xi) dV_{\xi} =$$

$$= \int_{I_{0}}^{\tau^{*}} \int_{N_{\varepsilon}(\xi^{*})} T_{2}(\tau^{*}; \xi) T_{3}(\tau^{*}; \sigma, \xi) \nu_{4}(\sigma) \theta(\xi) dV_{\xi} d\sigma +$$

$$+ \int_{\tau^{*}}^{I_{0}} \int_{N_{\varepsilon}(\xi^{*})} T_{2}(\tau^{*}; \xi) T_{4}(\tau^{*}; \sigma, \xi) \nu_{4}(\sigma) \theta(\xi) dV_{\xi} d\sigma.$$

Siccome il primo membro di questa equazione è indipendente dalla funzione $v_4(t)$, mentre il secondo membro ne dipende continuamente da essa, si può sempre trovare una funzione $v_4(t)$ tale che il segno d'eguaglianza non sia più valido in (12.41). È dunque ci siamo condotti ad una contraddizione. Ciò prova l'asserto concernente l'equazione (12.9).

Passiamo a stabilire ora la validità dell'equazione (12.10). Supponiamo che l'equazione (12.10) non si avvera ed assumiamo che per qualcun paio $(\sigma^*, \xi^*) \in I'_{\tau} \times \Omega$ e per qualcun $\tau = \tau^* \in (t_0, t_1)$ si abbia

(12.42)
$$T_3(\tau; \sigma, \xi) \neq 0$$
.

ove $T_3(\tau; \sigma, \xi)$ è continua. Anche qui, data la continuità della funzione $T_3(\tau^*; \sigma, \xi)$ nel (σ^*, ξ^*) , risulta l'esistenza di una ε -vicinanza $N_{\varepsilon}(\sigma^*)$ di σ^* e di una ε -vicinanza $N_{\varepsilon}(\xi^*)$ di ξ^* , contenute, rispettivamente, in I'_{τ^*} e Ω , tali che

(12.43)
$$T_3(\tau^*; \sigma, \xi) \neq 0 \text{ per } (\sigma, \xi) \in N_{\varepsilon}(\sigma^*) \times N_{\varepsilon}(\xi^*).$$

Consideriamo ora la funzione

(12.44)
$$v^*(\sigma, \xi) = v_5(\sigma)\theta(\xi)T_3(\tau^*; \sigma, \xi),$$

ove $\theta(\xi)$ è la funzione definita tramite l'equazione (12.38) e $\nu_5(\sigma)$ è una funzione continua dell'I ed avente le seguenti proprietà:

(12.45)
$$v_5(t_0) = 0$$
, $v_5(t) = 0$ per $t \notin N_{\epsilon}(t^*)$, $|v_5(t)| \le \frac{v_0}{m}$ per $t \in I$,

essendovi v_0 il numero che ne figura in (2.2) e

(12.46)
$$m = \max_{\sigma \in N_{\varepsilon}(\sigma^*), \, \xi \in N_{\varepsilon}(\xi^*)} |T_3(\tau^*; \, \sigma, \, \xi)|$$

un numero positivo in virtù della (12.43). È chiaro che, vista la (12.45), $v_5(t) = 0$ per $t \in L_{\tau^*}$. Ad esempio, una tale funzione è

(12.47)
$$v_5(t) = \frac{ev_0}{m} \psi \left(\frac{t - \sigma^*}{\varepsilon} \right).$$

Si può dimostrare facilmente che la funzione $v^*(t, x)$, definita tra-

mite l'equazione (12.44), soddisfa tutti i requisiti richiesti dalla (12.3) e pertanto può essere utilizzata come funzione testo nella formula (11.8). Consideriamo l'equazione (11.8) colla $v^*(t, x)$ definita tramite l'equazione (12.44), spettante a $\tau = \tau^*$ e ad una strategia ottimale $\{\varphi, v, w\}$. Poichè le equazioni (12.6)-(12.9) sono state già stabilite, si trova, per conseguenza,

(12.48)
$$\int_{N_{\xi}(\xi^*)} v_5(\sigma) d\sigma \int_{N_{\xi}(\sigma^*)} [T_3(\tau^*; \sigma, \xi)]^2 \theta(\xi) dV_{\xi} = 0.$$

È chiaro che il primo membro dell'equazione (12.48) ha un valore positivo per la funzione $v_5(t)$ definita tramite l'equazione (12.47). Ciò ci conduce ad una contraddizione. Per conseguenza, l'ipotesi (12.42) non ne può essere vera. Ciò prova la validità dell'equazione (12.10).

La validità dell'equazione (12.11) si dimostra utilizzando con lievi modificazioni la prova di cui sopra. Ciò completa le dimostrazioni spettanti alle equazioni (12.6)-(12.11).

Consideriamo finalmente la variazione $\delta_w F(\varphi, \nu, w)$, data dall'equazione (11.13). La condizione necessaria per una strategia ottimale $\{\varphi, \nu, w\}$ è che l'eguaglianza $\delta_w F(\varphi, \nu, w) = 0$ sia soddisfatta per ogni $w^*(t, x)$ soddisfacente le condizioni (12.4). Ciò implica le seguenti equazioni:

(12.49)
$$\frac{\partial Q_1^*(\tau, \tau)}{\partial w} = 0 \text{ per tutti } \tau \in (t_0, t_1),$$

(12.50)
$$\frac{\partial^2 Q_1^*(t, \tau)}{\partial \tau \partial w} = 0 \text{ per } t \in I_\tau \text{ e } \tau \in (t_0, t_1),$$

(12.51)
$$\frac{\partial^2 Q_2^*(t_1, \tau, x)}{\partial \tau \partial w} = 0 \text{ per } x \in \partial \Omega \text{ e } \tau \in (t_0, t_1),$$

(12.52)
$$T_5(\tau; \xi) = 0 \text{ per } x \in \partial \Omega \text{ e } \tau \in (t_0, t_1),$$

ove $T_6(\tau; \sigma, \xi)$ è continua,

(12.53)
$$T_{6}(\tau; \sigma, \xi) = 0 \text{ per } (\sigma, \xi) \in I'_{\tau} \times \partial \Omega,$$

ove $T_6(\tau; \xi)$ è continua, e

(12.54)
$$T_7(\tau; \sigma, \xi) = 0 \text{ per } (\sigma, \xi) \in I_\tau \times \partial \Omega,$$

ove $T_7(\tau; \sigma, \xi)$ è continua.

Le dimostrazioni concernenti le asserzioni (12.49)-(12.54) sono simili con quelle esposte più sopra e spettanti alle equazioni (12.6)-(12.11). Rinunciamo a dare qui i dettagli.

I risultati ottenuti in questo paragrafo possono essere sintetizzati come segue:

Condizioni necessarie di ottimalità. Sia (S) un sistema di controllo ben posto definito nel paragrafo 2 ed il funzionale costo $J_{\rm I}(\varphi, \nu, w)$, definito tramite l'equazione (2.1). Allora, per una strategia ottimale $\{\varphi, \nu, w\}$, hanno luogo le seguenti equazioni:

(12.5)
$$T_1(\tau; \xi) = 0 \text{ per } \xi \in \Omega \text{ e } \tau \in (t_0, t_1),$$

ove $T_1(\tau; \xi)$ è continua,

(12.6)
$$\frac{\partial Q_1^*(\tau, \tau)}{\partial v} = 0 \text{ per tutti } \tau \in (t_0, t_1),$$

(12.7)
$$\frac{\partial^2 Q_1^*(t, \tau)}{\partial \tau \partial \nu} = 0 \text{ per } t \in I_\tau, \ \tau \in (t_0, t_1),$$

(12.8)
$$\frac{\partial^2 Q_3^*(t_1, \tau, x)}{\partial \tau \partial v} = 0 \text{ per } x \in \Omega, \ \tau \in (t_0, t_1),$$

(12.9)
$$T_2(\tau, \xi) = 0 \text{ per } \xi \in \Omega, \ \tau \in (t_0, t_1),$$

ove $T_2(\tau, \xi)$ è continua,

(12.10)
$$T_3(\tau; \sigma, \xi) = 0 \text{ per } (\sigma, \xi) \in I'_{\tau} \times \Omega, \tau \in (t_0, t_1),$$

ove $T_3(\tau; \sigma, \xi)$ è continua,

(12.49)
$$\frac{\partial Q_1^*(t, \tau)}{\partial w} = 0 \text{ per tutti } \tau \in (t_0, t_1),$$

(12.50)
$$\frac{\partial^2 Q_1^*(t, \tau)}{\partial \tau \partial w} = 0 \text{ per } t \in I_\tau, \ \tau \in (t_0, t_1),$$

(12.51)
$$\frac{\partial^2 Q_1^*(t_1; \tau, x)}{\partial \tau \partial w} = 0 \text{ per } x \in \Omega, \ \tau \in (t_0, t_1),$$

(12.52)
$$T_5(\tau; \xi) = 0 \text{ per } \xi \in \partial \Omega, \ \tau \in (t_0, t_1),$$

ove $T_5(\tau, \xi)$ è continua,

(12.53)
$$T_6(\tau; \sigma, \xi) = 0 \text{ per } (\sigma, \xi) \in I'_{\tau} \times \partial \Omega, \tau \in (t_0, t_1),$$

ove $T_6(\tau; \sigma, \xi)$ è continua, e

(12.64)
$$T_7(\tau; \sigma, \xi) = 0 \text{ per } (\sigma, \xi) \in I_\tau \times \partial \Omega, \ \tau \in (t_0, t_1),$$

ove $T_7(\tau; \sigma, \xi)$ è continua, essendovi T_1 , T_2 , ..., T_7 date dalle equazioni (11.6), (11.9), (11.10), (11.11), (11.14), (11.15) e (11.16), mentre Q_k^* (k=1, 2, ..., 5) sono definite tramite le equazioni (4.4)-(4.8); $I_{\tau}' = [t_0, \tau]$ e $I_{\tau} = [\tau, t_1]$.

13. Osservazioni.

- a) In uno dei nostri lavori susseguenti della serie che si elabora in collaborazione col Prof. D. Mangeron [3], ci appoggeremo, nell'ambito dei problemi spettanti alle condizioni sufficienti di ottimalità, sui risultati recenti di grandissima portata dovuti all'Illustre Accademico Linceo Mauro Picone [4a]-[4b].
- b) Per altre referenze bibliografiche, come pure per studi di svariati casi speciali, esemplificazioni ed applicazioni, vedasi [1c] e [3].

BIBLIOGRAFIA

[1] M. N. OGUZTÖRELI

- [a] Esistenza di strategie ottimali per i sistemi di controllo con parametri distribuiti, Rend. Ist. Lombardo, A 102, 1968 (in stampa).
- [b] A mixed problem for an integro-differential equation of parabolic type with a delayed argument, A Publication of the Department of Mathematichs, The University of Alberta, Series A, 3, 27, 1967.

- [c] Optimization in Distributed Parameter Control System, A Dynamic Programming Approach, Chapter V. A Publication of the Department of Mathematics, The University of Alberta, 1968.
- [2] R. E. Bellman, Dynamic Programming, Princeton University Press . Princeton, N. J., 1957.
- [3] M. N. OGUZTÖRELI e D. MANGERON, Problemi ottimali spettanti ai sistemi di controllo con parametri distribuiti, I, II, III, .Rend. Acc. Naz. dei Lincei, Cl. sci. fis., mat. e nat., s. VIII, 44, 6, 1968.

[4] M. PICONE

- [a] Criteri sufficienti concernenti generali problemi di calcolo delle variazioni riguardanti integrali pluridimensionali d'ordine qualunque nel vettore minimante a più componenti, Atti Accad. Naz. dei Lincei. Memorie. Cl. sci. fis., mat. e nat., s. VIII, Sez. I, 3, CCCLX-1963, 33-58.
- [b] Criteri sufficienti nel Calcolo delle variazioni e loro applicazioni, Nel Vol. « Atti del Simposio Lagrangiano ». Accad. Sci. Torino, 1-20, 1964.

Manoscritto pervenuto in redazione l'11 novembre 1968.