RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ANTONIO AMBROSETTI

Proprietà spettrali di certi operatori lineari non compatti

Rendiconti del Seminario Matematico della Università di Padova, tome 42 (1969), p. 189-200

http://www.numdam.org/item?id=RSMUP 1969 42 189 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1969, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

PROPRIETÀ SPETTRALI DI CERTI OPERATORI LINEARI NON COMPATTI

Antonio Ambrosetti *)

Scopo principale di questo lavoro è di studiare le proprietà spettrali delle α-contrazioni lineari.

Le α -contrazioni, introdotte da G. Darbo ¹), sono trasformazioni continue di uno spazio di Banach in sè, che generalizzano sia gli operatori completamente continui (compatti) sia le contrazioni ordinarie. In particolare ad ogni α -contrazione T si può associare un numero h_T , detto *modulo di T*, il quale è zero se e solo se T è completamente continuo.

Ora, nel caso lineare, è noto che un'applicazione compatta ha lo spettro formato da punti il cui unico (eventuale) punto di accumulazione è lo zero.

Generalizzando tale risultato, sarà dimostrato in questo lavoro, che lo spettro di una α -contrazione lineare T non ha punti di accumulazione nell'insieme $\{\zeta:\zeta\in\mathbb{C},\,|\zeta|>h_T\}$. Inoltre i punti dello spettro che sono in tale insieme sono tutti autovalori di « tipo finito ». Come conseguenza verrà poi dimostrato che T si può esprimere come T=U+V, dove U è di dimensione finita e V è tale che una sua opportuna potenza è una contrazione (anzi, la norma dello spazio di Banach può essere sostituita con una equivalente, in modo che, rispetto a quest'ultima, V

^{*)} Lavoro eseguito nell'ambito dei Gruppi di Ricerca Matematica del C.N.R. Indirizzo dell'A.: Istituto di Matematica Applicata, via Marzolo, 9, 35100 - Padova.

¹⁾ Cfr. G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, (1955), XXIV.

stessa sia una contrazione). Si farà inoltre vedere che il carattere α -contrattivo di un operatore in uno spazio di Banach dipende dalla norma e non solo dalla topologia dello spazio.

Usando questi risultati, si trovano infine alcune proprietà dello spettro di un generico operatore lineare e continuo.

Desidero ringraziare Giovanni Prodi per gli utili colloqui con lui avuti sull'argomento.

1. Sia B uno spazio di Banach; con $\mathfrak{L}(B)$ indicheremo lo spazio di Banach delle applicazioni lineari e continue di B in sè, con la norma usuale.

Se $T \in \mathfrak{L}(B)$ indicheremo con $\sigma(T)$ lo spettro di T e con $\rho(T)$ l'insieme risolvente; con r_T indicheremo il raggio spettrale di T, cioè $r_T = \sup\{|\zeta|: \zeta \in \sigma(T)\};$ con $R(\lambda; T)$ indicheremo la funzione risolvente (definita in $\rho(T)$), cioè $R(\lambda; T) = (\lambda I - T)^{-1}$.

Per comodità del lettore e per rendere il più autosufficiente possibile questo lavoro, daremo ora alcune definizioni ed enunceremo alcune proposizioni che saranno usate nel seguito: tra di esse certe sono di facile dimostrazione, mentre per le altre si rimanda a 1) e alla relativa bibliografia.

- 1. DEFINIZIONE. Sia X un insieme limitato contenuto in B; indicheremo con $\alpha(X)$, l'estremo inferiore dei numeri positivi ϵ per i quali è possibile decomporre l'insieme X nell'unione di un numero finito di parti di diametro inferiore ad ϵ .
 - 2. Proposizione. Sono vere le seguenti proprietà:
- a) se X ed Y sono insiemi limitati di B ed è $X \subseteq Y$, allora $\alpha(X) \le \alpha(Y)$;
 - b) $X \in relativamente compatto se e solo se <math>\alpha(X) = 0$;
- c) se X ed Y sono insiemi limitati di B, indicato con X+Y l'insieme $\{x+y: x \in X, y \in Y\}$, allora $\alpha(X+Y) \leq \alpha(X) + \alpha(Y)$.
- 3. Definizione. Chiameremo α -contrazione una trasformazione continua T di B in sè, tale che:
- a) ogni insieme limitato di B è trasformato dalla T in un insieme limitato;

b) esiste un numero non negativo h, minore di 1, tale che per ogni insieme limitato $X \subset B$ si abbia:

(1)
$$\alpha(T(X)) \leq h\alpha(X).$$

L'estremo inferiore degli h per cui sussiste la (1) qualunque sia l'insieme limitato X, sarà detto modulo dell' α -contrazione T, e sarà indicato con h_T .

Osserviamo esplicitamente che: un operatore T è completamente continuo se e solo se è una α -contrazione con $h_T=0$.

- 4. Proposizione. Sono vere le seguenti proprietà:
- a) se U e V sono due α -contrazioni in uno spazio di Banach B, allora anche $T = U \circ V$ è tale e $h_T \leq h_U \cdot h_V$;
- b) se T è una α -contrazione in B di modulo h_T e λ è un numero complesso tale che $|\lambda| < h_T^{-1}$, allora λT è una α -contrazione;
- c) se U è una α -contrazione lineare in B e V è una trasformazione lineare e continua (sempre in B) con $||V|| \le 1$, allora $U \circ V$ è una α -contrazione e $h_U \circ V \le h_U$;
- d) se U è un'applicazione completamente continua e V è una α -contrazione (ambedue sullo spazio B), allora U+V è una α -contrazione.
- 2. Vogliamo dimostrare che lo spettro di una α -contrazione lineare T ha fuori del cerchio $\{\zeta:\zeta\in\mathbb{C},\ |\zeta|\geq h_T+\epsilon\}$ (con ϵ arbitrario) solo un numero finito di punti. Questo risultato sarà raggiunto in più tappe, attraverso la dimostrazione di alcuni Lemmi.
- 5. Lemma. Sia T una α -contrazione lineare in B in sè; nell'insieme $\{\lambda \in \mathbb{C}, |\lambda| \ge 1\}$ gli autovalori di T sono al più in numero finito.

DIMOSTRAZIONE. Se per assurdo ciò non fosse vero, poichè gli autovalori sono contenuti nello spettro di $\sigma(T)$ che è compatto, ci sarebbe una successione $\{\lambda_n\}$ di autovalori di T tutti distinti, e con: $|\lambda_n| \ge 1$. Sia x_n una autosoluzione associata a λ_n . Indichiamo con A_n lo spazio generato da x_1 , ..., x_n , cioè $A_n = \operatorname{sp}\{x_1, ..., x_n\}$. A_n è un sottospazio chiuso di B; inoltre, poichè gli autovalori λ_1 , ..., λ_n sono tutti distinti,

 A_n è propriamente contenuto in A_{n+1} . Allora per un noto Teorema²), è possibile trovare una successione $\{y_n\}$ che gode delle seguenti proprietà:

(i)
$$y_n \in A_n$$
, $||y_n|| = 1$;

(ii)
$$||y_n-x|| \ge \frac{1}{2}, \forall x \in A_{n-1}.$$

Dunque il vettore y_n è della forma $c_1x_1 + ... + c_nx_n$, cosicchè, per ogni intero $v \ge 1$, si ha che: $T^{\nu}(y_n) - \lambda_n^{\nu} y_n \in A_{n-1}$. Inoltre, se n > m risulta:

$$z_{n,m}=y_n-\lambda_n^{-\nu}T^{\nu}(y_n)+\lambda_m^{-\nu}T^{\nu}(y_m)\in A_{n-1}$$
,

e quindi:

(2)
$$\left\| T^{\vee} \left(\frac{y_n}{\lambda_n^{\vee}} \right) - T^{\vee} \left(\frac{y_m}{\lambda_m^{\vee}} \right) \right\| = \| y_n - z_{n, m} \| > \frac{1}{2}.$$

Ora, fissato $\delta < \frac{1}{2}$, sia ν un vero numero tale che $h_T^{\nu}\alpha(S) < \delta$, ove si è indicata con S la sfera unitaria dello spazio di Banach B. Detta Y la successione $\{\lambda_n^{-\nu}y_n\}$ si ha che $Y \subseteq S$ e quindi che $\alpha(Y) \le \alpha(S)$. D'altra parte, poichè T è una α -contrazione, risulta:

$$\alpha(T^{\vee}(Y)) \leq h_T^{\vee}\alpha(Y) \leq h_T^{\vee}\alpha(S) < \delta.$$

Da ciò segue l'assurdo, perchè, per la (2), deve essere $\alpha(T'(Y)) \ge \frac{1}{2}$; Q.E.D.

6. Lemma. Sia T una α -contrazione lineare di B in sè e λ un numero complesso tale che $|\lambda| \ge 1$. Sia $\{y_n\}$ una successione appartenente a $Im(\lambda I - T)$ e convergente ad y. Per ogni indice n indichiamo con x_n un qualunque elemento di B soddisfacente a $\lambda x_n - T(x_n) = y_n$, e supponiamo che la successione $\{x_n\}$ sia limitata. Allora da essa è possibile estrarre una sottosuccessione convergente. Detto, pertanto, x il limite di questa, si $avrà: \lambda x - T(x) = y$.

²⁾ Cfr., ad esempio, Dunford-Schwartz, Linear Operators, pag. 578.

DIMOSTRAZIONE. Indichiamo con X la successione $\{x_n\}$ e con Y la successione $\{y_n\}$. Per ipotesi si ha: $\lambda x_n = T(x_n) + y_n$, qualunque sia l'elemento $x_n \in X$. Quindi si può scrivere:

$$(3) X \subseteq \frac{1}{\lambda} T(X) + \frac{1}{\lambda} Y.$$

Ora, poichè $Y = \{y_n\}$ è una successione convergente, si ha che $\alpha(Y) = 0$:

Quindi, per le Proposizioni 2-b e 2-c e per la (3) si ha:

$$\alpha(X) \leq \frac{1}{|\lambda|} \alpha(T(X)).$$

Infine, dato che T è una α -contrazione e ricordato che $|\lambda| \ge 1$, risulta:

$$\alpha(X) \leq h_T \alpha(X)$$
,

da cui $\alpha(X)=0$, perchè h_T è minore di uno. Sarà perciò possibile estrarre da $X=\{x_n\}$ una sottosuccessione convergente: $x_n \to x$. Poichè inoltre T è continua, si ha: $(\lambda I - T)x = y$; Q.E.D.

È opportuno a questo punto notare esplicitamente alcune conseguenze del precedente Lemma.

7. COROLLARIO. Sia T una α -contrazione lineare di B in sè. Se λ non è un autovalore di T, con $|\lambda| \ge 1$, allora $Im(\lambda I - T)$ è chiuso.

DIMOSTRAZIONE. Sia $\{y_n\}$ una successione di $Im(\lambda I-T)$, con $y_n \to y$. Indichiamo ancora con x_n un elemento di B tale che $\lambda x_n - T(x_n) = y_n$. Se $\{x_n\}$ è illimitata, si consideri $z_n = ||x_n||^{-1}x_n$; per ogni indice n si ha che $||z_n|| = 1$, oltre a $(\lambda I - T)z_n = ||x_n||^{-1}y_n$. Si ha che $||x_n||^{-1}y_n$ tende a zero; allora, per il Lemma 6 esiste uno $z \in B$, tale che $z_n \to z$, e $(\lambda I - T)z = 0$. Ma ||z|| = 1, e quindi λ è un autovalore per T; e questo è assurdo. Dunque $\{x_n\}$ è limitata, e la conclusione segue dal Lemma 6; Q.E.D.

8. COROLLARIO. Se T è una α -contrazione lineare di B in sè e λ non è un autovalore di T, con $|\lambda| \ge 1$, allora $(\lambda I - T)^{-1}$ (definito su $Im(\lambda I - T)$) è un'applicazione lineare e continua

9. LEMMA. Se $\lambda_n \in \rho(T)$, $\lambda_n \to \lambda$ e λ non è un autovalore della α -contrazione $T \in \mathcal{L}(B)$, con $|\lambda| \geq 1$, allora la successione $a_n = ||(\lambda_n I - T)^{-1}||$ è limitata.

DIMOSTRAZIONE. Per la definizione di norma di un operatore, si ha che, fissato $\delta > 0$, per ogni n, esiste un y_n , con $||y_n|| = 1$, tale che, posto $x_n = R(\lambda_n; T)y_n$, si ha:

$$||x_n|| \ge a_n - \delta.$$

Se, per assurdo, $\{a_n\}$ non fosse limitata, si potrebbe estrarre dalla $\{x_n\}$ una sottosuccessione, tale che $||x_n|| \to \infty$.

Poniamo $v_n = ||x_n||^{-1}x_n \in w_n = ||x_n||^{-1}y_n$. Risulta:

$$\lambda_n \nu_n - T(\nu_n) = w_n$$
, $||\nu_n|| = 1$, $w_n \rightarrow 0$.

Si ha inoltre $v_n = \lambda^{-1}T(v_n) + (\lambda_n^{-1} - \lambda^{-1})T(v_n) + \lambda_n^{-1}w_n$. Poniamo $z_n = [(\lambda_n^{-1} - \lambda^{-1})T(v_n) + \lambda_n^{-1}w_n]\lambda^{-1}$; risulta: $z_n \to 0$ e $\lambda v_n - T(v_n) = z_n$. Per il Lemma 6 è allora possibile trovare in B un elemento v tale che $v_n \to v$, e che $\lambda v - T(v) = 0$. Ma ||v|| = 1; da ciò segue l'assurdo, perchè per ipotesi λ non è un autovalore di T; Q.E.D.

10. Lemma. Sia T una α -contrazione lineare di B in sè. Nel dominio $\{\zeta: \zeta \in \mathbb{C}, |\zeta| \ge 1\}$ l'insieme degli autovalori coincide con lo spettro di T.

DIMOSTRAZIONE ³). Nel dominio $\{\zeta : \zeta \in \mathbb{C}, |\zeta| \ge 1\}$ indichiamo con Σ l'insieme complementare degli autovalori; poniamo $\Sigma' = \Sigma \cap \rho(T)$ e Σ'' la parte restante. Si ha: $\Sigma = \Sigma' \cup \Sigma''$. Il Lemma sarà dimostrato non appena si farà vedere che $\Sigma'' = \emptyset$. Allo scopo cominciamo coll'osservare che Σ è un insieme aperto (nella topologia relativa) e connesso, perchè gli autovalori sono, nel dominio considerato, in numero finito (Lemma 5). Allora anche Σ' è aperto. Ne segue che, se Σ'' fosse non vuoto, esisterebbe almeno un punto $\lambda \in \Sigma''$ che sarebbe punto di accumulazione di punti di Σ' . Sia $\{\lambda_n\}$ la successione tale che $\lambda_n \to \lambda$, con

³⁾ Questo Lemma, oltre al Teorema 12, era contenuto nella tesi di Laurea di E. Pillinini - Univ. di Trieste, 1963.

 $\lambda_n \in \Sigma'$. Per il Lemma 9, la successione $\|(\lambda_n I - T)^{-1}\|$ è limitata:

$$\|(\lambda_n I - T)^{-1}\| \leq M, \quad \forall n.$$

Allora, fissato $\delta = M^{-1}$, nell'intorno di centro λ e raggio δ cade almeno un λ_n , con $\lambda_n \in \rho(T)$, e si ha:

$$|\lambda-\lambda_n|<\delta=M^{-1}\leq ||R(\lambda_n; T)||^{-1}.$$

Ciò implica, com'è noto, che λ è un punto regolare, e questo è assurdo; O.E.D.

Siamo ora in grado di dimostrare il Teorema voluto.

11. TEOREMA. Sia T una α -contrazione lineare di B in sè. Allora $\sigma(T) \cap \{\zeta : \zeta \in \mathbb{C}, |\zeta| \ge 1\}$ è un insieme finito.

DIMOSTRAZIONE. La dimostrazione discende dal Lemma 5 e dal Lemma 10; Q.E.D.

Il Teorema 11 può essere migliorato:

12. TEOREMA. Sia T una α -contrazione lineare di B in sè. Se ϵ è un numero arbitrario positivo, allora $\sigma(T) \cap \{\zeta : \zeta \in \mathbb{C}, |\zeta| \ge h_T + \epsilon\}$ è un insieme finito.

DIMOSTRAZIONE. Basta osservare che, qualunque sia $\varepsilon > 0$, la trasformazione $(h_T + \varepsilon)^{-1}T$ è ancora una α -contrazione lineare (vedi Proposizione 4-b); Q.E.D.

Val la pena di osservare che se T è un operatore compatto, si ha h_T =0, e quindi che il Teorema 12 comprende come caso particolare i noti risultati sullo spettro di un operatore compatto.

Infine, poichè risulta $\sigma(T^n) = (\sigma(T))^n$, per ogni intero positivo n, si può ulteriormente generalizzare il Teorema 12 con il seguente:

13. Teorema. Tutte le conclusioni del Teorema 12 sono ancora valide non appena si ha che T^n è una α -contrazione lineare per qualche intero n positivo.

Diamo ora un Teorema che, oltre ad esprimere una proprietà delle α -contrazioni lineari, ci indica che i punti di $\sigma(T)$ che sono esterni al

cerchio $\{\zeta: \zeta \in \mathbb{C}; |\zeta| < 1\}$ sono di « tipo finito »: la questione sarà analizzata nei dettagli nel paragrafo seguente.

14. Teorema. Sia T una α -contrazione lineare di B in sè. Detto M il nucleo dell'applicazione $I-T:M=\mathrm{Ker}\,(I-T)$, si ha che M è di dimensione finita.

DIMOSTRAZIONE. Sia X un insieme limitato di M. Si ha che X = T(X). Poichè T è una α -contrazione, risulta:

$$\alpha(X) \leq h_T \alpha(X)$$
,

con h_T minore di uno. Quindi $\alpha(X)=0$; da ciò segue la conclusione, perchè X è arbitrario; Q.E.D.

- 3. Nel paragrafo precedente abbiamo dimostrato che i punti λ di $\sigma(T)$ soddisfacenti a $|\lambda| \ge 1$ sono al più in numero finito, nell'ipotesi che T sia una α -contrazione lineare. Siano essi in numero di n e indichiamoli con λ_1 , ..., λ_n . Con γ_k indichiamo una circonferenza di centro λ_k e raggio tale da non contenere nel suo interno altri punti di $\sigma(T)$; indichiamo infine con $P_k = P(\lambda_k)$ la proiezione $(-2\pi i)^{-1} \int\limits_{\gamma_k} R(\zeta; T) d\zeta$. Vogliamo ora analizzare quali conseguenze hanno sulla T le proprietà spettrali viste in precedenza. Cominceremo col dimostrare un Lemma:
- 15. Lemma. Per ogni indice k ($1 \le k \le n$) la proiezione P_k è una α -contrazione lineare.

DIMOSTRAZIONE. Supponiamo dapprima che $|\lambda_k| > 1$. L'operatore P_k con opportune trasformazioni 4) si può scrivere nel seguente modo:

$$P(\lambda_k) = T \left\{ (2\pi i)^{-1} \int_{\gamma_k} \frac{R(\zeta; T)}{\zeta} d\zeta \right\}.$$

Indichiamo con E_k l'operatore $(-2\pi i)^{-1}\int_{\gamma_k} \frac{R(\zeta; T)}{\zeta} d\zeta$; si ha dun-

⁴⁾ Cfr., ad esempio, Riesz-Nagy, Leçons d'Analyse fonctionnelle, pag. 409.

que: $P_k = T \circ E_k$. T ed E_k commutano e quindi, per ogni intero m positivo, si ha: $P_k = P_k^m = T^m \circ E_k^m$. Una verifica materiale porge che $E_k^m = (-2\pi i)^{-1} \int_{\gamma_k} \frac{R(\zeta; T)}{\zeta^m} d\zeta$. Si ha allora: $||E_k^m|| \le s_k (|\lambda_k| - s_k)^{-m}$

 $\max ||R(\zeta; T)||$ ove si è indicato con s_k il raggio di γ_k . Da ciò si deduce che esiste un m tale che $||E_k^{\overline{m}}|| \le 1$.

Ricordando le proposizioni 4-a e 4-c si può allora concludere che P_k è una α -contrazione lineare.

Passiamo ora a considerare il caso in cui $|\lambda_k|=1$. Sia ξ un numero complesso soddisfacente a: $1<\xi< h_T^{-1}$. Per la Proposizione 4-b, ξT è ancora una α -contrazione lineare; inoltre si ha:

$$P_{k} = \xi T \left\{ \frac{-1}{2\pi i \xi} \int_{\gamma_{k}} \frac{R(\zeta; T)}{\zeta} d\zeta \right\}$$

ove il raggio s_k di γ_k è stato preso minore di $1-|\xi|^{-1}$. Ripetendo ora i ragionamenti fatti nel caso precedente, si ha che, indicata con E_k la trasformazione $(-2\pi i \xi)^{-1} \int_{\gamma_k} \frac{R(\zeta; T)}{\zeta} d\zeta$, risulta:

$$||E_k^m|| \le \frac{s_k}{(|\xi|(1-s_k))^m} \max ||R(\zeta; T)|| \quad (\forall m \text{ positivo})$$

E perciò possibile trovare un \overline{m} tale che risulti $||E_k^{\overline{m}}|| \le 1$; poichè (vedi Proposizione 4-a) $\{\xi T\}^{\overline{m}}$ è una α -contrazione, si può anche in questo caso concludere nel modo voluto; Q.E.D.

Ferme restando tutte le altre notazioni, sia σ' la parte di $\sigma(T)$ formata dai punti λ_1 , ..., λ_n e σ'' la parte restante. Indichiamo con Γ una circonferenza del piano complesso di centro l'origine e raggio minore di uno e tale da contenere nel suo interno σ'' . Indichiamo con Q la proiezione $(-2\pi i)^{-1} \int_{\Gamma} R(\zeta; T) d\zeta$, e con P la proiezione $P_1 + P_2 + ... + P_n$. Risulta, com'è noto, che P + Q = I (identità di $\Sigma(B)$); quindi T si può

esprimere come U+V, ove $U=T\circ P$ e $V=T\circ Q$; inoltre si vede facilmente che: $\sigma(U)=\sigma'$ e $\sigma(V)=\sigma''$. Ora, per il Lemma 15, ogni P_i (i=1, 2, ..., n) è una α -contrazione e quindi, per il Teorema 14, M_i (la varietà invariante per P_i) è di dimensione finita. Detta M la varietà invariante per P, una verifica materiale porge che $M=M_1\oplus M_2\oplus \oplus ...\oplus M_n$; perciò anche M è di dimensione finita. Se infine indichiamo con N la varietà invariante per Q, si ha che $B=M\oplus N$, e U(B)==U(M)=T(M). Si può dunque concludere con il seguente

16. TEOREMA. Se T è una α -contrazione lineare di B in sè, si ha che T=U+V, con U avente rango di dimensione finita e V con lo spettro contenuto all'interno del cerchio unitario.

OSSERVAZIONE. Se r_V è il raggio spettrale di V, si ha che lim $||V^n||^{1/n} = r_V < 1$; da questo segue subito che esiste un n, tale che $||V^{\overline{n}}|| < 1$; cioè V è tale che una sua opportuna potenza è una contrazione ordinaria.

Il Teorema 16 e l'osservazione precedente ci permettono di avere altre informazioni sull'operatore V. Sussiste infatti la seguente proposizione:

17. PROPOSIZIONE. Sia V un operatore lineare e continuo di B in sè, avente lo spettro interno al cerchio $\{\zeta:\zeta\in\mathbb{C}\,,\,|\zeta|<1\}$. Allora B può essere dotato di una norma equivalente alla norma originaria, tale che, rispetto ad essa, V sia una contrazione.

DIMOSTRAZIONE. Per ipotesi, esiste un \overline{n} tale che $||V^{\overline{n}}|| = \theta < 1$. Poniamo, per ogni $x \in B$:

(4)
$$|||x||| = ||x|| + ||V(x)|| + ... + ||V^{\overline{n}-1}(x)||.$$

Si ha:

$$||| V(x) ||| = || V(x) || + || V^{2}(x) || + ... + || V^{\bar{n}}(x) || =$$

$$= ||| x ||| - || x || + || V^{\bar{n}}(x) || \le ||| x ||| - (1 - \theta) || x ||.$$

Ma, poichè le due norme sono equivalenti (facile verifica), si ha anche che esiste una costante $\beta > 0$, tale che $\|x\| \ge \beta \|x\|$, per ogni $x \in B$.

In definitiva risulta:

$$|||V(x)||| \le |||x||| - (1-\theta)\beta |||x||| = (1-(1-\theta)\beta) |||x|||,$$

e questo ci dice che V, rispetto alla $\|\cdot\|$, è una contrazione; Q.E.D.

Torniamo ora alla α -contrazione T=U+V; indicato con \overline{B} lo spazio B munito della norma data dalla (4), si ha che \overline{B} è uno spazio di Banach; consideriamo T come appartenente a $\mathfrak{L}(\overline{B})$: T è ancora una α -contrazione, in quanto somma di una contrazione ordinaria e di un operatore di rango finito (Proposizione 4-d). Consideriamo ora l'aggiunta di T, $T^* \in \mathfrak{L}(B^*)$. Si ha che $T^* = U^* + V^*$, e quindi anche $T^* \in \mathfrak{L}(\overline{B}^*)$ è una α -contrazione. Si può dunque enunciare la seguente proposizione:

18. Proposizione. Se T è una α -contrazione lineare di B in sè, allora si può trovare in B una norma equivalente alla data, tale che l'aggiunto di T, T^* , considerato come appartenente a $\Omega(B^*)$, è anch'esso una α -contrazione.

OSSERVAZIONE. La Proposizione 18 generalizza, in un certo senso, il fatto noto che l'aggiunto di un operatore completamente continuo è completamente continuo, come anche che l'aggiunto di una contrazione è una contrazione.

Sarà opportuno osservare esplicitamente che non è detto che un'applicazione il cui spettro sia contenuto nel cerchio $\{\zeta:\zeta\in\mathbb{C}\ , \ |\ \zeta|<1\}$ sia necessariamente una α -contrazione. Ad esempio, se prendiamo $B=l_2\oplus l_2$ con la norma

$$|| [x, y] || = || x ||_{l_2} + || y ||_{l_2}$$

allora l'applicazione T definita ponendo:

$$T([x, y]) = \left[2y, \frac{1}{4}x\right]$$

non è una α -contrazione, mentre $\sigma(T)$ è contenuto in $\{\zeta: \zeta \in \mathbb{C}, |\zeta| < 1\}$. Si noti che il precedente è anche un esempio di operatore che non è una α -contrazione, ma tale che una sua potenza è una α -contrazione.

Inoltre, con lievi modifiche, esso può essere adattato per mostrare che una α -contrazione di uno spazio di Banach B in sè, può non essere più tale se in B si pone un'altra norma equivalente alla data. Infatti in $B = l_2 \oplus l_2$ l'applicazione $\varepsilon T : [x, y] \rightarrow \left[4\varepsilon y, \frac{1}{4}\varepsilon x \right]$ non è una α -contrazione se $\varepsilon \geq \frac{1}{4}$; ma se in B si pone la norma (equivalente alla data): $|||[x, y]|| = \frac{1}{4} ||x||_{l_2} + ||y||_{l_2}, \text{ rispetto ad essa } \varepsilon T \text{ (per ogni } \varepsilon < 1) è una <math>\alpha$ -contrazione (anzi è una contrazione).

4. La nozione di α -contrazione può essere estesa in modo abbastanza naturale, considerando le applicazioni T continue che godono delle proprietà a) e b) della Definizione 3, senza però richiedere che h_T sia minore di uno. Queste applicazioni saranno dette applicazioni α -lipschitziane. Nel caso lineare, è ovvio che ogni applicazione continua è α -lipschitziana e che risulta: $h_T \leq ||T||$.

Per ogni applicazione lineare e continua T di B in sè, consideriamo la trasformazione kT = T' con $k < h_T^{-1}$; T' è una α -contrazione, e quindi ad essa possono essere applicati i ragionamenti fatti nei paragrafi precedenti. In particolare, ad esempio, dal Teorema 12 si ha che:

19. Proposizione. Se T è una applicazione lineare e continua di B in sè lo spettro di T non ha punti di accumulazione fuori del cerchio $\{\zeta: \zeta \in \mathbb{C}, |\zeta| \leq h_T\}$.

Un analogo del Teorema 16 può essere anche ottenuto:

20. Proposizione. Se T è un'applicazione lineare e continua di B in sè, per ogni $h > h_T$, T può essere decomposto in U+V, con U avente il rango di dimensione finita e V con lo spettro contenuto all'interno del cerchio del piano complesso di centro l'origine e raggio h.

Manoscritto pervenuto in redazione il 20 settembre 1968.