NOBORU ITO

On permutation groups of prime degree p
which contain (at least) two classes of conjugate
subgroups of index p

Rendiconti del Seminario Matematico della Università di Padova,
tome 38 (1967), p. 287-292

<http://www.numdam.org/item?id=RSMUP_1967__38__287_0>
ON PERMUTATION GROUPS OF PRIME DEGREE p WHICH CONTAIN (AT LEAST) TWO CLASSES OF CONJUGATE SUBGROUPS OF INDEX p

NOBORU ITO *)

Let p be a prime and let $F(p)$ be the field of p elements, called points. Let G be a transitive permutation group on $F(p)$ such that

(I) G contains a subgroup H of index p which is not the stabilizer of a point.

H has two point orbits, say D and $F(p) - D$ (cf. [3]). Let k be the number of points in D. Then $1 < k < p - 1$. Furthermore $D = D(p, k, \lambda)$ can be considered as a difference set modulo p such that the automorphism group $A(D)$ of D contains G as a subgroup (cf. [5]).

Replacing D by $F(p) - D$, if need be, we always can assume that $k \leq \frac{1}{2} (p - 1)$.

Now the only known transitive permutation groups G of degree p satisfying the condition (I) are the following groups:

(i) Let $F(q)$ be the field of p elements. Let $V(r, q)$, $LF(r, q)$ and $SF(r, q)$ be the r-dimensional vector space, the r-dimensional projective special linear and semilinear groups over $F(q)$ respectively.

*) This research was partially supported by National Science Foundation Grant GP-6539.

Indirizzo dell'A.: Depart. of Mathematics, University of Illinois at Chicago Circle, Box 4348, Chicago, Ill. 60680 USA.
where \(r \geq 3 \) and \(p = \frac{q^r - 1}{q - 1} \). Let \(\Pi \) be the set of one dimensional subspaces of \(V(r, q) \). \(SF(r, q) \) can be considered as a permutation group on \(\Pi \). Identify \(\Pi \) with \(F(p) \). Then any subgroup \(\mathcal{G} \) of \(SF(r, q) \) containing \(LF(r, q) \) satisfies (I) with parameters \(k = \frac{q^{r-1} - 1}{q - 1} \) and \(\lambda = \frac{q^{r-2} - 1}{q - 1} \).

(ii) \(\mathcal{G} = LF(2, 11) \), where \(p = 5 \) and \(\lambda = 2 \).

Now among the groups mentioned above only \(LF(2, 11) \) satisfies the following condition:

(II) the restriction of \(\mathcal{B} \) to \(D \) is faithful (cf. [5]).

Thus it is natural to ask whether this is the only group satisfying (I) and (II). The purpose of this note is to make a first step towards the solution. We prove the following theorem.

Let \(\mathcal{G} \) be a group satisfying (I) and (II). If \(k \) is a prime, then \(\mathcal{G} \cong LF(2, 11) \).

Proof. (a) First of all, we recall the following fundamental equality for the difference set

\(\lambda (p - 1) = k (k - 1) \).

Since \(k \) is a prime by assumption, from (1) we see that \(k \) divides \(p - 1 \). Put

\(p - 1 = kN \),

which implies by (1) that

\(k - 1 = \lambda N \).

(b) Let \(\mathcal{P} \) be a Sylow \(p \)-subgroup of \(\mathcal{G} \) and let \(N_{\mathcal{P}} \mathcal{P} \) be the normalizer of \(\mathcal{P} \) in \(\mathcal{G} \). Then since \(\mathcal{G} = \mathcal{P}\mathcal{B} \), \(N_{\mathcal{P}} \mathcal{P} = \mathcal{P}\mathcal{Q} \) with \(\mathcal{Q} = \mathcal{B} \cap N_{\mathcal{P}} \mathcal{P} \). \(\mathcal{Q} \) is cyclic of order \(q \), where \(q \) is a divisor of \(p - 1 \). Clearly \(\mathcal{Q} \) leaves \(D \) fixed. Also clearly \(\mathcal{Q} \) leaves only one point fixed. Thus either \(k \equiv 1 \) (mod \(q \)) or \(k \equiv 0 \) (mod \(q \)). In the former case, by (2)

\(N \equiv 0 \) (mod \(q \)).

\(^1\) For the theory of difference sets see [7].
In the latter case, since \(k \) is prime,

\begin{equation}
(5) \quad k = q.
\end{equation}

(c) The restriction of \(H \) to \(D \) is doubly transitive.

Otherwise, by assumption (II) and by a theorem of Burnside \(H \) is metacyclic of order \(k \zeta \), where \(\zeta \) is a proper divisor of \(k - 1 \). Hence the order \(g \) of \(G \) is equal to \(pk\zeta \). On the other hand, by Sylow’s Theorem, \(g = pq(1 + np) \), where \(n \) is positive, since \(G \) is clearly nonsolvable. Thus

\begin{equation}
(6) \quad q(1 + np) = k\zeta.
\end{equation}

If \(k = q \), then from (6) \(1 + p \leq 1 + np = \zeta \). This is a contradiction. Thus \(1 + np \equiv 1 + n \equiv 0 \pmod{k} \). Put \(n = ak - 1 \). Then from (2) and (6) we obtain

\begin{equation}
(7) \quad q(aNk + a - N) = \zeta.
\end{equation}

Since \(N > 1 \) and \(k > 1 \), \(Nk \geq N + k \). Thus from (7) \(k < \zeta \). This is a contradiction.

(d) Let \(k \) be a Sylow \(k \)-subgroup of \(G \) contained in \(H \). By assumption (II) the restriction of \(k \) to \(D \) is faithful. Thus \(k \) is of order \(k \). If \(k \) leaves fixed at least two points, then since \(G \) is doubly transitive on \(F(p) \), the index of \(k \) in \(G \) is divisible by \(p - 1 \). This contradicts (2). Thus \(K \) leaves fixed exactly one point, say \(i \). Then \(i \) belongs to \(F(p) - D \). Let \(Ns_k \) be the normalizer of \(k \) in \(G \). Since clearly \(D \) is the only block left fixed by \(k \), \(Ns_k \) is contained in \(H \). By assumption (II) \(k \) coincides with its own centralizer. Thus the order of \(Ns_k \) equals \(k\zeta \), where \(\zeta \) is a divisor of \(k - 1 \).

(e) Let \(A(i) \) be the stabilizer of \(i \) in \(G \). If \(G \cong LF(2, 11) \), then the restriction of \(H \cap A(i) \) to \(D \) is doubly transitive.

Otherwise, by assumption (II) and by a theorem of Burnside \(H \cap A(i) \) is contained in \(Ns_k \). Since \(Ns_k \) leaves \(i \) fixed, \(Ns_k = H \cap A(i) \). Thus \(\zeta \) is a proper divisor of \(k - 1 \). Since \(B:H \cap A(i) = p - k \), the order of \(B \) is equal to \((p - k)k\zeta \).

Now let \(B' \) be a minimal normal subgroup of \(B \). Then \(B' \) is a direct product of mutually isomorphic simple groups. Since the restriction of \(B \) to \(D \) is doubly transitive, the restriction of \(B' \) to
D is transitive. Since k has order k, H' is simple. By Sylow's Theorem $H = H' (N \triangleleft K)$. Thus H' has order $(p - k) k'\zeta'$, where ζ' is a divisor of $k - 1$.

Now by (2) $p - k = (N - 1) k + 1$. If $\lambda = 1$, then by a theorem of Ostrom-Wagner ([6]) G does not satisfy the assumption (II). Hence by (3) $N - 1 = \frac{k - 1}{\lambda} - 1 \leq \frac{k - 3}{2}$. Therefore by a theorem of Brauer ([1], Theorem 10) either (a) $N = 2$, $H' = LF(2, k)$ or (b) $N = \frac{k - 1}{2}$, $H' = LF(2, k - 1)$, $k - 1 = 2^n$.

By a previous result ([3]) G cannot be triply transitive on $F(p)$. If (a) occurs and if $p > 11$, then by a previous result ([4]) G is quadruply transitive on $F(p)$. Thus $p = 11$. Then it is easy to check that $G = LF(2, 11)$.

Suppose that (b) occurs. Then by (3) $\lambda = 2$. Now from $g = pq(1 + np) = p(p - k) k\zeta$ it follows that

$$k^2 \zeta + q \equiv 0 \pmod{p}.$$

By (2) $k^2 \equiv k - 2 \pmod{p}$. Thus

$$(k - 2) \zeta + q \equiv 0 \pmod{p}.$$

Since $p = \left(\frac{k - 1}{2}\right) k + 1$ and $\zeta \leq \frac{k - 1}{2}$, we obtain from (8)

$$\frac{(k - 2)(k - 1)}{2} + q \geq \frac{k(k - 1)}{2} + 1,$$

which implies that

$$q \geq k.$$

Then by (4) and (5) $q = k$. Now again from $g + pq(1 + np) = p(p - k) k$ it follows that

$$k\zeta + 1 \equiv 0 \pmod{p},$$

which implies that

$$\zeta = \frac{k - 1}{2}.$$

On permutation groups of prime degree p which contain etc. 291

From (10), $g = pq (1 + np) = p (p - k) k \zeta$ and $\lambda = 2$ it follows that

\[n = \frac{k - 3}{2}. \]

Now let G' be a minimal normal subgroup of G. Then G' has order $pq (1 + n'p)$ with $n' \leq n$. Hence again by a theorem of Brauer ([1], Theorem 10) $n' = 1$ and $G' \cong LF(2, p)$. Then $k = q = \frac{p - 1}{2}$.

Thus $k = 5, p = 11$, and $G = G' \cong LF(2, 11)$.

(f) The line through two distinct points i and j is the intersection of all the blocks containing both i and j (cf. [2]). Since G is doubly transitive on $F(p)$, every line contains the same number of points. Let s be the number of points on a line. Then

\[N \equiv 0 \pmod{s(s - 1)}. \]

In particular, if $N \geq 4$, then

\[s \leq N - 1. \]

In fact, the number of lines is equal to

\[\binom{p}{2} \binom{s}{2} = \frac{p (p - 1)}{2} \frac{s (s - 1)}{2} = \frac{p k N}{s} (s - 1). \]

Since p and k are primes and since $\lambda \geq s$, we obtain (12).

(g) Assume that $G \cong LF(2, 11)$. Let 0 and 1 be two distinct points of D. Let $A(0)$ and $A(1)$ be the stabilizers of 0 and 1 in G respectively. Then by (e) we see at once that $A(0) \cap A(1) \cap B: A(0) \cap A(1) \cap B \cap A(1) = p - k$. Thus the orbit of $A(0) \cap A(1)$ containing i contains $F(p) - D$. Clearly this is the case for every block containing both 0 and 1. Thus the orbit of $A(0) \cap A(1)$ containing i coincides with the line determined by 0 and 1. Now considering the index of $A(0) \cap A(1) \cap B \cap A(i)$ in $A(0) \cap A(1)$ we obtain

\[\lambda (p - k) = \ell (p - s), \]
where t is the index of $A(0) \cap A(1) \cap B \cap A(i)$ in $A(0) \cap A(1) \cap A(2)$. From (14) we obtain
\begin{equation}
(15) \quad k = (\lambda - t)p + ts.
\end{equation}
Since by (13) $ts < \lambda N < k$, $\lambda - t$ is positive. From (2) and (15) it follows that
\[\lambda - t + ts \equiv 0 \pmod{k}, \]
which implies that
\begin{equation}
(16) \quad \lambda - t + ts = k.
\end{equation}
From (2), (15), (16) we obtain
\[k = (k - ts)p + ts = (k - ts)(kN + 1) + ts = (k - ts)kN + k, \]
which implies that
\begin{equation}
(17) \quad p = \lambda + tsN.
\end{equation}
But by (3) and (13) $p - \lambda + tsN < \lambda + \lambda sN < \lambda + sk \leq \lambda + (N - 1)k < p$. This contradiction establishes $G \cong LF(2, 11)$.

\section*{BIBLIOGRAPHY}

Manoscritto pervenuto in redazione il 17 marzo 1967