Henry H. Crapo

Geometric duality

Rendiconti del Seminario Matematico della Università di Padova, tome 38 (1967), p. 23-26

<http://www.numdam.org/item?id=RSMUP_1967__38__23_0>
Duality for geometries (see [4], [3]) may be expressed in terms of complementation of subsets, together with negation of the dependence relation:

$$e \delta^* (X - e) \iff e \bar{\delta} (\subseteq X - e).$$

The dependence relations δ and δ^* give rise to closure operators J and J^* with the exchange property. J and J^* may be considered to act on the Boolean algebra B of all subsets of G, and on the dual lattice \widehat{B}, respectively. Then

$$J^* (\sim x) = J^* (\sim y) \iff J (x) \perp J (y)$$

for all pairs x, y of subsets of G, such that y covers x in B.

Closure operators with the exchange property also occur as the kernels of strong maps [2] from one geometric lattice to another. This suggests a more general form of duality for geometries. Indeed, we shall prove that if J is a closure satisfying appropriate exchange and finiteness properties on a geometric lattice P, and if the dual lattice \widehat{P} is also geometric, then condition (2), above, determines uniquely a closure operator J^* on \widehat{P}, satisfying the same exchange and finiteness conditions. The condition on the lattice P is satisfied, for example, if P is a complemented modular lattice of finite height[1].

The relationship of geometric duality holding between the lattices P/J and \widehat{P}/J^* is more general than that obtaining in the theories of Whitney [4]. It coincides with the duality of Whitney if P is a finite Boolean algebra.

Under the same condition on the lattice P, namely that \widehat{P} also be geometric, we prove that a closure satisfying finiteness conditions has a dual closure defined by (2) if and only if it has the exchange property.

An element x in a geometric lattice P is cofinite if and only if $x < x \lor p$ for only finitely many atoms p in P. A closure J on P is cofinitary if and only if $y \lor x$ and $J(x) \neq J(y)$ imply the existence of a cofinite element z such that $x \leq z$ and $J(z) \neq J(y \lor z)$.

Proposition 1. If a lattice P and its lattice dual \widehat{P} are both geometric, and if J is a finitary and cofinitary closure with the exchange property on P, then there is a unique closure J^* on \widehat{P} satisfying condition (2), and \widehat{P}/J^* is geometric.

Proof: For each element $y \in P$, let $T(y) = \inf \{x : y \lor x$, and $y = x$ or $J(y) \neq J(x)\}$. If J^* is any closure on \widehat{P} satisfying condition (2), then $y \lor x$ implies $\tilde{x} \leq J^*(\tilde{y}) \iff J^*(\tilde{x}) = J^*(\tilde{y}) \iff J(x) \neq J(y)$. Since the lattice P is complemented modular and coatomistic, the interval $[0, y]$ is coatomistic, and $J^*(\tilde{y}) = \widehat{T}(y)$. We prove that J^*, thus defined, is a closure operator with the required properties.

$y \geq T(y)$ implies $\tilde{y} \leq J^*(\tilde{y})$. Assume $z \leq y$ and $y \lor x$. Then $T(y) \leq x \iff J(x) < J(y)$. If $J(x) < J(y)$, then $J(x \land z) \leq J(x)$, so $J^*(\tilde{y}) \leq J^*(\tilde{z})$. Assume that for some element $y \in P$, there exists an element z such that $T(y) \lor z$, and such that $J(z) < J(T(y))$. Choose a cofinite element x such that $z \leq x$ and $J(x) \neq J(x \lor T(y))$. Then the interval $[x \land y, y]$ is finite. Let w be a maximal element of $[x \land y, y]$ such that $J(w) \neq J(w \lor T(y))$. If $w \lor T(y) = y$, choose an element u covering w such that $u \lor T(y)$ covers $w \lor T(y)$. Since $w \lor T(y)$
and \(u \lor T(y) \) are in the interval \([T(y), y]\), \(J(u \lor T(y)) < J(u \lor T(y)) \), \(J(v) < J(w) \), and, by the exchange property, \(J(w) < J(u \lor T(y)) \). This contradicts the maximal property of \(w \), so \(w \lor T(y) = y \), and \(T(y) \leq w < y \), by the definition of \(T \). This contradicts the definition of \(w \), so \(T(y) = w \), and \(T(y) \leq w \). Thus \(J^*(\tilde{y}) = J^*(y) \), and \(J^* \) is a closure. \(J^* \) is finitary because \(J \) is cofinitary.

If elements \(x \) and \(y \) cover \(x \land y \) in \(P \), and are thus covered by \(x \lor y \), and if \(J^*(x \lor y) \leq J^*(x) = J \) then \(J(x \land y) \leq J(x) \). If, moreover, \(J^*(x \lor y) < J^*(z) \), then \(J(y) = J(x \lor y) \), \(J(y) \neq J(x \land y) \), and \(J^*(y) = J^*(x \land y) \). Thus \(J^* \) has the exchange property, and \(\tilde{P}/J^* \) is a geometric lattice.

As an example of duality relative to a complemented modular lattice, consider the seven-point projective plane mapped into a five-point plane in such a way that one line \(j \) is mapped to a point. The empty set, the line \(j \), the four points off \(j \), and the plane are closed relative to this strong map. Only \(\tilde{j} \) and \(\tilde{O} \) are closed relative to the dual closure on the dual plane, and \(\tilde{j} \) is the dual-closure of the empty subset of the dual plane.

A partial converse to proposition 1 is available, which characterizes closures with the exchange property as those closures which have duals.

Proposition 2. If a lattice \(P \) and its lattice dual \(\tilde{P} \) are both geometric, if \(J \) is a finitary and cofinitary closure on \(P \), and if \(T \) is a closure on \(\tilde{P} \), where \(T(y) = \inf \{x ; y \mid x, \text{ and } y \neq x \text{ or } J(y) \neq J(x)\} \), then \(J \) has the exchange property.

Proof: Assume \(x \) and \(y \) cover \(x \land y \), so \(x \lor y \) covers \(x \) and \(y \). Assume further that \(J(x \land y) < J(x) = J(x \lor y) \) and \(J(x \land y) < J(y) \). If \(J(y) < J(x \lor y) \), then \(T(x \lor y) \leq T(y) \). Since \(J(x \land y) < J(y) \), \(T(y) \leq T(x \land y) \). If \(T \) is a closure, then \(T(x \lor y) = T(x \land y) = T(x) \), contradicting \(J(x) = J(x \lor y) \). Thus \(J(y) = J(x \lor y) \), and \(J \) has the exchange property.

Added in proof: The following, provided by D. A. Higgs, and printed here with his permission, defines the scope of the preceding duality theory. It is known that every modular geometric lattice is a direct join (cartesian product) of projective geometries. We have considered, above, geometric lattices L whose dual lattices $\sim L$ are continuous. Under this assumption, Higgs proves that the projective geometries involved in the above direct join decomposition must be of finite height. The essential result is as follows.

Proposition 3. (D. A. Higgs) A projective geometry L of infinite height cannot be dual continuous.

Proof. Let $\{p_i; i = 0, 1, ...\}$ be an independent enumerably infinite set of atoms of L, where L is geometric, modular, and every element of rank 2 covers at least 3 atoms. Let r_n be a third atom covered by $p_n \lor p_{n+1}$, $n = 0, 1, ...$. Let $a = \sup r_i$ and $x_i = \sup p_j$. Then $\inf x_i = 0$, because each atom beneath x_0 is dependent upon a unique minimal (finite) subset of $\{p_i\}$. Thus $a \lor \inf x_i = a \lor 0 = a$, while $\inf (a \lor x_i) = \inf x_0 = x_0 > a$.

Thus L is not dual-continuous. □

BIBLIOGRAPHY

Manoscritto pervenuto in redazione il 25 luglio 1966.