RABINDRANATH SEN
On the approximate solutions of linear equations in the l_2-space

Rendiconti del Seminario Matematico della Università di Padova,
tome 35, n° 2 (1965), p. 245-252

<http://www.numdam.org/item?id=RSMUP_1965__35_2_245_0>
ON THE APPROXIMATE SOLUTIONS OF LINEAR EQUATIONS IN THE l_2-SPACE

Nota *) di Rabindranath Sen (a Calcutta)

In the present paper we give a method of solving approximately linear equations in l_2-space. This method is an extension of Altman's method of approximate solution of linear algebraic equations (Altman, 1957). It is indicated, in this paper, that this method is immediately applicable to any linear equation in a separable Hilbert Space H and consequently to linear functional equations in L_2.

1. – Let us consider the l_2-space. Let K be a bounded linear transformation of a subspace X of l_2 into a subspace Y of l_2. We suppose that K is one-to-one.

Consider the linear equation,

\[(1) \quad Kx = y(x \in X, y \in Y).\]

Let $\{e_i\}$ be a complete orthonormal system. Since, K is one-to-one, $\{a_i\}$ where $a_i = Ke_i$ is linearly independent.

For if a_i's are dependant then there exist constants α_i's not

*) Pervenuta in redazione il 20 ottobre 1964.
Indirizzo dell'A: Dept. of Applied Math. - University College of Science, Calcutta - 9 - India.
all zeros such that,

\[\sum \alpha_i a_i = 0 \quad \text{or} \quad \sum \alpha_i K e_i = 0 \quad \text{or} \quad K \sum \alpha_i e_i = 0 \]

since, \(K \) is bounded

\[\therefore \sum \alpha_i e_i = 0 \]

i.e., \(e_i \)'s are not independent, which is a contradiction.

The sequence \(\{a_i\} \) is weakly convergent. For every \(\varphi \in l_2 \),

\[|(a_m, \varphi) - (a_n, \varphi)| = |(K e_m, \varphi) - (K e_n, \varphi)| = |(e_m, K^* \varphi) - (e_n, K^* \varphi)| \rightarrow 0 \]

as \(m, n \) both \(\rightarrow \infty \).

because \(\{e_i\} \) is weakly convergent to \(\theta \).

Again, for every \(\varphi \in l_2 \),

\[(a_i, \varphi) = (K e_i, \varphi) = (e_i, K^* \varphi) \rightarrow \theta \]

as \(i \rightarrow \infty \).

Therefore, for every \(\varphi \in l_2 \),

\[(a_i, \varphi) \rightarrow (\theta, \varphi) \quad \text{as} \quad i \rightarrow \infty. \]

and hence \(a_i \rightarrow 0 \) weakly as \(i \rightarrow \infty. \)

Define the infinite set of vectors as follows:

(2) \[y_1 = y - P_1 y, \quad y_2 = y_1 - P_2 y_1, \ldots \]

\[y_n = y_{n-1} - P_n y_{n-1}, \quad y_{2n} = y_{2n-1} - P_{2n} y_{2n-1} \]

where \(P_i \) denotes the orthogonal projection on \(a_i \) \((i = 1, 2, 3, \ldots, n, \ldots) \)

(3) Then,

\[||y_{k+1}||^2 = ||y_k||^2 - ||P_{k+1} y_k||^2. \]

where \(P_k y = \frac{(y, K e_k)}{||K e_k||^2} K e_k, \)
It follows from (3) that \(\{\|y_k\|^3\} \) is monotonously decreasing and bounded below and is therefore also convergent.

We shall next show that \(\{y_k\} \) \((K = 1, 2, ..., n, ...)\) is weakly convergent.

From (3), we have \(\{I_k\} \) is bounded, and hence contains a weakly convergent subsequence \(\{y_{kp}\} \).

Let,

\[
y_{kp} \xrightarrow{\text{weakly}} v \quad \text{as} \quad p \to \infty.
\]

Now,

\[
y_{kp+1} = y_{kp} - \alpha_{kp+1} a_{kp+1}.
\]

where

\[
\alpha_{kp+1} = \frac{(y_{kp}, a_{kp+1})}{\|a_{kp+1}\|^2}.
\]

Let,

\[
\alpha_i = (y_{kp}, a_i).
\]

Now, as \(i \to \infty \), \(\alpha_i \to 0 \), for all \(I_k \)'s. \((p = 1, 2, ...)\).

because \(a_i \xrightarrow{\text{weakly}} \theta \).

Also,

\[
\alpha_i \xrightarrow{\infty} (v, a_i) \quad \text{for all} \quad a_i's.
\]

as \(p \to \infty \), because \(y_{kp} \xrightarrow{\text{weakly}} v \) as \(p \to \infty \).

So, \(\alpha_i \to 0 \) as both \(i \& p \to \infty \).

\[
\therefore \alpha_{kp+1} \to 0 \quad \text{as} \quad p \to \infty.
\]

Hence,

\[
y_{kp+1} = y_{kp} - \alpha_{kp+1} a_{kp+1}
\]

\[
\xrightarrow{\text{weakly}} v \quad \text{as} \quad p \to \infty.
\]

because, \(a_{kp+1} \xrightarrow{\text{weakly}} 0 \)

as \(p \to \infty \).

Similarly, we can prove that,

\[
y_{kp+i} \xrightarrow{\text{weakly}} v \quad \text{as} \quad p \to \infty.
\]

for all \(i \) (finite).
If, \(i \to \infty \), \(p \to \infty \) also.

\[
y_{i,p+1} \xrightarrow{\text{weakly}} v \quad \text{as} \quad i \to \infty.
\]

\[
\therefore \{y_i\} \text{ is weakly convergent}
\]

and converges to

\[
v = y - \sum_{i=1}^{\infty} \alpha_i a_i = y^{(1)}.
\]

(say)

Now, again we define the infinite set of vectors as follows:

\[
y^{(i)}_{(1)} = y^{(i)} - \frac{(y^{(i)}, a_1)}{\|a_1\|^2} a_1, \quad y^{(i)}_{(2)} = y^{(i)} - \frac{(y^{(i)}, a_2)}{\|a_2\|^2} a_2,
\]

(4)

\[
y^{(i)}_{(i)} = y^{(i)}_{(i-1)} - \frac{(y^{(i-1)}, a_i)}{\|a_i\|^2} a_i, \quad (i = 1, 2, \ldots, n, \ldots).
\]

We can prove similarly that \(\{y^{(i)}_{(i)}\} \xrightarrow{\text{weakly}} y^{(2)} \).

We thus obtain the following infinite sequences:

\[
y^{(0)} = y^{(0)}_{(0)} - \frac{(y^{(0)}, a_i)}{\|a_i\|^2} a_i, \quad \text{for} \quad i = 0, 1, 2, \ldots, n, \ldots
\]

\[
y^{(0)} = y^{(0)}_{(j)} - \frac{(y^{(j-1)}, a_j)}{\|a_j\|^2} a_j, \quad \text{for} \quad j = 0, 1, 2, \ldots, n, \ldots
\]

with \(y^{(0)}_{00} = y \), \(y^{(0)}_{ij} = y^{(i)} \), and \(y^{(0)}_{ij} = y^{(i)} \).

The above sequences can be written in the following array:

\[
y, \quad y^{(1)}, \quad y^{(2)}, \quad \ldots, \quad y^{(i)}, \quad \ldots
\]

\[
y^{(i)}, \quad y^{(i)}_{(1)}, \quad y^{(i)}_{(2)}, \quad \ldots, \quad y^{(i)}_{(i)}, \quad \ldots
\]

\[
\vdots
\]

\[
y^{(n)}, \quad y^{(n)}_{(1)}, \quad y^{(n)}_{(2)}, \quad \ldots, \quad y^{(n)}_{(i)}, \quad \ldots
\]

\[
\vdots
\]

Now, from (3) and (4),

(5) \((y^{(i)}, a_1) = 0, \ (y^{(i)}_{(1)}, a_1) = 0, \ \ldots, \ (y^{(i)}_{(i)}, a_1) = 0, \ \ldots \)
Also

$$(y_{(1)}, a_2) = 0, \ (y_{(2)}^{(0)}, a_2) = 0, \ ... \ (y_{(p)}^{(0)}, a_2) = 0, \ ...$$

$$(y_{(1)}, a_k) = 0, \ (y_{(2)}^{(1)}, a_k) = 0, \ ... \ (y_{(p)}^{(1)}, a_k) = 0, \ ...$$

Now, \(\{y_{(1)}^{(m)}\}\) is bounded and contains a weakly convergent subsequence \(\{y_{(1)}^{(np)}\}\).

Now, let \(\{y_{(1)}^{(np)}\}\) weakly \(\to\) \(v_1\) as \(p \to \infty\)

\[
\therefore (y_{(1)}^{(np)}, a_1) = 0 \ \& \ \text{since,} \quad y_{(1)}^{(np)} \text{weakly} \to v_1,
\]

\[
\therefore (v_1, a_1) = 0.
\]

\[
y_{(1)}^{(np)} = y_{(1)}^{(np)} - \frac{(y_{(1)}^{(np)}, a_2)}{\|a_2\|^2} a_2,
\]

\[
y_{(1)}^{(np)} - y_{(2)}^{(np)} = \frac{(y_{(1)}^{(np)}, a_2)}{\|a_2\|^2} a_2 \text{ weakly} \to \frac{(v_1, a_2)}{\|a_2\|^2} a_2.
\]

\[
\therefore y_{(2)}^{(np)} \text{ weakly} \to v_2 = v_1 - \frac{(v_1, a_2)}{\|a_2\|^2} a_2.
\]

(6) \[\|y_{(2)}^{(np)}\|^2 = \|y_{(1)}^{(np)}\|^2 - \|P_2y_{(1)}^{(np)}\|^2.\]

Also,

\[\|y\| = \|y_{(1)}^{(1)}\| > \|y_{(2)}^{(1)}\| > \|y_{(3)}^{(1)}\| > \|y_{(4)}^{(1)}\| > \ldots\]

Also

(7) \[\|y_{(1)}^{(np)}\| > \|y_{(2)}^{(np)}\| > \|y_{(3)}^{(np)}\| > \ldots > \|y_{(np+1)}^{(np)}\| > \]

\[> \|y_{(np+1)}^{(np+1)}\| > \|y_{(np+1)}^{(np+1)}\| > \ldots\]

\[
\therefore \{\|y_{(1)}^{(np)}\|\}\) is a monotonic decreasing sequence and bounded below and converges to \(V_1\) (say).

Also, \(\{\|y_{(1)}^{(np)}\|\}\) is a monotonic decreasing sequence and bounded below and converges to \(V_2\) (say).

From (7),

\[V_1 > V_2 > V_1.\]

\[\therefore V_1 = V_2.\]
From (6), we have \(\{ \| P_2 y^{(p)} \| \} \) is convergent and converges to zero.

\[
\therefore \{ P_2 y^{(p)} \} \text{ converges strongly to } \theta.
\]

\[
\lim_{p \to \infty} y^{(p)} = \lim_{p \to \infty} y^{(p)} - \lim_{p \to \infty} P_2 y^{(p)} \quad \text{(weak limit)}.
\]

\[
\therefore v_2 = v_1.
\]

Similarly, we can prove, \(v_{i+1} = v_i \).

\[
\therefore v_1 = v_2 = v_3 = \ldots = v_i = \ldots = v \quad \text{(say)}
\]

Now, \((v_1, a_1) = 0, \ (v_2, a_2) = 0, \ \ldots, \ (v_i, a_i) = 0 \) for all \(i \).

0r,

\[
(K^* v, e_i) = 0 \quad \text{for all } i.
\]

\[
\therefore K^* v = \theta.
\]

\[\therefore K^* \text{ is bounded and has an inverse } [a_{l_2} = l_2].\]

\[
\therefore v = \theta.
\]

Define,

\[
\omega_1 = \frac{y, Ke_1}{\| Ke_1 \|^2} e_1, \quad \omega_2 = \frac{y, Ke_2}{\| Ke_2 \|^2} e_2, \ldots
\]

(8)

\[
\omega_k = \frac{y_{(k-1), a_k}}{\| a_k \|^2} e_k, \ldots
\]

and

\[
\omega_1^{(i)} = \frac{y^{(i)}, Ke_1}{\| Ke_1 \|^2} e_1, \quad \omega_2^{(i)} = \frac{y^{(i)}, Ke_2}{\| Ke_2 \|^2} e_2, \ldots
\]

\[
\omega_k^{(i)} = \frac{y^{(i), (k-1)}, Ke_k}{\| Ke_k \|^2} e_k.
\]

Define,

\[
x_2^{(0)} = \omega_1 + \omega_2 + \ldots + \omega_k.
\]

(9)

\[
x_2^{(i)} = \omega_1^{(i)} + \omega_2^{(i)} + \ldots + \omega_k^{(i)}.
\]

Now,

\[
K x_2^{(0)} = K \omega_1 + K \omega_2 + \ldots + K \omega_k.
\]

\[
= y - y_k.
\]
\[\therefore Kx_k^{\infty} \xrightarrow{\text{weakly}} y - y^{(1)} \quad \text{as} \quad k \xrightarrow{} \infty. \]
\[Kx_k^{(i)} = K\omega_k^{(1)} + K\omega_k^{(2)} + \ldots + K\omega_k^{(i)} = \]
\[= y^{(1)} - y^{(1)}_{(k)} \xrightarrow{\text{weakly}} y^{(1)} - y^{(2)} \quad \text{as} \quad k \xrightarrow{} \infty. \]
\[\therefore K(x_k^{(0)} + x_k^{(1)} + x_k^{(2)} + \ldots + x_k^{(i)}) = \]
\[= (y - y_{(k)}) + (y^{(1)} - y^{(1)}_{(k)}) + \ldots + (y^{(i-1)} - y^{(i)}_{(k)}). \]
\[\quad \text{as} \quad k \xrightarrow{} \infty \quad \text{R.H.S.} \xrightarrow{\text{weakly}} y - y^{(i)}. \]
\[\quad \text{and as} \quad i \xrightarrow{} \infty \quad y^{(i)} \xrightarrow{\text{weakly}} 0. \]

(10) \[KX_{ik} = K(x_k^{(0)} + x_k^{(1)} + \ldots + x_k^{(i)}), \quad \text{where} \quad X_{ik} = \sum_{0}^{i} x_k^{(i)}. \]
\[\quad \text{R.H.S.} \xrightarrow{\text{weakly}} y \quad \text{as} \quad k \xrightarrow{} \infty \quad \text{and then} \quad i \xrightarrow{} \infty. \]

Hence, \(\lim_{i \to \infty} \lim_{k \to \infty} X_{ik} \) is the solution of the given equation \(Kx = y \).

Now, \(L_2 \)-space is isomorphic and isometric to \(l_2 \)-space. Hence, any linear equation in \(L_2 \)-space can be reduced to an infinite dimensional matrix equation in \(l_2 \) and hence can be solved by the above method.

Remark 1:

For the error estimation we have the following recurrent formula obtained from (3).

\[\|y_{(k+1)}\|^2 = \|y_{(k)}\|^2 - \frac{\|y_{(k)}, a_{k+1}\|^2}{\|a_{k+1}\|^2} \]

or,

\[\|y_{(k)}\|^2 - \|y_{(k+1)}\|^2 = \frac{\|y_{(k)}, a_{k+1}\|^2}{\|a_{k+1}\|^2}. \]

(11) \[\quad \text{We put an end to computations when the R.H.S. of (11) is sufficiently small and then we estimate the value of} \ y^{(i)}. \]
Proceeding in this manner, we estimate the value of $y^{(i)}$

Now \[y^{(i+1)} = y^{(i)} - \sum_{k=1}^{\infty} \alpha^{(i)}_k a_k, \]

where \[\alpha^{(i)}_k = \frac{y^{(i-1)}_k}{\|a_k\|^2}, \]

Also, \[\|y^{(i+1)}\| < \|y^{(i)}\|. \]

So, we put an end to computations when $\|y^{(i)}\|$ is sufficiently small.

In conclusion, I thank Mr. Parimalkanti Ghosh of Department of Applied Mathematics, Calcutta University for his kind guidance in the preparation of this paper. I also thank Prof. Dr. S. K. Chakrabasty, Head of the Department of Applied Mathematics, Calcutta University for the facilities he gave me for work in the department.

REFERENCES