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A NOTE ON THE DANIELL INTEGRAL

Nota (*) di IAN RICHARDS (a. Ca1nbridge, AlaS8.)

INTRODUCTION

The object of this paper is to show that by making certain
simple modifications in the classical formulation of the Daniell
theory of integration it is possible to derive the theorems of
Fubini, Helly-Bray, and others from the existence and uni-

queness theorems which are the core of the Daniell theory.
The Daniell theory of integration proves the existence and

uniqueness of an extension of an « integral » defined on a

« lattice » of functions to a « complete integral » defined on a

larger « lattice ». (A lattice L of functions is a vector space

satisfying the additional condition that feL implies | f 
We show here that it is possible to prove the uniqueness

(but not the existence) of such an extension under slightly
weaker conditions, and that this enables us to derive Fubini’s
theorem as a corollary of our uniqueness theorem. The trick
in this and the other applications is to consider vector spaces
of functions instead of lattices whenever possibile; since inte-

gration is a linear process, the set of functions for which some
statement concerning integration is true is usually a vector

(*) Pervenuta in Redazione il 9 settembre 1959.

Indirizzo dell’A.: Department of Mathematics, Harvard Univer-

sity, Cambridge, Mass. (U. S. A.).
(**) (This paper was prepared while the author was a National Scien-

ce Foundation fellow).
The author wishes to extend his appreciation to Dr. Gian-Carlo

Rota for his advice and encouragement.
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space, but it is often not so clear that it is a lattice. Therefore

we try to formulate our basic abstract theorems in terms of
vector spaces instead of lattices in order to facilitate their

application to the proof of classical identities.

BASIC DEFINITIONS

DEFINITION 1: An improper integral I on a real vector

space V of real valued functions is a positive linear functional
defined on V such that means

that the sequence of functions (fn) converges pointwise to

the function f, and for all n. Similarly for f).

DEFINITION 2: An improper integral I on a vector space
V is complete if ~; only if f n E lim l(fft)  ~ _ ~ f E V.
(Then by the definition above, 

DEFINITION 3: A lattices L of functions is a real vector

space of real valued functions such that f E L L. (Then
f E L, g E L =~ max ( f, g) E L, min g) E L).

DEFINITION 4: An integral is an improper integral which
is defined on a lattice of functions.

DEFINITION 5: The comptetion L* of a lattice L is the

intersection of all sets L’ of real valued functions such that

’ 

EXAMPLES

EXAMPLE 1: Let L be the lattice of all continuous functions

with compact support on (-00, oo), and let I

for f E L.
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EXAMPLE 2: Let V be the vector space of continuous

functions on (- oc, oo) such that

exists. 
v -w

To show that these examples satisfy defintion 1 we use:

LEMMA 1 (Dini’s theorem): If is a sequence of con-

tinuous functions with compact support, and f n j 0, then
- 0 uniformly in JJ.

FUNDAMENTAL THEOREMS

PROPOSITION 1: If L is a lattice, then its completion L*
is a lattice which is closed under pointwise convergence.

Proof: Let Jf be the set of functions f E L~’ such that

(f + g) E L* for all g E L. Then L c M, and M is closed under
monotone increasing and decreasing convergence. Hence M = L*.

Now let M’ be the set of all functions f E L*’ such that

( f -~- g) E L*’, a f E L*’, ~ I fiE L* for all gEL* and all real a.

By the above Lc3f’, and thus as before ?!~’ = L*. Hence L*

is a lattice.

..., as "  ",

9k sup k), and gk 1 f . Hence f E L*. q. e. d.

THEOREM 1: Let L be a lattice, and let I be a complete
improper integral on a vector space V w here Lc:VcL*. Then

f E L*, f &#x3E; 0 =~ either f E V or sup (I (g) ~ g E V, 0  ~r  f) = co.

Proof of theorem: We first show that f E L*’, g E L =~
max[min ( f, g), 0] E V. To do this we simply observe that the
set of functions f for which the above holds contains L and,
by definiton 2, is closed under monotone increasing and de-
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creasing convergence. We now use the follo"-ing :

LEMMA 2: For any 1 E L * there exists a sequence } such
that gn E 0, gn t, lim fIn. (lim gn may not be

finite).

Proof of lemma: If fn f, f n ~ lim gnk , ~. and gnk E L, then
k --. -L 

’

... , gnn) E L, and Hence the set of

functions for which the lemma holds satisfies the conditions
of definition 5. q.e.d.

To prove the theorem, for in L* we choose a

sequence so that !In E L, Un &#x3E; 0, and f  lim g,, . Then,
by the above, if !l1I)" then In E V.’ and hence

by definition 2 either f E ~’ or lim = 00. q.e.d.

TIIEOREM 2 (Uniqueness theorem): Let L be a lattice, and
let I and I’ be complete improper integrals on vector space
V and I’’ respectively where and L c V’ c.L*. Suppose
that I( f ) = I’(f) for all f E L. Then f E 11, I &#x3E; 0 =~ f E T’’ and
I (f) -- I’ (f).

Proof: Let V" be the vector space of f unctions f E V n 1’"
for Then L c V"., and I and I’ define a

complete improper integral on V". Furthurmore, sup E T’",
0  g ~ f)  I( f), Thus by theorem 1, f E T7. f &#x3E; 0 =~ f E T’".
q.e.d.

THEOREM 3 (Existence theorem): An integral I on a lattice
L can be extended to a complete integral 1* on a lattice L1.

(In other words, and I *’ ( f ~ I ( f 1 for all f E L).

Proof: Since this construction is classical we only outline
the main steps; for more detail see the reference (1) by Loomis

given below.

For any f E L’~, we shall say that a sequence (gn) is an

t upper covering ~ of f if ~ E L, and f Similarly
we define lower coverings. (By lemma 2, every f E L* has upper
and lower coverings).
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Now we let for all upper coverings
} of f . Similarly we define I-(f).
lie let L1 be the set of functions f E L~ such that

14- (}) == I-(f) % ±o~, and let 1* (f) == I+(f) for all f E Ll .
To show that I* is a complete integral on L" it is sufficient

to prove (a) (,g) ((a) - (d) show that I* is linear;
(e) shows that I* is positive; ( f ) shows that Ll is a lattice;
given that I* is linear, the continuity and completeness con-
ditions of definitions 1 &#x26; 2 follow from (a) and (,g). Since

( a ) follows from the continuity condition of definition 1.

( g) is proved by the standard trick of covering each f,, by
an upper covering } so that lim It (fn) + E/2n.’ 

k --.

The other statements are easily verified.

APPLICATIONS

A) (Lebesgue Dominated Convergence Theorem): If I is a
complete integral on a lattice L, then in E L, ,g E L, ~ 
f = lim fn =&#x3E; f E L and I(f) = lim I(fn).

Proof : Let gk = sup &#x3E; k); then max ( f k , ... , f n) 
and Hence f E L, and lim sup  

Similarly q.e.d.

DEFINITION 6 : Let S be a space with a complete integral I
on a lattice L of functions whose domain of definiton is S.

For any subset E of 8 and any real function f (x) defined
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on S, we define the function by : for all

and f ~(x) = 0 for 

We say a subset E of S is measurable if for any function

f &#x3E; 0 on S such that min ( f, g) E L~’ for all g E L~’ we have
f E E L’~. (Then, if E is measurable, fE E L*).
A measurable is a set if 

A condition that holds on S except on a null set
is said to hold (almost everywhere).

Note: It is clear that the class of measurable subsets of

S is a a-ring, and for any f &#x3E; 0 such that min (f, g) E L*
for all g E L* the set function when f E E L,
yrc(E) when fE E (L* - L), is a countably additive measure
on this a-ring. (In most interesting cases, the function = 1

satisfies the condition min ( f, g) E L* for all g E L*).

PROPOSITION 2 : If fn E L* and f n t, then the set E -

is measurable. If f n is integrable for

each n, and lim  00, then E is a null set.

COROLLARY: If f E L*, f &#x3E; 0, then the eet E - (~ ~ &#x3E; 0)
is measurable. If f is integrable, then ~ 0 if &#x26; only if

E is a null set. (To prove this from the above we merely con
sider the sequence of functions 

Proof: Take any f &#x3E; 0 such that g E L* =&#x3E; min (f, g) E L*.
Then and lim lim 

u-.oo

Hence f E E L’~. If for all n, then for

all n and q.e.d.

B) (Fubini’s theorem): Let S and 2’ be spaces with lattices
Ls and L, of functions defined on S and ~’ respectively.

Let 1, and It be complete integrals defined on L, and Lt
respectively.

Suppose that L is a lattice of functions f (8, t) defined on

8XT such that the  double integrals » t))] and

t))] are defined and equal for all f E L.
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We let Vst be the vector space of functions f (s, t) E L*
such that t) E Lt a.e. (in s) and It( f (s, ~))6L,; for f E Y8t
we let t))]. Similarly w e define Vt,
and Its .

Then and =7~).

Proof: Clearly I,t and Its define an integral on L. By pro-
position 2, 1st and Its are complete improper integrals on Vst
and Vts. The desired result now follows from theorem 2.

Note: V8t and Vts are not lattices. Furthermore, there may
exist functions f in which do not belong to V ts as well as

f in both V8t and Vts for which (Of course in

these cases we do not have f &#x3E; 0).

APPLICATIONS TO FUNCTIONS OF A REAL VARIABLE

In this section we shall use the following notations:

(By « function » we shall mean a function of a real variable).
C denotes the lattice of all continuous functions with

compact support (i.e. vanishing outside of compact sets).
S denotes the lattice of «step functions - i.e. functions

which are constant on the interiors of a finite disjoint set

of closed intervals and zero elsewhere.

S’ denotes the lattice of 4 sawtooth functions &#x3E;&#x3E; i.e. con-

tinuous functions which are linear on each of a finite set of

closed intervals and zero elsewhere.

PROPOSITION 3 (Riesz Representation Theorem): Let V be
a vector space of functions with S’ eVe C. Then any positive
linear functional 7 on V is an improper integral and can be
extended to a complete integral on a lattice Ll containing C.

Proof : That I is an improper integral on V follows at

once from lemma 1.

Let I’ be the restriction of I to S’. By theorem 3, 1’ can

be extended to a complete integral I~’ on a lattice L1.
For any f E C there is a sequence gn E S’ such that g. t f.
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Hence ( for all f E V. 

Note: Proposition 3 gives a very simple construction of

the Riemann integral and the Riemann-Stieltjes integral. First
we can define the Riemann integral for functions in S’ ; The
extension of proposition 3 gives us the Lebesgue integral. The
Riemann-Stielties integral of functions can now be defi-

ned by the usual formula for integration by parts, since this
replaces the Stieltjes integral by a Riemann integral. It is

easily shown from the dominated convergence theorem (A)
above that these definitions give the right result when the

domain of integrable functions is extended to include the

« step functions &#x3E;&#x3E;.

C) (Integration by Parts): Let f (x) and be fun-

ctions in Ll and let
J. b

Then

Proof : An elementary calculation shows that this holds

;hen f and g are 4: step functions ~. But if g is held fixed,
then the expressions on both sides of the above identity define
complete improper integrals over the vector spaces of functions
f for which they exist. It is easily seen that the completions
S* and C* of S and C are equal; then, by theorem 2, the

identity holds for all f E Ll, 
The same argument extends the proof to the case when

both f and g are in L1.

D) If F(x) is a monotone increasing function, &#x3E; 0 is

L’ with respect to and then the

two integrals,

are identical,
The proof is the same as that for (C) above.

E) (Belly-Bray Convergence Theorem): Let~ be

a uniformly bounded sequence of monotone increasing functions
on [ a, b ] which converge to a monotone increasing function

F(x) at all points where F(x) is continuous. (We assume
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that is continuous at .x - a, ,~ ~ b). Let be any con-

tinuous function on [a, b ] . Then

Proof : Integrating by parts and using the Lebesgue domi-
nated convergence theorem (A), we see that, since the discon-
tinuities of are countable, the Helly-Bray theorem holds
for all g(:r) in S’. (The same argument could be used for

any continuous of bounded variation).

Now let V be the vector space of all functions in C

such that exists. Then by proposition

:3, 1 can be extended, to a complete integral on a lattice L’

containing C. But we have seen that
1.

Hence by theorem I is equal to I(f)

for all f E V. 
Now by the Rolzallo-’Veierstras theorem, there are subse-

quences { FnK(x) } such thnt exists. By what

we have show n, this limit always equals

A COUNTEREXAMPLE

We ask whether an improper integral can always be exten-
ded to a complete improper integral. The answer is « no &#x3E;&#x3E;,

and the uniqueness theorem (2) does not hold unless we con-
sider complete improper integrals.

EXAMPLE ~3: Let V be the vector space of continuous

functions f (x) on the open interval (0, 1) such that

Then I is an improper integral on V. (Note that f E V,
/&#x3E;0=&#x3E;7(~)==:0). But there is a sequence such that
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f n E and =1 for all ~z. Therefore I cannot be

extended to a complete improper integral.
Furthurmore, if L is the lattice of functions f in V such

that I ( f ) = 0, then VcL*; but the restriction of I to L has
another extension to an improper integral on V -namely 1(1) - 0
for all f E V.
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