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SUI GRUPPI FINITI SOMMA DEI

LORO SOTTOGRUPPI DI SYLOW

Nota (*) di GIOVANNI ZACHER (a Padova)

Nella presente Nota riprendo lo studio degl i a-gruppi. cioè
dei gruppi finiti che risultano somma (nel senso della teoria

degli insiemi) dei loro sottogruppi di Sylow [6] il. risul-

tato centrale dimostrerò il seguente teorema :

Sia G t’n a-gruppo, p il divisore primo 
p~ la potenza. di. p che d,itJid,e rordin-e di G.

Attora G è certamente ordine divisibile

al massimo per dw distinti per lo mento quand
contiene un sottogruppo normale proprio non identico claE-

abbia un ordine diverso da, p4.... , ’~ 
Provo inoltre con l1n esempio l’esistenza di um a-gruppo

non risolubile che contiene un sottogruppo normale proprio
non identico, ed espongo qualche mlterioi·e proprietà li cui

gode un a-gruppo.

1. - Per quant riguarda le notazioni usate, ricordo che

lettere maiuscole stampatello. quali G, H, ~, T, ... indicano

gruppi; 8p indica un sottogruppo di Sylow d’ordine potenza
di p ; -, 1 è il sottogruppo identico oppure l’elemento identico:

( G) indica l’ordine di G, il norinalizzante eli i .~I in M.

La notazione ~I C U significa che sottogruppo proprio
di G.

(*) Pervenuta iu Redazione il 1° agosto, 
Indirizzo Seminario matematico. Università, Padova.

~). I numeri tra parentesi quadre ~i iferiscono alla bibliografia
in fondo a questo mio lavoro.
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Premettiaino i seguenti due lemmi.

LEMMA I: Il gouppo G è risotubite se è un a-gruppo e -ze

possiede p-gruppi normali, p essendo un. f attore primo di

(G) diverso da quello 
Se fra quei sottogruppi normali ve ne fosse uno di Sylow.

il lemma sarebbe già dimostrato nella mia Nota (f ], senza

nessuna condizione ulteriore per il numero p. Rimane quindi
da esaminare il caso che G contenga un p-gruppo normale ?1T,
che non sia di p essenrlo ora diverso appunto dal mi-
nimo divisore primo di G.

Per la dimostrazione usiamo induzione sull’ordine di G.

I sottogruppi di Sylow 8,, di G con q ~ p contengono cia-
xcuno un solo sottogruppo ciclico d’ordine q in virtù delle

ipotesi fatte e dei risultati esposti in [6]; perciò G è q-nor-
inale nel senso di Griin 2) per q + p. Fissiamo un sottogruppo
~li Sylow Sq, con q minimo divisore primo di (G) di guisa che
q  p.

Indicato con Z il centro di consideriamo il gruppo
MG (Z). Poichè Z è ciclico, risulta MG (Z) = Sq, perchè, se

fosse conterrebbe un sottogruppo d’ordine
rlp, che sarehbe ciclico in quanto i suoi sottogruppi di Sylow
degli ordini p e q sarebbero normali. Visto che = Sq,-
per- un teorerna di Griin "), G contiene un sottogruppo normale
M d’indice q in G ; e risulta evidentemente M D N. Ora se q
divide (M), applicando l’ipotesi induttiva, M è risolubile e

quindi anche G è tale.
Sia invece q primo con (M). Supponiamo che esista un

divisore primo q’ di (G) diverso da p e q ; poichè e poi-
ché M è normale in G, si sicché risulta
anche 9Le(~) = ~).

Ma allora G contiene il sottogruppo risolubile il

che implica 5) che sia q’ ~ p, contro l’ipotegi.

2) Vedasi [7] ] pag. 141.
3) Vedasi [7] pag. 141.
4) Vedasi [6] pag. 173.
~) Vedasi [6] ] pag. 172.
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LEMMA II: Il gruppo G è risolubilc se è un a-gruppo e se

possiede almeno un sottogruppo Al che abbia corrt.e

indice una potenza di 1f Il numero primo.
Usiamo induzione sull’ordine di G. Poichè G/N è un p-grup-

po, in virtù dell’ipotesi induttiva è lecito supporre sen’altro

che N abbia indice primo, p, in G. Sia 8, un sottogruppo di
Sylow di G, con q ~ p. Allora Sq è un sottogruppo di Sylow
di N e risulta G= (Sq). Il gruppo è risolubile

e quindi l’ordine è con numero

primo con ~).

Distinguiamo due casi:
I° caso : ( ~) è primo con p.

11° caso: (N) è divisibile per p.
Studiamo anzitutto il I° caso. Dimostriamo che N è un

sottogruppo di Sylow di G. Ragioniamo per assurdo: allo

scopo basterà ridurre all’assurdo l’ipotesi che (?1~ sia divisi-

bile per almeno due fattori primi distinti. Poichè l’ordine di

MG (Sq) è pqB ed N ha ordine primo col suo indice p in G.
per ogni q # p risulta Sia q il massimo divi-

sore primo di (N) e supponiamo, se possibile, che l’interse-

zione D di due certi coniugati S’q ed S"q di ~Sq sia diversa

la 1 e scegliamo anzi D in guisa che non sia contenuto pro-
priamente in nessun’altra intersezione dello stesso tipo. Il

gruppo è un gruppo d’ordine composto 7) ed è riso-

lubile pel lemma I; perciò è del tipo CZN (D) = COD

3Za allora Sq è un sottogruppo normale di 8),
il che è impossibile 1). Abbiamo dunque D = 1 ed 91N(8j) = 8q.
Per un teorema di Frobeniusg) possiamo concludere che

N = MS- con M sottogruppo normale di N ed ( M) primo col-
l’indice di M in N. Per l’ipotesi d’induzione, N e quindi G
risultano pertanto risolubili. Ma allora 1°) N è un sottogruppo
di Sylow di G.

g) Vedasi [6] pag. 172.
7) Vedasi [7] pag. 105.
8) Vedasi [6] pag. 173.
9) Vedasi [3] J pag. 202.
10) vedasi [6] pag. 172.
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Passiamo allo studio del caso. Sarà = p~
con 0 &#x3E; 1. Il gruppo è d’ordine ed 81’ contiene
un solo sottogruppo d’ordine p, per cui G è p-normale. Se p
è il più piccolo divisore primo di (G), detto Z il centro di

nn fissato sottogruppo di Sylow Sp e tenuto conto della

struttura di Sp, 5 si trova necessariamente (Z) = Sp ; sic-

ohè per un già citato teorema di Griin 11), G contiene un sot-
togruppo normale ~’ d’indice almeno ps con è ? 2. Ma allora
M C N C G e dall’ipotesi induttiva segue che N e quindi G
~ono risolubili.

Possiamo pertanto supporre p diverso dal minimo divi-

sore primo di (G). Allora ciclico. Se MG (8,,) = 9

G per un teorema di Buruside 12) ha un sottogruppo nor-

male M d’indice p ~ in G ; e si conclude come sopra. Per

completare la dimostrazione del lemma, proveremo che è as-

surdo supporre ~~ o ( Sp) &#x3E; ~Sr, . Da segue 1a)
che del tipo Sps, con 8p, Sq entrambi ciclici, per-
chè tale è il sottogruppo normale Sp . Poichè il gruppo (Sp)
non può essere ciclico, risulta q  p ed il derivato di (rSp)
coincide con Sp 14). Ma il gruppo T un sotto-

gruppo normale di S,,8q che contiene 841 e non contiene Sp ;
d’altra parte abeliano ; perciò risulta 

cosa impossibile.

2. - È ora quasi immediata la dimostrazione del teorema,
enunciato nell’introduzione.

Infatti se G possiede un sottogruppo di Sylow normale,
il teorema è vero per quanto dimostrato in [6]. Se G possiede
11n p-gruppo normale con p diverso dal minimo divisore pri-
mo di (O, il teorema segue dal lemma I e da [6]. Se G pos-
Riede un sottogruppo normale N che non sia un p-gruppo e
che abbia divisibile per p il proprio indice in G, il gruppo

pel lemma II, risulta risolubile: sicchè 15) (/Spy) è divi-

11) Vedasi [7] pag. 141.

12) Vedasi [ 7 ] pag. 139.
. ~a) Vedasi [6] pag. 173.

14) Vedasi [7] pag. 145.
Vedasi [ 6 ] pag. 172.



271

sibile per esattamente due fattori primi distinti. Ne segue
che l’ordine di G è pure divisibile solo per due fattori primi
distinti. Se G possiede un sottogruppo normale N d’ordine

p o p2, con p minimo divisore primo di ( G), il gruppo G è

necessariamente un p-gruppo, se p + 2, perchè non può pos-
sedere automorfismi regolari 2’ ) d’ordine maggiore di p ; se in-

vece p = 2, il gruppo G/N e senz’altro un a-gruppo risolubile.
Infine se N ha indice p in SI" con p sempre minimo divisore
primo di (G), i sottogruppi di Sylow 8q di G, con q + p, sono
ciclici, per cui l’a-grnppo ha tutti i suoi sottogruppi di
Sylow ciclici e risulta quindi risolubile. E per la [6] si con-

clude nel modo desiderato.

3. - Diamo qui un esempio di un a-gruppo G non risolu-
bile che contiene un sottogruppo normale proprio non iden-

tico ; in base al teorema del numero precedente ?1T dovrà es-

~ere un p-gruppo con p minimo divisore primo di (G).
Indichiamo con N un gruppo abeliano elementare d’or-

dine 24. Il gruppo A degli automorfismi di N risulta iso-

Tnarfo al gruppo l neare GL(4,2)16). Sono note 17) le relazioni

Indicati con ... a8 gli otto elementi su cui operano
le sostituzioni di consideriamo un elemento di periodo 3
di Non è restrittivo supporre che esso sia l’elemento

oppure Posto 

e t = un computo materiale prova 
== e 1.

Per cui i due elementi s, t soddisfano alle relazioni s$ _

1.) Per le notazioni vedasi (4].
17) Vedasi [ 4 ] pag. 9.

18) A8 indica il gruppo alterno su 8 oggetti.
) (ai , 9 a2 .... a..) indica una sostituzione ciclica sugli n oggetti

t3&#x26;, 0:,..., a".
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Ciò basta per concludere 20) che il sottogruppo { s, t } di 
è un gruppo isomorfo al gruppo alterno su 5 oggetti. Pos-

siamo pertanto concludere che ogni elemento di periodo 3 di

~ 8 è contenuto in un sottogruppo isomorfo al gruppo alterno
su 5 oggetti. Premesso ciò, sia a un autoinorfismo regolare 21)
di N di periodo 3. (~ facile convincersi dell’esistenza di un
tale automorfismo). Per quanto precede esiste un sottogruppo
H di A che contiene a ed è isomorfo al gruppo alterno su 5

oggetti. Dico che ogni elemento di H di periodo primo con 2
è un automorfismo regolare di N. Inf atti, se ~ è un elemento
di H di periodo 3, esso è un automorfismo regolare in quanto
coniugato di a o a2, ambedue automorfismi regolari contenuti
in l~. Se invece P è un elemento di periodo 5, esso è un auto-
morfismo regolare perchè, come vedremo, ogni automorfismo
di periodo 5 di ~T è necessariamente un automorfismo rego-
lare. Nel caso contrario, infatti, sia n un elemento non ideu-
tico di N lasciato fermo da ~. Allora il sottogruppo sa-

rebbe lasciato fermo da tutti gli elementi di { ~ }, e quindi, pel
teorema di Maschke 22) risulterebbe N Nl X { ~ } con N~ tra-
sformato in sè regolaruiente da tutti gli elementi di { ~ }. Ma
ciò è assurdo perchè un sottogruppo proprio cli 1V non può
avere automorfismi di periodo 5. Consideriamo ora l’olomorfo

G di N rispetto ad H. Proviamo che G ci fornisce l’esempio
cercato. Un elemento g di G si può porre sotto la forma

g = ( Z )B, con a elemento di H, y elemento fissato di N ed x
elemento corrente in N. Dalla relazione di immediata verifica

oppure Se poi a è diverso da 1 ed ha periodo n primo
con 2, da an = 1 segue, tenuto presente che N è abeliano,

Ma a ora è un automorfismo regolare; indi l’endomorfismo
a 1 di ~V è un autoinorfismo infatti da = 

30 ) Vedasi ad es. ( 1 ] pag. 176.

Zl) Un automorfismo a di (~ dicesi regolare se nessun elemento di

j a j è diverso da 1 lascia fermo un elemento di (~ che non sia 1.

22) Vedasi [5] ] pag. 182.
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segue (x 2lxl)" = dunque è x2 lxl = 1~ ossia X., = X, y

perché a non lascia elementi fissi all’infuori di t

?!ta allora + + ... + a + 1 = 0 ; da cui gn _

==()==( ) = 1. Quindi G è un of-gruppo, contiene un sot-

togruppo normale, ma non è risolubile, essendo 
G 

isomorfo

al gruppo alterno su 5 soggetti.

4. In questo numero esponiamo qualche considerazione

complementare sugli a-gruppi.
19 facile vedere che in un a-gruppo G, ogni serie principale

di composizione di G contiene il sottogruppo di Fitting F(G)
di Q~ 23). Dimostriamo che :

~Se un a-gruppo sottogruppo di Fitting
complemento in G ; vate u dire, u~ sot-

togruppo C di G per cui Q~ = ~’ ((~) U C,
F(G) n C=1.

Se Q~ è un p-gruppo, evid. C = l. Supponiamo dunque G
diverso da un p-gruppo. Sia No = 1 C Ni C ... C Ni =
= F (G) C ... C G una serie principale di composizioni di G.

Poichè G è risolubile è i &#x3E; 1. In G y il gruppo F(G) è un
Ni-1 

~pp Nim

p-gruppo abeliano normale minimo ; il gruppo è un

p-gruppo abeliano ed il suo ordine è primo con ( G)) ; sic-

chè si presenta come un gruppo con l’ordine divisibile

per due fattori primi distinti a sottogruppi di Sylow abeliani
elementari uno dei quali è e gli altri sono isomo rfi ad

20132013~ Detto 8 uno di uesti ultimi risulta 
( )

2~ ) Dicesi sottogruppo di Fitting di G il sottogruppo normale spe-
ciale massimo di G. Ebbene supposto F(G) =) 1, se N è un sottogruppo
normale minimo di G, è F ( G ) Y. Allora, se G ha un solo sotto-
gruppo normale minimo altrimenti, partendo da

N ed F si conclude come si desidera mediante

induzione rispetto all’ordine di G.
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il gruppo è un p-gruppo abeliano normale ed

è un gruppo d’ordine primo con Inoltre l’unio-

è un sottogruppo normale di

L’unico sottogruppo normale di contenuto propriamente

è il sottogruppo identico mentre l’unione

non è normale in Allora in

virtù di un teorema di Higman 2.), il gruppo ha ns com-

plemento sicchè si ha

Pertanto se = 1, il teorema risulta provato.
Sia dunque 1. Da C f 1 = N~-1, segue 

~ N~1. Proviamo che h’ ( C’) = N~* . Sia, per assurdo,,
Il gruppo U è normale in G, ed

è un p-gruppo, sicchè 

FfO abeliano F(C)/Nt+1 F(0 CPoichè abeliano. normale in 
--2013

è quindi tale assurda, perchè normaleq &#x3E; &#x3E; pe 
’-1

minimo in h . Usando induzione sull’ordine di G, possiamo
1-1 

~ Po

supporre che abbia un complemento C’ in C, di guisa

Resta da provare che Infatti posto H =
segue essendo

ed Ma da segue
n P (e) = 1. e.v.d.

È facile assegnare la struttura di C. Si è già detto che
se un p-gruppo C = 1. Altrimenti, poichè G é per ipo-

24) Vedasi [2) pag. 455.
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tesi risolubile, l’ordine di G è divisibile solo per due fattori
primi distinti: ( (~) = Sia p il divisore primo tii (F(G».
Se p &#x3E; q risulta 2&#x26;) = Sp ; e quindi 0 = ~con S41 ci-

clico o generalizzato dei quaternioni. Se p  q, i sottogruppi
di Sylow di (~ d’ordine q sono ciclici. In tal caso, se

F ( Q~) = Sp , risulta 0=841; se allora 

con 0  è  B. Poichè ora C contiene un q-gruppo normale in
C, il suo sottogruppo Sq è normale 26) in C ; dunque i sotto-

gruppi di Sylow d’ordine p s sono cielici. cioè C è un gruppo
d’ordine psqr a sottogruppi di Sylow ciclici a centro identico.
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