Un critère de choix de la dimension dans la méthode SIR II
Revue de Statistique Appliquée, Volume 47 (1999) no. 4, p. 33-46
@article{RSA_1999__47_4_33_0,
     author = {Ferr\'e, L. and Yao, A. F.},
     title = {Un crit\`ere de choix de la dimension dans la m\'ethode SIR II},
     journal = {Revue de Statistique Appliqu\'ee},
     publisher = {Soci\'et\'e fran\c caise de statistique},
     volume = {47},
     number = {4},
     year = {1999},
     pages = {33-46},
     language = {fr},
     url = {http://www.numdam.org/item/RSA_1999__47_4_33_0}
}
Ferré, L.; Yao, A. F. Un critère de choix de la dimension dans la méthode SIR II. Revue de Statistique Appliquée, Volume 47 (1999) no. 4, pp. 33-46. http://www.numdam.org/item/RSA_1999__47_4_33_0/

[1] Brieman L. & Friedman J. (1985), « Estimating Optimal Transformations for Multiple Regression and Correlation », Journal of the American Statistical Association, 80, 580-597. | MR 803258 | Zbl 0594.62044

[2] Cook R.D. & Weisberg S. (1991), Comment on «Sliced Inverse Regression for Dimension Reduction», K.C. Li, Journal of the American Statistical Association, 86, 328-332. | MR 1137117

[3] Ferré L. (1997), «Dimension Choice for Sliced Inverse Regression Based on Ranks», Student, 2, 95-108. | MR 1408776

[4] Ferré L. (1998), «Determining the Dimension in Sliced Inverse Regression and Related Methods», Journal of the American Statistical Association, 93, 132-140. | MR 1614604 | Zbl 0908.62049

[5] Friedman J. & Stuetzle W. (1981), « Projection Pursuit Regression », Journal of the American Statistical Association, 76, 817- 823. | MR 650892

[6] Hall P. & Li K.C. (1993), « On Almost Linearity of Low Dimensional Projection from High Dimensional Data», The Annals of Statistics, 21, 867- 889. | MR 1232523 | Zbl 0782.62065

[7] Härdle W. & Stoker T.M. (1989), «Investigating Smooth Multiple Regression by the Method of Average Derivatives », Journal of the American Statistical Association, 84, 986-995. | MR 1134488 | Zbl 0703.62052

[8] Hastie T. & Tibshirani R. (1986), «General Additive Model», Statistical Science, 1, 297-318. | MR 858512 | Zbl 0645.62068

[9] Hsing T. & Carroll R.J. (1992), «An Asymptotic Theory for Sliced Inverse Regression », The Annals of Statistics, 20, 2, 1040-1061. | MR 1165605 | Zbl 0821.62019

[10] Kötter T. (1996), «An Asymptotic Result for Sliced Inverse Regression», Computational Statistics, 11, 113- 136. | MR 1394544 | Zbl 0933.62031

[11] Li K.C. (1991), «Sliced Inverse Regression for Dimension Reduction» (with comments, Journal of the American Statistical Association, 86, 316-327. | MR 1137117 | Zbl 0742.62044

[12] Li K.C. (1992), «On Principal Hessian Directions for Data Visualisation and Dimension Reduction : another application of Stein's lemma», Journal of the American Statistical Association, 87, 1025 -1039. | MR 1209564 | Zbl 0765.62003

[13] Magnus J.R. & Neudecker H. (1987), Matrix differential calculus with applications in statistics and econometrics, J. Wiley, 1987. | MR 940471 | Zbl 0651.15001

[14] Schott J.R. (1994), «Determing the Dimentionality in Sliced Inverse Regression», Journal of the American Statistical Association,89, 141-148. | MR 1266291 | Zbl 0791.62069

[15] Zuroff D.C. (1994), «Depressive Personality Styles and Adult Attachment Style», Journal of Personality Assesment, 63, 453-472. | MR 1292161