Sur l'estimation séquentielle d'un quantile d'une courbe dose-réponse
Revue de Statistique Appliquée, Volume 42 (1994) no. 2, p. 43-56
@article{RSA_1994__42_2_43_0,
     author = {S\'em\'enou, M. and Meste, M.},
     title = {Sur l'estimation s\'equentielle d'un quantile d'une courbe dose-r\'eponse},
     journal = {Revue de Statistique Appliqu\'ee},
     publisher = {Soci\'et\'e de Statistique de France},
     volume = {42},
     number = {2},
     year = {1994},
     pages = {43-56},
     language = {fr},
     url = {http://www.numdam.org/item/RSA_1994__42_2_43_0}
}
Séménou, M.; Meste, M. Sur l'estimation séquentielle d'un quantile d'une courbe dose-réponse. Revue de Statistique Appliquée, Volume 42 (1994) no. 2, pp. 43-56. http://www.numdam.org/item/RSA_1994__42_2_43_0/

Abdelbasit K.M., Plackett R.L. (1983). Experimental design for binary data. J. Amer. Statist. Assoc., vol. 68, pp. 90-98 | MR 696852 | Zbl 0501.62071

Atkinson A.C., Ponce De Leon A.C. (1991). Optimal experimental design for discrimating between two rival models in the presence of prior information. Biometrika, vol. 78, pp. 601-608. | MR 1130928 | Zbl 0741.62073

Brownlee K.A., Hodges J.L., Rosenblatt M. (1953). The up-and-down method with small samples. J. Amer. Statist. Assoc., vol. 48, pp. 262-277. | MR 55644 | Zbl 0050.36002

Chaloner K., Larntz K. (1989). Optimal bayesian design applied to logistic regression. J. Stat. Plan. Inf., vol. 21, pp. 191-208. | MR 985457 | Zbl 0666.62073

Chernoff H. (1953). Locally optimal designs for estimating parameters. Ann. Math. Statist., vol. 24, pp. 586-602. | MR 58932 | Zbl 0053.10504

Choi S.C. (1971). An investigation of Wetherill's method of estimation for the up-and-down experiment. Biometrics, vol. 27, pp. 961- 970.

Choi S.C. (1990). Interval estimation of the LD50 based on an up-and-down experiment. Biometrics, vol. 46, pp. 485-492. | Zbl 0715.62256

Dixon W.J., Mood A.M. (1948). A method for obtaining and analyzing sensitivity data. J. Amer. Statist. Assoc., vol. 60, pp. 967-978. | MR 191063

Mac Leish D.L., Tosh D. (1990). Sequential designs in bioassay. Biometrics, vol. 46, pp. 103-116. | MR 1059107 | Zbl 0715.62160

Rash D., Herrendorfer G. (1986). Experimental design, Sample size determination and block designs. D. Reidel publishing company. | MR 849494

Silvey S.D. (1978). Optimal design measures with singular information matrices. Biometrika, vol. 65, pp. 553-559. | MR 521823 | Zbl 0391.62054

Silvey S.D. (1980). Optimal design. Chapman and Hall, London. | MR 606742 | Zbl 0468.62070

Tsutakawa R.K. (1972). Design of experiment bioassay. J. Amer. Statist. Assoc., vol. 67, n 339, pp. 584- 590. | Zbl 0251.62051

Wetherill G.B. (1963). Sequential estimation of quantal response curve. J. R. Statist. Soc., vol. 25, pp. 1-48. | Zbl 0203.21505

Wetherill G.B. (1966). Sequential methods in statistics. M.S. Bartlett F.R.S. | MR 216675 | Zbl 0138.12301

Whittle P. (1973). Some general points in the theory of experimental design. J. R. Statist. Soc., vol. 35, pp. 123-130. | MR 356388 | Zbl 0282.62065

Wynn H.P. (1970). The sequential generation of D-optimum experimental designs. Ann. Math. Statist., vol. 41, pp. 1655-1664. | MR 267704 | Zbl 0224.62038

Yeh C.M. (1986). Conditions for universal optimality of block designs. Biometrika, vol. 73, pp. 701-706. | MR 897862 | Zbl 0633.62073

Zacks S. (1977). Problems and approaches in designs of experiments for estimation and testing in non linear models. in (ed. Krishnaiah, P.R.), Multivariate analysis IV North-Holland, Amsterdam, pp. 209-223. | MR 455232 | Zbl 0368.62052