Performances d'un test d'homogénéité contre une hypothèse de mélange gaussien
Revue de Statistique Appliquée, Volume 42 (1994) no. 1, p. 63-79
@article{RSA_1994__42_1_63_0,
     author = {Berda\"\i , A. and Garel, B.},
     title = {Performances d'un test d'homog\'en\'eit\'e contre une hypoth\`ese de m\'elange gaussien},
     journal = {Revue de Statistique Appliqu\'ee},
     publisher = {Soci\'et\'e de Statistique de France},
     volume = {42},
     number = {1},
     year = {1994},
     pages = {63-79},
     zbl = {0972.62505},
     mrnumber = {1278467},
     language = {fr},
     url = {http://www.numdam.org/item/RSA_1994__42_1_63_0}
}
Berdaï, A.; Garel, B. Performances d'un test d'homogénéité contre une hypothèse de mélange gaussien. Revue de Statistique Appliquée, Volume 42 (1994) no. 1, pp. 63-79. http://www.numdam.org/item/RSA_1994__42_1_63_0/

Andrews D.F., Bickel P.J., Hampel F.R., Huber P.J., Rogers W.M., Tukey J.W. (1972), Robust Estimates of Location. Princeton University Press. | MR 331595 | Zbl 0254.62001

Berdaï A. (1991), Une étude asymptotique et numérique de la loi limite du test de mélange de deux lois contre une seule. Technical report, S.B.I.A., I.N.R.A. Toulouse.

Cramer H., Leadbetter M.R. (1967), Stationnary and related stochastic Process. New York: Wiley. | MR 217860 | Zbl 0162.21102

Davies R.B. (1977), Hypothesis testing when a nuisance parameter is present only under the atemative. Biometrika,64, 247- 254. | MR 501523 | Zbl 0362.62026

Davies R.B. (1987), Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika,74, 33- 43. | MR 885917 | Zbl 0612.62023

Ghosh J.K., Sen P.K. (1985), On the asymptotic performance of the Log likelihood ratio statistic for the mixture model and related results. Proc. Berkeley Conference in honor of Jerzy Neyman and Jack Kiefer (vol.II), L.M. Le Cam and R.A. Olshen (Eds.). Monterey: Wadsworth, p. 789-806. | MR 822065

Hartigan J.A.(1985a), Statistical theory in clustering. J.Classification, 2, 63-76. | MR 800514 | Zbl 0575.62058

Hartigan J.A.(1985b), A failure of likelihood asymptotics for normal mixtures, Proc. Berkeley Conference in honor of Jerzy Neymann and Jack Kiefer (vol.99), L. M. Le Cam and R.A. Oshen (Eds). Monterey

Kotz S., Johnson N.L. (1983), Encyclopedia of Statistical Sciences, vol.4, p. 3-4. | Zbl 0585.62002

Mclachlan G.J., Basford K.E. (1988), Mixture models : Inference and applications to clustering. Marcel Dekker, New York. | MR 926484 | Zbl 0697.62050

Mendell N.R., Thode H.C., Finch S.J., (1991), The likelihood ratio test for two component normal mixture problem : power and sample size analysis. Biometrics, 47, 1143 -1148.

Redner R.A.(1981), Note on the consistency of the maximum likelihood estimate for non identifiable distributions. Ann. Statist., 9, 225- 228. | MR 600553 | Zbl 0453.62021

Self S.G., Liang K.Y. (1987), Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non standard conditions. JASA, vol. 82, N° 398, 605-610. | MR 898365 | Zbl 0639.62020

Thode H.C., Finch S.J., Mendel N.R. (1988), Simulated percentage points for the null distribution of the likelihood ratio test for a mixture of two normals. Biometrics, 44, 1195-1201. | MR 981003 | Zbl 0715.62040

Titterington D.M. (1990), Some recent research in the analysis of mixture distributions. Statistics, 21,4, 619-641. | MR 1087291 | Zbl 0714.62023

Titterington D.M., Smith A.F.M., Makov U.E. (1985), Statistical analysis of finite mixture distributions. Wiley, London. | MR 838090 | Zbl 0646.62013

Yakowitz S.J., Spragins J.D. (1968), On the identifiability of finite mixtures. IEEE Trans. Inform. Th., IT-16, 330- 338. | Zbl 0197.45502

Wald A. (1943), Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc, 54, 426 -482. | MR 12401 | Zbl 0063.08120

Wolfe J.H. (1971), A Monte Carlo study of the sampling distribution of the likelihhod ratio for mixtures of multinomial distributions. Tech. Bull. STB,72-2, Nav. Pers & Tran. Res. Lab., San Diego.