We present here models and algorithms for the construction of efficient path systems, robust to possible variations of the characteristics of the network. We propose some interpretations of these models and proceed to numerical experimentations of the related algorithms. We conclude with a discussion of the way those concepts may be applied to the design of a Public Transportation System.
@article{RO_2001__35_1_85_0, author = {Maublanc, J. and Peyrton, D. and Quilliot, A.}, title = {Multiple routing strategies in a labelled network}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {85--106}, publisher = {EDP-Sciences}, volume = {35}, number = {1}, year = {2001}, mrnumber = {1841815}, zbl = {0993.90015}, language = {en}, url = {http://www.numdam.org/item/RO_2001__35_1_85_0/} }
TY - JOUR AU - Maublanc, J. AU - Peyrton, D. AU - Quilliot, A. TI - Multiple routing strategies in a labelled network JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2001 SP - 85 EP - 106 VL - 35 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/item/RO_2001__35_1_85_0/ LA - en ID - RO_2001__35_1_85_0 ER -
Maublanc, J.; Peyrton, D.; Quilliot, A. Multiple routing strategies in a labelled network. RAIRO - Operations Research - Recherche Opérationnelle, Volume 35 (2001) no. 1, pp. 85-106. http://www.numdam.org/item/RO_2001__35_1_85_0/
[1] Réseaux stochastiques. RAIRO Oper. Res. 24 (1990) 167-190. | EuDML | Numdam | MR | Zbl
and ,[2] Introduction to algorithms. MIT Press, Cambridge, Mass (1980). | Zbl
, and ,[3] A note with two problems in connection with graphs. Numer. Math. I (1959) 269-271. | EuDML | MR | Zbl
,[4] Exact and approximate algorithms for optimal network design. Network 9 (1979) 37-59. | MR | Zbl
and ,[5] Minimum broadcast networks. Networks 10 (1980) 59-70. | MR | Zbl
,[6] No linear cost models in transportation analysis. Math. Programming Study 26 (1986) 167-196. | MR | Zbl
,[7] Methods and problems of communication in usual networks. Discrete Appl. Math. 53 (1994) 79-133. | MR | Zbl
and ,[8] Graphes et algorithmes. Ed. Eyrolles (1979). | MR | Zbl
and ,[9] Parametric shortest path algorithms with application to cyclic staffing. Discrete Appl. Math. 3 (1981) 37-45. | MR | Zbl
and ,[10] Intelligence Artificielle. Eyrolles (1987).
,[11] A procedure for computing the best solutions to discrete optimization problems and its application to the shortest path problem. Management Sci. 18 (1972) 401-405. | MR | Zbl
,[12] Optimization algorithms for networks and graphs. Marcel Dekker Inc. (1978). | MR | Zbl
,[13] Network synthesis and optimum network design problems: Models, solution methods and applications". Network 19 (1989) 313-360. | MR | Zbl
,[14] Problem solving methods in A.I. Mac Graw Hill (1971).
,[15] A retraction problem in graph theory. Discrete Math. 54 (1985) 61-71. | MR | Zbl
,[16] Algorithmes de cheminements pour des réseaux d'actions à effets non déterministes. Math. Appl. 12 (1991) 25-44. | Zbl
,[17] Chemins, flots, ordonnancements dans les réseaux. Hermann, Paris (1984).
,[18] The k shortest routes and k-shortest chains in a graph. Report ORC, Operation Research Center, University of California, Berkeley (1966) 66-32.
,[19] On algorithms for finding the shortest pathes in a network. Networks 9 (1979) 195-214. | MR | Zbl
,[20] Some theoretical aspects of road traffic research. Proc. Inst. Civil Engrg. II (1952) 325-378.
,[21] Minimum cost routing for dynamic network models. Network 3 (1973) 315-331. | Zbl
,