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FOR JOB SHOP PROBLEMS WITH SETUP TIMES (*)

by Yuri N. SOTSKOV (*), Thomas TAUTENHAHN (2) and Frank WERNER (3)

Communicated by Jacques CARLIER

Abstract. - Constructive heuristics for shop scheduling problems are often based on priority (or
dispatching) rules. However, recent work has demonstrated that insertion algorithms that step by
step insert opérations or jobs into partial schedules usually clearly outperform priority rules. In this
paper, we consider varions job shop scheduling problems with setup times. For each job a spécifie
technological route and a release date are given. Moreover, the jobs are partitioned into groups.
A séquence independent setup time srj is required on machine j when a job of the r-th group is
processed after a job of another group. We consider different types of job availability, namely item
and batch availability. As objective function we use both regular and nonregular criteria. For such
problems we apply insertion techniques combined with beam search. Especially we consider different
insertion orders of the opérations or jobs. A refined variant of the insertion algorithm is presented,
where several opérations are inserted in parallel. The proposed variants have been tested on a large
collection of test problems and compared with other constructive algorithms based on priority rules.

Keywords: Job shop scheduling, setup times, constructive heuristics.

Résumé. - Des heuristiques constructives sont basées souvent sur des règles de priorité.
Néanmoins, les publications les plus récentes ont montré que des algorithmes d'insertion qui
insèrent pas à pas des opérations dans les plans partiels déjà existants sont plus efficaces.

Dans notre publication nous considérons différents problèmes de « job shop scheduling » avec
des temps de préparation. Pour chaque ordre sont données une route technologique et la date de
mise à disposition. Les ordres sont partagés en groupes. Un temps de préparation sr3 indépendant
de la suite est nécessaire pour la machine j au cas où un ordre pour le r-ième groupe est exécuté
après un ordre d'un autre groupe. Nous considérons des types différents de la mise à disposition
d'un ordre, plus précisément Item- et Batch-disponibiliîé.

Comme fonction de but seront utilisés aussi bien des critères réguliers que non-réguliers. Pour
des problèmes de ce genre nous utilisons des techniques d'insertion combinées avec la recherche
« Beam ». En particulier nous considérons des ordres différents d'insertion des demandes (resp.
des opérations).

Une variante avec des insertions parallèles pour plusieurs opérations est considérée également.
Les algorithmes déduits sont testés pour un grand nombre de problèmes et comparés avec d'autres
algorithmes de priorité.

Mots clés : « Job Shop Scheduling », temps de préparation, heuristiques constructives.
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1. INTRODUCTION

The job shop problem belongs to the scheduling problems that are the most
difficult ones in classical scheduling theory: n jobs have to be processed
on m machines and each job i consists of a set of opérations, which have to
be performed in a given order. Each opération represents a processing of a
job on a certain machine and it may not be interrupted. Often the makespan
Cm a x = ïïiaxi<î<n {Ci} has to be minimized, where Ci is the completion
time of job i. Using the 3-parameter classification suggested by Graham
étal [15], this problem is denoted as J//Cmax. Note that a well-known
problem with 10 jobs and 10 machines formulated in 1963 [24] has been
solved optimally only in 1989 [10]. Only some special cases with a small
number of jobs or machines can be solved in polynomial time.

For the job shop problem without setup times several branch and bound
algorithms and heuristics have been proposed. Among the algorithms of the
former type, we mention the algorithms by Carlier and Pinson [10], Brucker
et al. [8] and Applegate and Cook [4]. Concerning heuristics, various
constructive and itérative algorithms have been proposed. In constructive
algorithms often priority (or dispatching) rules have been applied (see
for instance [6, 14, 16, 30]). They assign available opérations with the
largest priority to the machines, le. opérations which can start with its
processing. It has been stated in [6] that no single priority rule has been
shown to consistently produce better results than other rules under a
variety of shop configurations and operating conditions. In [17], a mixed
dispatching rule has been proposed for short-term scheduling which can
assign different priority rules to the machines. Most of the itérative algorithms
are based on neighbourhood search. Usually some metaheuristic such as
simulated annealing, tabu search or threshold accepting is included (see
for instance [20] or [27]). Also some genetic algorithms for the heuristic
solution of the job shop problem have been developed (see for instance [29]).
A combination of construction of a solution and itérative improvement is
the shifting bottleneck procedure [1] which is based on the repeated solution
of single machine problems.

In modem production one is often concerned with problems, where setup
times or change-over costs between the processing of certain jobs on the
machines have to be considered. Jobs are classified into different groups
or families to take advantage of similar processing requirements. A setup
time is necessary if a job is processed on a machine after a job of another
group. The setup times are often assumed to be séquence independent. Such
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problems with family setup times are also referred to as group technology
or part family scheduling.

A related type of problems arises when jobs have to be put together
in a "batch" such that the processing of the batch can begin only when
all jobs of a batch are available on the corresponding machine, Le. the
preceding opérations of all jobs have been completed. In this case several
consécutive batches of jobs of the same group are possible and a batch
setup time is necessary before the processing of each batch. This situation
occurs for instance when jobs have to be placed on a palette in a Flexible
Manufacturing System and afterwards this palette is inserted in the machine.
Combining this case with group technology, we may form a batch only by
jobs of the same group.

Up to now, mostly single-stage scheduling problems with family or batch
setup times have been considered in the literature {cf. [2, 5, 11, 13, 23,
25, 31]). An overview of results on both mentioned types of problems in
the single machine case can be found in [36]. In connection with multi-stage
problems, usually the first mentioned type of problems in connection with
the now shop case (identical technological routes for all jobs) has been
considered. Contrary to the classical 2-machine flow shop problem, where
the makespan can be minimized in polynomial time, the corresponding
problem with family setup times (and hence the job shop problem, too)
is already NP-hard [18]. Therefore, mostly heuristics have been proposed
for such problems. Allison [3] gave some 2-stage constructive heuristics
for the permutation flow shop problem (when each machine processes the
jobs in the same order) with family setup times and an arbitrary number of
machines. A similar constructive heuristic as well as an itérative simulated
annealing algorithm have been proposed by Vakharia and Chang [34]. In the
mentioned papers the minimization of the makespan has been considered
and groups of jobs are not split, Le. one always séquences complete groups
of jobs. Several types of constructive and itérative algorithms for the more
gênerai case that groups of jobs can be split have been discussed in [32]. In
the latter paper along with the minimization of the makespan other regular
criteria have been considered.

In [9] a branch and bound algorithm for the gênerai shop problem with
séquence dependent setup times has been proposed. In that paper, also
job shop problems with family setup times have been tested. The results
from [9] confirm that the problems with setup times are much harder than
the corresponding problems without setup times.
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Related problems with some kinds of batching décisions are so-called
lot-sizing problems which will not be considered in this paper. An overview
of such problems can be found in [19] and [35]. Some recent trends in
scheduling research which attempt to make it more relevant and applicable in
opérations management and manufacturing Systems have been given in [22].

In this paper, we deal with job shop problems with setup times, where the
groups of jobs to be processed are known in adyance. Moreover, each job is
allowed to be available for processing only after a certain release date. We
consider both mentioned types of problems with several objective fonctions.

Whereas in the literature usually regular criteria are considered, we also
treat objective functions that are not nondecreasing in the completion times
of the jobs. The latter type of objective function is typical for "just-in-
time" production. More precisely, we shall consider job shop scheduling
to nünimize the weighted sum of job earliness and tardiness penalties (the
weighted squared déviation from the given due dates). This problem with
arbitrary positive weights assigned to the jobs is NP-hard in the strong sense
even for the single machine case without setups, since it is a generalization
of the weighted tardiness problem which is NP-hard in the strong sense [21].
Moreover, it is NP-hard in the ordinary sense even when all job weights
are equal [12].

Here we deal only with heuristic constructive algorithms. In particular,
we investigate and test several insertion stratégies and some refinements in
dependence on the objective function of the considered type of problems and
we perform a computational comparison with some Standard priority rules.

The paper is organized as follows. The considered problems are described
in detail in Section 2. Then we state in Section 3 the basic variant of the
insertion algorithm and we propose different refinements. We demonstrate
how these insertion techniques can be applied to the case of a nonregular
criterion. Finally, the results of our computational experiments are presented
and discussed in Section 4.

2. THE PROBLEM

The job shop problem with setup times can be formulated as follows:
n jobs are partitioned into g groups Gi, G2, ..., Gg. For each job i,
a technological route q% = (j j , J2?—5 jk{) is given, where k% dénotes the
number of opérations of job i and jh with 1 < jh < m is the Zi-th machine
on which job i has to be processed. For simplicity of the description we
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assume that each job has to be processed at most once on each machine but
all presented algorithms can be applied to the more gênerai case when a job
has to be processed more than once on a machine. Times tij for processing
an opération (i, j) of job i on machine j are given. Moreover, we have
setup times Shj > 0 assigned to group G h on machine j . For the first type of
considered problems, a setup occurs on a machine before the first job starts
its processing on this machine and when a job has to be processed after a
job of another group. This situation is denoted as item availability (ia). The
processing of a job on a certain machine can start when

• the processing of the preceding job on this machine has been finished
and, if necessary, a setup has been done and

• the processing of this job on the preceding machine has been finished.

The completion time of this opération is the time when the processing of
this opération has been finished. The setup times are assumed to be séquence
independent, ie. they do not depend on the preceding job.

For the second type of problems, the jobs are processed within batches.
A batch consists of one or more jobs of the same group, which are processed
together on a machine (batch availability: ba). The processing of a batch on
a certain machine can start when

• the processing of the preceding batch on this machine has been finished
and a setup has been done and

• the processing of all jobs contained in the batch on their preceding
machines has been finished.

The processing time of a batch is the sum of the processing times of the
opérations in the batch. The completion time of each opération in the batch
is equal to the completion time of the whole batch. A setup times srj occurs
before each batch of jobs of group Gr on machine j . Notice that it can be
advantageous in the case of batch availability to form several batches of
consécutive jobs of the same group. Although this leads to additional setups,
the value of the objective function can possibly be reduced.

However, the case is also possible that we have batch availability only
on a subset of the machines. Let the notation ba (mi,..., rrih) indicate that
we have batch availability on the machines mi,.. . , rrih whereas on the
remaining machines item availability is assumed.
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In principle, two types of setup times are possible:

Anticipatory setup times. The setup can start before the processing of
the job of the preceding machine is finished, Le. the setup can be done
"in anticipation" of the job;

Nonanticipatory setup times. The setup cannot start until the processing
of the job on the preceding machine is finished.

In the following we always assume anticipatory setup times.

In this paper, we consider several objective functions that are based on
the completion times d of the jobs. Among the regular criteria (objective
functions which are nondecreasing in the completion times Ci, C2,..., Cn),
we consider the minimization of the makespan Cm a x and the minimization
of the weighted sum of completion times Yl w% Cu where Wi is a weight
assigned to job i. In the case of a regular criterion it is sufficient for the
description of a schedule to give the séquence of opérations on each machine
since each opération starts with the processing as early as possible. However,
this is not the case if so-called nonregular criteria are considered which are
typical for "just-in-time" production. Often such criteria are based on given
due dates, where both tardiness and earliness penalties are included. Among
the criteria of this type, we consider the minimization of J2 wi (Ci ~~ ^)2>
where d{ is the due date of job i.

Moreover, in our experiments we also consider the case when a release
date Ti > 0 is assigned to each job, Le. the processing of the first opération
of each job i cannot start before time r%. The release dates are assumed to
be known in advance.

The considered problems are denoted as follows:

• J/shj > 0, ia, T{ > 0/Cmax;

J/shj > 0, ba(M), n > 0/Cmax

• J/shj > 0, ia> n > 0/Y1 WiCi',

J/shj > 0, ba(M), n > 0 /E Wid

and

• J/shj > 0, ia, r% > 0/ J2 *>i (Ci - di)2\

J/shj > 0, ba (Af), n > 0/Z Wi (d - dt)
2.

In our tests we consider certain sets M Ç {1, 2,..., m} which we shall
précise later.

For describing partial solutions in the case of a regular criterion, we
use a similar way as it has been done in [37] for the job shop problem
without considering setup times. It is known that a feasible combination of
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the given technological routes and the chosen job orders on the machines
can be represented by a digraph D = (V, E), where the vertex set V
represents the set of opérations (i, j) and the are set E describes both
the technological routes and the job orders, Le. the digraph D completely
describes the séquences in which the opérations are performed.

Example 1: Assume that we have n = 6 jobs and m = 3 machines. Let
the given technological routes be as follows:

q1 = (1, 3, 2), q2 = (3, 2, 1), q3 = (1, 3, 2),

94 = (1,2,3), 45 = (1,3, 2), g6 = (2, 1, 3).

A combination of the technological routes and the job orders is described by
the digraph D = (V, E) given in Figure 1. The "horizontal arcs" describe
the given technological routes and the "vertical arcs" describe the chosen
job orders on the machines. From Figure 1 we obtain the job orders:

pl = (1, 3, 2, 5, 4, 6), p2 - (6, 2, 1, 3, 4, 5), p3 = (2, 1, 3, 5, 6, 4),

where p3 describes the job order on machine j . Moreover, the schedule
presented in Figure 1 is feasible for the job shop problem since all given
technological routes are satisfied and the corresponding digraph does not

Figure 1. - Digraph D = (V, E).
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contain any cycle. A convenient représentation of such a schedule may be
given by the rank matrix A of the above digraph D = (V, E)> Le. we assign
to each vertex (opération) (i, j) the maximal number of vertices on a path
from a source to vertex (ï, j). We note that this représentation can also
be used for partial schedules, where only a subset of opérations occurs in
the matrix.

In the case of item availability the occurrence of setup times is
automatically determined from the matrix A by the fact that a setup occurs
on a machine if and only if the first job on this machine starts or a job
of a group other than the group of the preceding job starts with processing
on this machine.

However, in the case of batch availability, it may be useful to divide a set
of successive jobs of the same group into two or more batches. Moreover,
because all jobs of a batch enter and leave this machine simultaneously, the
séquence of opérations within this batch does not influence the objective
function value. It is convenient to consider each batch as a unit. Thus, in
the digraph D described above, all vertices representing opérations of such
a batch are combined into a single vertex. Consequently, to all opérations of
such a batch the same rank value is assigned in the matrix A.

To illustrate, we return to the above example (see Fig. 1) and assume that
three groups G\ = {1, 2, 3}, G% = {4, 5} and G3 = {6} are given. If
we consider a problem with item availability, the matrix A of this example
looks as follows:

A =

1
3
2

5
4
6

3
2
4

6
7
1

2 '
1
3

8
5
7

Additionally we assume that the processing times and the setup times are
given by

S =
6 4 3
7 3 2
5 2 5

and T =

6
4
3
2
3
4

4
6
2
18
13
7

6
7
7
5
12
10
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Figure 2 represents the schedule given by the matrix A using a Gantt chart.
In particular, we have C\ = C2 = 23, C3 = 28, C4 = 67, C5 = 66
and Cfe = 60. Thus, we get the objective function values Cmax — 67 and
J2 Ci — 267. However, it is possible that a schedule that is feasible in the
case of item availability is not feasible in the case of batch availability. For
the above example with batch availability on machines 1 and 3, combining
all consécutive jobs of the same group on a machine into the same batch
would result in an infeasible schedule. The batch on machine 1 consisting
of the jobs of group G\ must be processed before the batch of these jobs on
machine 3 and vice versa, Le. we have a contradiction.

machine 3

machine 2

machine 1

2

6

1 ,

1

2

3

1

2 |

0

5

4

6

6 4

5

1 1 1 1 1 f 1—

1G 20 30 40 50 60 70

Figure 2. - Gantt chart of the schedule for item availability.

80

If we keep the séquence of all opérations but split the jobs of group G\
into one batch consisting of the jobs 1 and 3, and one batch consisting only
of job 2 on each machine, we get the schedule presented in the Gantt chart
in Figure 3. Thus, we have 4 batches on the machines 1 and 5 batches on
machine 3. In this case we get C\ = 34, C% — 25, C3 = 34, C4 = 71,
C5 = 68 and CQ — 64. Consequently, we get the objective function values

= 71 and ̂  C% = 296. This schedule is represented by the rank matrix

A' =

"1
3
1

4
4
5

3
2
4

5
6
1

2 '
1
2

7
5
6

We note, that it is not necessary to form the same batches on each machine.
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machine 3

machine 2

machine 1

2

6

1,3

1,3

2 1 3

4,5

5

4

6

6 4

5

10 20 30 40 50 60 70 80

Figure 3. - Gantt chart of the schedule for batch availability on the machines 1 and 3.

3. CONSTRUCTIVE ALGORITHMS

For job shop problems without considération of setup times often priority
rules have been used. On the other hand, recently for classical shop
scheduling problems often insertion techniques have been applied for
constructing a rather good feasible schedule. Nawaz et al [26] proposed
such an algorithm for the permutation flow shop problem, where the jobs are
successively inserted into a partial séquence. Similar algorithms have been
given for job shop and open shop problems by Werner and Winkler [37] and
Brâsel et al. [7], However, for the latter problems opérations are successively
inserted into partial schedules. In both algorithms the basic principle of beam
search [28] has also been used. Beam search is basically an adaptation of
branch and bound such that at each level of the branching tree only the most
promising nodes are selected as nodes to branch from. The remaining nodes
at that level are disgarded permanently.

First we discuss the insertion of an opération in the case of the job shop
problem without considering setup times. Assume that a rank matrix A for a
partial schedule has been determined and that in accordance with the chosen
insertion order opération (z, j) has to be inserted next. Then opération (i, j)
is inserted on ail possible positions in the job order of machine j , for which
the resulting matrix after the insertion of opération (i, j) is again a rank
matrix, all technological routes of the jobs are satisfied and ail previously
established precedence relations between certain opérations remain valid.
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Assume that on machine j a set of u opérations have already been
sequenced. Let k\ < &2 < -• < ku be the entries of column j of the
matrix A and assume that a,ihj = kh for 1 < h < u, Then the following
insertions have to be considered:

1. Process job i as the first job on machine j : Détermine

[opération (z, v) précèdes opération (z, j)} + 1,— max

modify the remaining entries of column j (already sequenced opérations
on machine j) and the entries of the matrix corresponding to succeeding
opérations of the already sequenced opérations on machine j , If this leads to
a modification of entry a^, then the considered insertion of opération (i, j)
is not feasible since this opération must précède itself.

2. Process job i as the l-th job on machine j (2 < / < u + 1): Détermine

dij = max{max{a^|operation(i, t>) précèdes opération (i, jf)}; &/_i}-f-l.

Then we test feasibility of the partial schedule in an analogous way as
described above. Thus, all opérations belonging to column j having an entry
greater than k\ and their succeeding opérations must also be a successor of
the inserted opération. Analogously to the above case, if this leads to a cycle
in the resulting digraph, the corresponding insertion is infeasible.

To illustrate, we consider the given technological routes of Example 1
introduced in the previous section and a partial schedule represented by
the matrix

1 . 4
. 2 1

Let the opération (1, 2) be inserted next. We remind that the technological
route of job 1 is q1 = (1, 3, 2). In the following Al describes the matrix
when job i is inserted on position l in the job order on machine j :

1 5 [9]
. 7 1

7 6

A2 =

1 5 4
. 6 1

3 7 5
2 1 3
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1 5 4
. 2 1

3 6 5
2 1 3

and

1 7 4
. 2 1

3 6 5
2 1 3

If on machine 2 job 1 is processed first, we get au = 5 since opération (1, 2)
is the direct successor of opération (1, 3). Now, ail remaining opérations on
machine 2 and their successors must also be a successor of opération (1,2).
Therefore we modify the corresponding values of A beginning with the
smallest ones. Thus, we get the matrix A1 with a\2 = 6, a^ = 7,
a5i — a63 — ^ ^ w e w o u ld obtain a\3 ~ 9, which contradicts the
technological route of job 1 (the underlined entries of A1 dénote the modified
values). Hence, the processing of job 1 as the first job on machine 2 does not
lead to a feasible partial schedule. The remaining insertions yield feasible
partial schedules (see matrices A2 — A4).

To evaluate partial schedules, we first introducé a cost to vertex (Le. to
opération) (i, j) given by the processing time tij. Moreover, we introducé
heads r^ and tails z%j of an opération (i, j) in the usual way, Le. r^
dénotes the length of a longest path from one of the sources to (i, j) and
z^ represents the length of a longest path from vertex (z, j) to one of
the sinks. In each case the vertex cost of (z, j) is not included. Note that
the head r^ takes also into account the opérations of job i which précède
(i, j) in the technological route but are not yet inserted. Analogously, Zij
includes also the job tail, Le. the sum of processing times of all succeeding
opérations of job z, whether they are already inserted or not. Hence, the head
Tij gives the current earüest possible starting time of opération (i, j) by
considering the already scheduled opérations and the technological route of
job z. Analogously, the tail z%j gives the number of time units that are at least
necessary after the completion of opération (i, j) to finish the processing
of the remaining opérations.

When considering a job shop problem with family setup times, we must
additionally take a setup time into account if a job of another group starts. In
the introduced digraph model this can be represented by introducing an arc
cost given by the setup time on each are between two vertices that represent
two successive opérations of jobs of different groups. To represent the setups
for processing the first job on each machine, a fictitious source with a vertex
cost equal to zero and an additional arc from this source to the opérations
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that are processed first on the machine are introduced (the fictitious source is
considered to have rank zero). The are costs are given by the corresponding
setup times. Now the heads and tails of the opérations are again represented
by the corresponding longest paths in the modified digraph.

A partial schedule is then evaluated by its current objective fonction
value, Le. in the case of minimizing the makespan by max {rij + Uj + z%j\
(*) j) € V}' When the objective fonction dépends on the sum of the comple-
tion times, we estimate Ci by the lower bound LBCi = maxj {rij +Uj + Zij \
(h j) e V}.

In addition to the approach proposed in [37], we consider only "active"
insertions of opérations in the case of regular criteria since there always
exists an optimal active schedule (a schedule is called active if no opération
can start earlier without delaying the processing of another opération). Hence
an insertion of opération (i, j) at a certain position is not considered if it is
possible that a succeeding opération (L, j ) on the same machine would be
completed bef ore opération (i, j) can start, Le. if

sîj + tij < rij

holds, where 5^ is the earliest starting time of opération (Z, j) after shifting
it before opération (i, j).

We also include the beam search principle from [28]. The idea is to
construct a limited number of partial schedules in parallel. A partial schedule
has usually several "sons" which are the immédiate successors in the
branching tree, Le. they resuit from ail possible insertions of the current
opération. If we use a beamwidth b, we select in each step the b best partial
schedules with respect to the current objective fonction value (which form
the beam), where the best b schedules are always selected from the whole set
of generated sons, Le. the selected sons must not necessarily have different
fathers. We only note hère that in [28] also filtered beam search as a special
form of a "look-ahead" procedure has been proposed, which requires that
in each step a certain number of partial schedules must be extended to a
complete schedule by some priority rule and only then the décision is made
which partial schedules are selected as the "best" sons.

3.1- Successive insertion of the opérations for a regular criterion

First we consider the variant that in each step exactly one opération is
inserted. This variant has been used in [7] and [37] for open shop and job
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shop problems without considering setup times. In these papers the opérations
have been inserted according to nonincreasing processing times.

In connection with the different problems considered in this paper, we
include the following insertion orders or the opérations into our tests.

1. The opérations are inserted

(a) according to nondecreasing processing times,

(b) according to nonincreasing processing times or

(c) in random order.

2. The opérations are inserted job by job. The jobs are inserted

(a) according to nonincreasing weights,

(b) according to nondecreasing release dates,

(c) according to nondecreasing values di — ri — TJ, where T{ dénotes the
time, which is at least necessary to process job % completely, or

(d) in random order.

3. The opérations are inserted job by job, however, after having
determining the first job to be inserted, all remaining jobs of this group
are inserted by applying one of the orders (a)-(d) mentioned in 2) and only
if all jobs of the current group have been inserted, the job (and hence the
corresponding group) that has to be inserted next is determined by applying
the same order.

Note that in dependence on the considered objective function only a subset
of the orders (a)-(d) mentioned in 2) is of interest. For instance, if all weights
are equal (wi = 1 for each i = 1, 2,..., n), the order 2a) is identical with a
random order of the insertion of the jobs. Analogously, if release dates do
not occur (Le, n = 0 for each i = 1, 2,..., n), the order 2b) is identical with
a random order of the insertion of the jobs.

If we consider problem J/s^j > 0, m/C m a x or problem J/shj > 0,
ba (M)/C m a x , we can apply in addition to 2d) also order 2c), which reduces
to an insertion of the jobs according to nonincreasing Ti values (in the case
of these problems, we have n = 0 and we can define di = 0). As Ti
we use the time that is necessary after r% to complete job i if only this
job is processed and setup times of the group of this job are taken into
considération. The criterion 2c) can be interpreted as a "bottleneck strategy",
where the jobs with the strongest restrictions resulting from the release and
due dates as well as from the minimal required time for processing a job
completely are considered first.
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It remains to discuss the question in which order the opérations of the
current job should be inserted when applying a jobwise insertion. In initial
experiments we tested three insertion variants for the cases 2) and 3), namely
the insertion of the opérations of a job according to the technological route
{Le. starting with the first opération of a job, then the second opération
and so on), in opposite order {Le. starting with the last opération of a job,
then the second last opération and so on) or in random order. Our initial
tests have shown that the insertion according to the technological route has
obtained the best results for all considered problems. Hence, in the following
this insertion order has always been used in connection with regular criteria
when jobwise insertion of the opérations has been applied.

As already mentioned, in the case of batch availability it can be préférable
to split jobs of the same group, which have to be processed consecutively
on the same machine, into two or more batches. Although this leads to
additional setup times, the objective function value can possibly be smaller
since not all jobs of this group must wait for the next processing until all
consécutive jobs of the same group have been completed. However, a formed
batch is never split later but it can be combined with further jobs of the
corresponding group. If a job is considered for insertion at a certain position
and the preceding batch consists of jobs of the same group, we can include
this job into the preceding batch or this job can form a new batch.

3.2. Successive insertion of the opérations for a nonregular criterion

Next, we turn on the considération of a nonregular criterion, where
the objective function value dépends on the completion times of the last
opérations of the jobs, too. Contrary to regular criteria, here the opérations
do not necessarily start as early as possible. Moreover, not only "active"
insertions of opérations should be considered. Since the objective function
value dépends on the completion time of the last opération of the jobs, it
seems to be recommendable to insert the opérations of each job "backwards".

Having scheduled the last opération of a job, we schedule all remaining
{Le. "nonlast") opérations of this job in each case as late as possible with
respect to the chosen séquence of the opérations. The reason for that is to
leave as much time as possible for the processing of the still unscheduled
first opérations of the job, Le. we want to avoid that, due to a current head
of an opération, the already scheduled opérations must later be unnecessarily
shifted to the right {Le. to a later time) which could lead to a considérable
increase in the objective function value. In the following we describe a
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partial schedule by the matrix C = [cij] of the completion times of the
scheduled opérations meeting the above convention, where c%j dénotes the
completion time of job i on machine j .

To describe the modified insertion in the case of a nonregular criterion,
we distinguish between the insertion of the last opération of a job and
the insertion of a nonlast opération. First we describe the insertion of the
last opération of a job i. Assume that this opération has to be performed on
machine j and let fci, fo, •-.", ku be the jobs that have already been scheduled
on machine j . We consider the case of item availability.

When inserting job i on machine j at position h + 1 with h > 1 {Le.
between opérations (&&, j ) and (Afc+i, j))> we first check whether

cihj + f ' sgn[t]J +Uj > <k (1)

holds, where ƒ = 1 if jobs ih and i belong to different groups and ƒ — 0
otherwise, and gn [i] dénotes the index of the group to which job i belongs.
If inequality (1) holds, then the earliest possible completion time of job i
sequenced at position ft+lon machine j is not smaller than its due date. In
this case (late insertion) we schedule job i directly after its predecessor fc&.
This could force a right shift of some of the opérations (fo+i, j ) , . . . , (ku, j)
and their successors.

If inequality (1) does not hold (early insertion), we try to schedule job i
on machine j bef ore job kh+i "as close as possible" to the due date d% on
this machine without delaying the start of opération (fc^+i, j ) . However, this
can cause possibly left shifts of some of the opérations (kh, j),.-, (fei, j)
and their predecessors. These necessary left shifts may eventually not be
feasible, Le. the current head of some opération would be violated. In such
a situation we get a "forced" right shift of opération (i, j) and possibly
of some of the succeeding opérations in the current partial schedule. The
described procedure is analogously applied if job i is sequenced at the first
position on machine j .

The computational expense can possibly be reduced by restricting the
positions for the insertion of opération (i, j) as follows: If an opération (i, j)
can be inserted at a certain position without shifting the processing of any
preceding opération, then no insertion at smaller positions is considered.

Whenever a right shift of an opération has been carried out, caused either
by a late insertion of a last opération or by a forced right shift, in the
resulting schedule possibly some modifications must be made to ensure that
our convention concerning the completion times of all nonlast opérations
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of the jobs is satisfied, Le. each nonlast opération is scheduled as late as
possible with respect to its successors. Furthermore, each early last opération
of a job is shifted towards its due date as far as possible with respect to its
successor, Le. this opération will not be late.

Nonlast opérations of a job are inserted according the conventions
mentioned above, where we consider the possible positions in the séquence
beginning from the right. To reduce the required expense, we immediately
accept the first insertion beginning from the right, where this insertion does
not increase the objective function value with respect to the previous step.
This covers the case of an "active insertion from the right". Notice that an
insertion on a smaller position could possibly even improve the objective
function value but only due to a forced right shift. However, the occurrence
of forced shifts when inserting an opération other than the first opération of
a job can cause "bottlenecks" for the insertion of the remaining opérations
of the current job and, therefore, they can lead to a substantial increase of
the objective function value.

Up to now we considered only "forced" shifts of opérations caused by
some head of an opération due to the inserted opération. One possibility
to refine an obtained schedule is to allow also "unforced" shifts of a last
opération of a job towards its due date. Hence, in the case that a last opération
(i, j) is inserted late, we "push" this opération in steps of a certain number
of time units to the left until one of the following conditions is satisfied:

a) the objective function value has not been increased with respect to
the previous step or

b) the starting time of an opération is equal to its head or

c) the completion time Cij is equal to the due date di.

Similarly, in the case of an early last opération we push this opération
in steps of a certain number of time units to the right until condition a)
or c) is satisfied (clearly, condition b) cannot occur since only right shifts
are considered). Based on initial tests, we decided to use a steplength of
Ha-41/241.

This refinement can be applied to partial schedules as well as to complete
schedules. When combining it with the insertion method described above,
to reduce the expense we restrict this approach to the best insertion position
found for any last opération of a job. In the case that we modify a complete
schedule by this approach, we apply the unforced shifts to all last opérations
of jobs ordered according to nonincreasing contributions to the objective
function value.
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The case of batch availability on machine j can be handled in a similar
way as it has been done in the case of a regular criterion but constructing the
schedule from the right. To illustrate the insertion algorithm for a nonregular
criterion, we consider the following example.

Example 2: Let n — 5, m — 3 and the jobs be partitioned into three
groups Gi = {1, 2, 3}, G2 = {4} and G3 = {5}. Assume that the jobs 1
and 3 have the technological route q1 — q3 — (1, 2, 3) and the jobs 2, 4
and 5 have the technological route q2 — q4 = qb — (2, 1, 3). Moreover,
item availability of the jobs is assumed and the objective is to minimize
F = Y2 wi(Ci — di)2. Let the setup and processing times be given by

S =
2
3
6

and T =

4 6 2

Moreover, let the release dates, job weights and due dates be as follows:

%

Ti

Wi

di

1

0
1

25

2

4
3

40

3

8
5

35

4

3
4

38

5

12
7

30

First, we get the following job heads rf- of the opérations, Le, the earliest
possible starting time of opération (i, j) by considering only the data of
job i and the setups of the corresponding group:

R' =

4 8 14
9 4 11
8 9 12
5 3 9

19 12 24

To illustrate, we apply insertion order 2a) backwards. Hence, we start with
job 5 and get successively the completion times C53 = 30, C51 = 29 and
C52 = 24. Next we insert job 3. Opération (3, 3) can be sequenced before or
after opération (5, 3). This yields the matrices C^ and C^2\ respectively
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(for illustration, we present also the corresponding Gantt charts for the first
three matrices CW):

29 24

27

30

machine 3

machine 2

machine 1

and

10 20 30 40

29 24

36

30

machine 3

machine 2

machine 1

10 20 30 40

where F (C^) = 320 and F (C<2)) = 5. Thus, we have to choose
Inserting the remaining opérations of job 3, we get the partial schedule

19

29

31

24

36

30

machine 3

machine 2

machine 1

10 30 40

with F = 5. Inserting the last opération of job 4, we get

19 31 36
. 46

29 24 30

19 41 46
. 40

29 24 30
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and C(6) = 19 31 36
. 27

29 24 30

with F(C<4)) = 261, F(C^) = 621 and F (C^) = 489, Le. we have
to choose C(4\ The flrst two insertions represent late insertions and the
last insertion is an early insertion. Inserting now the remaining opérations
of job 4, all opérations of job 2 and the last opération of job 1 we get the
partial schedule

. 2 4 '
33 31 36
16 26 33
40 36 46
26 21 27

with F ( C ^ ) = 388. Inserting opération (1, 2), we only need to consider
the insertion at the positions 1 and 2 (since opération (3, 2) starts after
the starting time s\§ — 22 and no setup is required when inserting job 1
before job 3). When inserting this opération at position 1 (Le, when trying to
séquence opération (1, 2) in front of opération (5, 2)), then, due to rf

12 = 14,
opération (5, 2) must be shifted to the right for 6 time units. Thus we get
in this case the partial schedule C^ and additionally the partial schedule

for the insertion at position 2:

•. 14 25

39 37 42
22 32 39
46 42 52
32 27 33

and

. 27 29
38 36 41
21 31 38

45 41 51
31 19 32

where F(C^) = 939 and F(C<9)) = 768. Note that opération (1, 3) has
been shifted to the right in C^ only for one time unit since d\ = 25. Finally,
the insertion of opération (1,1) does not change the objective function value

When using the modified insertion of the last opérations of the jobs
with unforced shifts, we get the same partial schedules when inserting
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jobs 5 and 3. When inserting opération (4, 3) and applying unforced shifts
to schedule C^ in steps of one time unit, we get the partial schedule

17 29 34
. 44

27 22 28

with F(C^') = 177. Example 2 illustrâtes that the considération of
unforced shifts can be préférable when in the further insertion process
hardly forced right shifts or only very small forced right shifts occur.

3.3. Parallel insertion of the opérations

Insertion algorithms can be improved by including some "look-ahead"
procedure. The previously mentioned form of filtered beam search belongs
to such algorithms. In this paper, we take a different form of such an
approach into considération. To get a better évaluation of the insertion of
opérations, it seems to be recommendable to insert several opérations in
parallel. In our implementation we restrict this procedure to the insertion
of up to k opérations of the same job. According to the chosen insertion
order of the opérations, we insert k succeeding opérations (according to the
technological route, Le. starting with the first opération) in parallel. This
means that in one step k opérations are simultaneously inserted into the
current partial schedule in all possible ways and only then the different
new partial schedules are compared and the best variant is chosen. Thus,
in one step the influence of k new inserted opérations is evaluated. Notice
that in the case of inserting the last opérations of a job possibly less than k
opérations of this job can be inserted in one step.

3.4. Priority rulés

For comparison purposes we included various well-known priority rules
from job shop scheduling into our tests which have been adapted to the
considered problems. We schedule an opération next on that machine, where
the earliest completion time t* among all opérations available for processing
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is possible. Then we select among ail opérations that can start before t*
on the chosen machine an opération according to a certain rule. Among
the rules considered in our tests we present computational results for the
following rules:

• ECT: Select the opération that leads to the earliest completion time
among ail available opérations.

• FIFO: Select the opération which enters the queue at the machine first.

• NINQ: Select the opération of that job from the current queue whose
next machine for processing according to the technological route has
the shortest queue.

The above priority rules can be adapted to the considered problems as
follows. In the case of item availability, the setup time is included if it is
necessary due to the preceding job on this machine.

If in the case of batch availability on the currently considered machine,
a job has been selected that belongs to the same group as the preceding
job or batch, it has to be decided whether the new job is inserted into the
previous batch or combined with the previous job into a batch, respectively,
or not. This décision is made by comparing the completion times of the last
opérations on this machine in both variants and choosing the better one.

Finally we mention that we also tested variants, where jobs of the same
group as the last sequenced job on the currently considered machine get a
higher priority than jobs of other groups. However, in most cases such a
modification has led to worse results.

In the case of considering a nonregular criterion involving due dates, we
additionally include the following rules:

• SLACK: Select the job which has the minimum slack time, where the
slack time is defined as due date minus starting time minus remaining
processing time.

• URG: Select the job with the maximum urgency, where the urgency of
a job is defined as remaining processing time minus due date.

When a feasible schedule has been generated, we consider unforced shifts
applied to a complete schedule as described previously.
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4. COMPUTATIONAL RESULTS

4.1. Génération of the test problems

First we describe the génération of the test problems, which has been done
in a similar way as proposed by Taillard [33]. A problem is entirely defined
by the initial value of a seed XQ of a random generator. The (pseudo) random
number generator is based on the recursive formula

X i + 1 — (16807z2)mod(231 - 1 ) .

This formula provides a uniformly distributed séquence of numbers in the
closed interval [0,231 - 2], which are transformed to integers z% from the
closed interval [a, b] according to

= a
I (b -a)xj\
L 23i-i J •

The considered job shop problems with setup times are characterized by
the processing times Uj of job i on machine j , by the setup times srj

when starting with a batch of group r on machine j , by partitioning the
jobs into groups, by assigning a technological route and a release date vi to
each job and by assigning a weight Wi to each job. By using the algorithm
proposed by Taillard [33], first the matrix T of the processing times and then
the matrix 5 of setup times are rowwise generated, where the processing
times are uniformly distributed integers in [ai, b\] and the setup times are
uniformly distributed integers in [a2, 62]-

Then the release dates are assigned to the jobs. Job 1 has the release date
r\ = 0. Then the release dates of the jobs 2, 3,..., n are generated, which
are uniformly distributed integers in the closed interval [0, r m a x ] , where
rmax = [!&inj. Next g groups of jobs are generated. This is done by
assigning a value gn [i] to each job i with 1 < i < n, which means that job i
belongs to group Ggn^y First, each job i with 1 < i < g is inserted into
group Gi and then for i — g + 1, g + 2,..., n the value gn [i] is determined
as a uniformly distributed integer in [1, g]. In our experiments we always
choose g — |_n/3_|-

Then the technological routes of all jobs are generated. In all problems,
each job has to be processed exactly once on each machine. For each
job i, 1 < i < n, the technological route is determined by inserting
successively machine k, k = 2, 3,..., m, into the partial séquence of the
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first k — 1 machines. For inserting machine fc, the generated random number
is transformée! to an integer from the closed interval [1, k], which gives the
position of machine k among the machines 1, 2,..., k. Finally, in the case
of minimizing the weighted sum of completion times, the weights w% are
generated, which are uniformly distributed integers in the closed interval
[1, 10].

In ail tests we used a\ = 1 and a,2 = 0. Moreover, we considered
problems with dominant setup times (DST; b\ — 50, 62 = 200), with
dominant processing times (DPT; 61 = 200, 62 = 50) and with similar
processing and setup times (SIT; 61 = b% — 100). Our experiments have
been performed on a PC 486 (66 MHz) and we have coded ail algorithms
in C + +. For generating the z-th problem of each type, we use the seed
x0 = 2654321 + % * 2123456.

In the following we give the results in the case of a regular criterion
for the algorithms ij, (insertion algorithm with beamwidth 6), Ik (insertion
algorithm with k parallel insertions) as well as for the priority rules ECT,
FIFO and NINQ.

4.2. Insertion orders

First we tested the proposed insertion orders for the basic variant I\ of the
insertion algorithm. To this end, we have fixed n — vfi— 10 and considered
problems with both regular criteria and with both kinds of job availability,
while for the second type of problems batch availability is assumed on the
machines 6-10. For each problem type we generated 20 problems with DST,
20 problems with DPT, and 20 problems with SIT and we compared the
average objective function values for each problem type. We considered
the insertion orders la)-le), 2a)-2d) and 3a)-3d). In Table 1 we give the
percentage of the average objective function value of the individual variants
over the best average value of each class.

From Table 1 it can be seen that an opérationwise insertion (la)-le)) works
bad. Among the jobwise insertion orders, we see that a suitable insertion order
dépends on the given objective function. Whereas in the case of makespan
minimization an insertion according to nondecreasing values d% — r* - Tj
turns out to be préférable, one can recommend an insertion according to
nonincreasing weights when minimizing ^T wi Ci- Additionally, in the case
of DST problems a groupwise insertion of the jobs can be recommended,
while for SIT and DPT problems a groupwise insertion of the jobs should
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TABLE 1

A comparison ofseveral insertion orders.

233

io

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

la

20.84
15.62
14.01

30.52
11.46
13.70

14.80
15.42
10.56

26.82
11.65
14.75

lb

19.12
7.30
9.63

27.59
6.50

11.90

18.03
7.18
5,84

21.41
7.40

11.78

lc

17.02
9.75

10.29

26.91
11.20
14.61

2a

J/BH,

5.90
4.20
2.32

J/shj 1

2.75
0.0
0.0

J/shj > 0,

17.17
10.00
9.19

6.08
5.08
3.04

J/SHJ >

23.96
9.00

14.87

0.0
0.0
0.0

2b

> 0, ia

9.11
7.79
8.03

> 0, m, ,

6.45
3.11
4.62

ba (6,...

3.90
8.76
5.59

0, ba (6,

3.52
3.63
2.47

2c 2d

n > 0/Cmax

3.88
0.0
00

4.03
6.24
4.12

H>0/T wl Ci

10.61
4.42
6.99

, 10), n

2.91
0.0
00

..., 10)/

4.92
4.66
4.19

6.29
3.61
4.33

> o/c,

2.84
5.81
1.61

3.46
2.86
3.46

3a

3.06
4.65
2.12

1.19
3.27
2.51

xtax

0.0
5.25
2.86

1.47
2.00
1.79

3b

2.69
7.01
4.58

1.42
5.69
5.12

0.79
7.91
3.73

4.51
3.24
2.89

3c

0.0
2.53
2.32

0.88
5.47
5.81

0.99
1.25
1.55

2.33
4.24
4.55

3d

0.97
4.85
4.78

0.00
4.40
2.17

3.17
6.09
2.17

4.38
4.60
4.00

be avoided. Note that the type of job availability does not seem to influence
the choice of a suitable insertion order.

For our further tests we always use the insertion orders recommended
above (cf. the underlined numbers in Tab. 1, which document the chosen
insertion orders). This choice takes into account that we tried to avoid to
have for each individual variant a different insertion order. As it can already
be seen from Tab. 1, the structure of the problem and also the objective
function has some influence on a good variant for inserting the opérations!
Even a random insertion, which usually does not lead to the best results
can sometimes be suitable if no sufficient information about the choice of
a suitable order is available.

4.3. Insertion versa priority rules

After having fixed the concrete insertion order for the different problem
types, we have compared the basic variant I\ of the insertion algorithm with
the three priority rules ECT, FIFO and NINQ. We considered both objective
fonctions Cm a x and ]£ wi Q combined in each case with item availability
and batch availability on the machines [m/2j + 1,..., m. For each of the six
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combinations of n and m, we again randomly generated 20 problems with
DST, 20 problems with DPT and 20 problems with SIT.

In Table 2 we give for each problem type the average percentage
improvement of algorithms I\, FIFO and NINQ over the référence algorithm
ECT, Le. we compared the average objective function value of ECT with the
average objective function value of 20 problems of the considered type and
measured the percentage différences between them. In the case of minimizing
makespan, the priority rule FIFO yields worse results than ECT for most
of the DST problems. Also NINQ works worse than ECT and even worse
than FIFO for DST problems with item availability when minimizing the
makespan. However, for the makespan problems with DPT and SIT both
algorithms FIFO and NINQ are superior to ECT. In the case of minimizing
the weighted sum of completion times, ECT works clearly better than the
other applied priority rules.

Comparing the basic insertion variant with the priority rules, we see
that the variant h already outperforms ail other priority rules for ail problem
types, independently of the objective function and the type of job availability.
In particular, for DST problems with batch availability and minimizing the
weighted sum of completion times, we have obtained, on average, nearly 25%
improvement over the best priority rule ECT. Contrary to that observation, the
smallest percentage improvements of h over ECT have also been obtained
for certain DST problems (see item availability with minimizing makespan).
A similar resuit has been obtained for the permutation flow shop problem
{see minimization of the sum of completion times in [32]). Generally spoken,
one can see that the average percentage différences between the different
algorithms are much larger for the problems with batch availability than
those with item availability.

4.4. Different degree of batch availability

Up to now we considered only one variant of batch availability
(approximately on half of the machines). To test, whether the degree of
batch availability has some influence on the results, we applied various
algorithms to problems with n — 20, m = 10 and a different number of
machines with batch availability. The results are given in Table 3. As it can
be seen, the degree of batch availability does not substantially influence the
results (even with 2 machines with batch availability the results are closer
to those problems with 5 machines with batch availability than those with
item availability). So further, we continue with considering problems with
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TABLE 2

A comparison with priority rules for problems

235

> 0, x, Vi > O/F.

n, m

10,5

10,10

15,5

15,10

20,5

20,10

10,5

10,10

15,5

15,10

20,5

20,10

Type

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

h

x = ia

22.91
9.42

12.73

4.77
11.18
10.62

6.66
10.86
7.54

3.68
8.25
7.25

6.88
14.00
8.81

6.38
13.80
4.72

x = ba([
F

20.38
11.49
12.47

14.77
16.26
11.97

26.75
9.44

10.45

12.27
11.80
9.86

26.55
11.51
12.76

15.01
12.87
9.43

FIFO

0.87
0.0

-2.07

-3.91
4.42
0.48

-9.30
6.77

-1.34

-7.47
-1.76

0.88

11.87
7.15
0.48

-9.03
7.49

-0.82

m I i 1

0.01
3.72
2.48

0.06
6.80
5.80

-1.66
4.87
0.60

-1.88
2.15
1.16

-1.97
7.03
1.10

2.98
7.74
1.29

NINQ

« X

-6.54
3.27
0.61

-12.59
3.45
3.78

-19.45
6.67

-1.56

-9.69
0.68
0.53

-28.43
5.72

-1.21

-10.10
7.60
1.32

». ™),

0.01
4.60
4.68

2.45
4.69
4.76

-0.55
4.91
0.20

2.49
3.13
3.03

0.92
5.09
1.54

0.46
8.33
5.16

h

x =

27.56
10.52
14.46

11.95
8.56
9.71

17.22
11.54
11.75

13,84
8.58

13.51

17.30
12.75
12.69

11.17
12.78
11.42

14.27
25.33
15.58

20.27
10.44
11.16

29.88
12.46
16.21

23.52
10.54
18.07

28.54
12.22
15.57

23.67
13.37
15.59

FIFO

•- ia, F = £

-8.00
-2.59

-10.02

-13.73
-1.67
-5.41

-23.88
-2.70

-13.16

-23.28
-4.73
-8.58

-29.30
-3.59

-30.03

-30.03
-1.99

-10.24

F = £ wiC

0.01
-7.63
-5.32

-7.45
-0.66
-3.21

-16.85
-3.59

-10.82

-14.91
-3.41
-7.43

-19.32
-4.68

-11.12

-17.19
-1.64
-7.76

NINQ

Wid

-20.43
-7.95

-16.14

-25.22
-2.40
-6.69

-40.70
-14.56
-24.41

-26.87
-7.47

-15.02

-40.91
-19.15
-31.87

-31.87
-6.32

-14.82

...,m),

-4.97
-12.39
-8.91

-9.61
-2.00
-4.43

-18.80
-14.80
-18.98

-13.43
-6.87

-10.37

-23.11
-19.77
-24.04

-12.10
-6.26

-10.65
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TABLE 3
The influence ofthe degree of batch avaiiability.

x — ia

, = 6.(1,...,

x = ba (4,...,

a; = ba (6,...,

a; = 6a (8,...,

10)

10)

10)

10)

Type

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

h

J/Shj >

6.38
13.80
4.72

10.09
13.16
9.01

14.11
14.21
9.43

15.01
12.87
9.43

14.27
14.52
9.14

FIFO

o, x7 n >

-9.03
7.49

-0.82

-530
5.68
2.54

2.26
8.70

-1.29

-2.98
7.71

-1.29

-3.50
-1.64

1.70

NINQ

o/c m a K

-10.10
7.60
1.32

-0.82
6.62
6.72

-0.33
9.36
5.16

-0.46
8.33
5.16

-1.35
-6.26

4.35

II

11.17
12.78
11.42

23.24
13.70
15.70

23.87
13.47
15.60

23.67
13.37
15.60

24.26
12.72
14.56

FIFO

x,n>o

-30.03
-1.99

-10.24

-16.84
-1.94
-7.45

-16.88
-1.52
-7.76

-17.19
-1.64
-7.76

-17.43
-1.77
-7.51

NINQ

-31.87
-6.32

-14.82

-10.75
-6.53

-10.83

-13.34
-6.39

-10.65

-12.10
-6.26

-10.65

-15.09
-5.66

-10.99

batch avaiiability, where approximately half of the machines have this type
of job avaiiability.

4.5. Refinements of the insertion algorithm

Next, we tested the basic variant h of the insertion algorithm against
the proposed refinements beam search and parallel insertions. To this end,
we concentrated on DST problems (which have mostly been considered in
connection with such types of problems, see [9, 34]) and generated for each
combination of n and m again 20 problems. The results are given in the
Tables 4 and 5. In Table 4 we present the average percentage improvements
obtained with beam search (beamwidths 2 and 3) and parallel insertions (2
and 3 insertions in parallel) with respect to the basic variant Ii and in Table 5
we state how often each of the applied 5 variants has obtained the best value
among the problems of each type. From Table 4 it can be seen that the largest
percentage improvements over I\ have been obtained for the problems with
minimizing the weighted sum of completion times when k = 3 opérations
have been inserted in parallel (up to nearly 8%). Surprisingly, the largest
average percentage improvements have been obtained for the problems with
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TABLE 4

Resuits with beam search and parallel insertions
forproblems J/shj > 0, x, n > Q/PwithDST.

237

n, m

10,5
10,10
15,5
15,10
20,5
20,10

10,5
10,10
15,5
15,10
20,5
20,10

h

2.55
0.75
1.23
0.34
0.00
0.27

x = ba

2.06
0.53
2.41
5.51
1.48
0.58

h

x = ia, F

2.22
-0.30

2.05
0.58
0.52
0.20

Qçj + i,.
2.32
1.33
3.95
4.91
2.90
1.37

12

— r*
— ̂ m a x

-0.20
0.90
2.30

-0.82
-0.57
-0.24

,m),F =

3.35
- 1 3 1

1.32
2.58
1.80
0.36

13

1.55
1.57
2.94
0.58
1.70
1.26

c m a x

5.24
4.12
5.39
4.39
2.77
0.79

h

x

1.88
2.35
1.69
3.56
2.34
1.81

1.25
2.00
4.94
0.48
2.35

-0.16

h

= ia, F =

3.15
3.92
3.62
3.85
2.92
3.32

0.51
2.30
6.14
1.69
4.78
1.71

12

2.82
2.30
3.03
0,96
5.87
1.19

m),F =

3.20
0.87
2.88
1.88
3.96
2.29

13

6.15
3.94
4.54
4.36
7.92
5.48

Erna
0.82
2.20
6.65
1.88
6.60
2.93

TABLE 5

The number of best values obtained with different insertion variants
for problems Jf shj > 0, x, n > 0/F with DST,

n. m

10,5
10,10
15,5
15,10
20,5
20,10

10,5
10,10
15,5
15,10
20,5
20,10

II

8
6
0
4
2
2

x =

5
3
2
3
2
3

h

x =

11
7
1
4
3
5

MLfJ
5
2
2
8
4
3

h

ia, F = Cv

10
4
4
5
5
6

+ 1,..., m)

6
2
3
5
9
7

12

5
6
8
3
3
5

>F =

8
4
3
3
5
3

13

5
7
8
9
8
5

c m a x

9
12
10
6
4
5

II

1
2
0
1
0
1

X = &(

3
5
0
2
0
2

I 2

x =

2
2
2
6
3
3

>(l?J
3
4
1
2
3
5

h

ia,F = J2

4
6
5
7
3
5

+ 1,..., m)

7
8
6
5
6
6

12

lui Ci

3
5
4
1
3
3

. * • = !

7
3
2
3
2
5

13

11
7
9
8

11
10

>,Ci

6
5

11
9
9
5

5 machines. As Table 6 shows, the variant 13 also yields most often the best
value among these 5 constructive variants.

Although we primarily concentrated on the comparison of the quality of
the obtained solutions, we add some remarks on the computational times. For
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Results for problems
TABLE 6

> 0, rr, r{ > 0/F with special technological routes.

n, m

10,5

10,10

20,10

10,10

10,10

10,5

10,10

20,10

10,10

10,10

Type

DST

DST

DST

DPT

SIT

DST

DST

DST

DPT

SIT

TR

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

FIFO

x

-5.92
-2.23

-15.35
-4.13

-8.50
-8.88

-21.47
-21.08

-14.10
-22.18
-36.42
-24.91

0.65
-1.32
-1.05

0.37

-2.12
-7.33
-6.35
-5.36

x =

-4.68
-7.32
-5.60

0.00

-3.43
-8 .79

-10.99
-7.35

-4.94
-8.28

-17.45
-10.38

7.71
0.03
1.18
2.17

-2.62
-2.49
-5.88
-2.38

h
= ia, F

-7.36
-5.43
-4.21

5.96

-10.88
-3.20
-6.79
-5.46

-17.16
-11.49
-15.77

-2.57

5.87
3.67
2.01
1.30

1.76
-0 .06
-3 .68
-2.62

MLTJ
F = C

21.41
19.18
19.32
23.77

10.01
7.18
7.59

12.19

10.77
12.67
4.00

12.93

9.85
3.59
2.03
1.95

2.03
3.13
1.73
2.48

h

^ . 5 5
-0.64

3.61
10.76

-6.46
-0.90

1.34
0.30

-11.40
-2.92
-6.85

5.47

7.88
5.00
4.48
3.16

3.58
2.44

-0.58
0.90

+ 1,..,

m a x

27.46
25.99
22.47
25.89

11.53
13.67
14.96
17.12

13.58
16.90
12.01
18.99

11.84
4.55
4.39
3.57

4.43
6.07
5.04
5.05

73

3.14
3.62
0.15
6.15

-4.50
-0.58

4.10
-3.94

-8.56
-3.42
-8.92

4.60

6.62
4.37
2.50
4.23

3.35
0.85

-5.30
-1.34

m),

24.79
23.85
20.89
28.44

13.70
9.65

10.63
13.21

14.80
17.66
10,86
16.20

9.28
5.25
2.46
2.79

2.88
3.63
3.65
3.92

FIFO

x -

-8.20
-3.20

-16.38
-9.24

-12.62
-12.18
-21.89
-28.02

-17.76
-25.74
-43.46
-32.77

-4.32
-5.33
-4.62
-5.33

-8.20
-11.80

-8.14
-10.08

x =

-5.72
-5.09
-8.46
-6.16

-7.22
-8.70

-11.73
-9.75

-12.69
-17.54
-18.44
-15.73

0.20
-4.17
-3.24
-5.46

-6.99
-3.49
-7.91
-8.20

h

= iat F

6.29
7.12
8.06
4.96

-6.39
-4.48

5.48
2.70

-14.04
-0.21

-15.16
1.52

-1.97
1.60
0.80
3.88

-5.79
-6.94
-1.94

2.78

Ml?
F = I.

21.51
16.82
11.91
17.06

6.69
8.97
7.50

11.41

8.70
4.88

-0.63
13.99

2.85
2.17
2.14
3.42

-6.14
0.29
1.05
5.23

h

= !><
7.96

11.12
10.72
13.42

-2.04
1.52
8.47
7.89

-9.84
0.97

-6.72
7.00

0.55
2.91
2.85
6.80

-2.15
0.70
5.08
9.49

)Wid

22.62
22.03
21.78
21.43

8.78
10.01
12.80
15.80

9.86
9.54
5.59

15.48

5.84
4.55
2.11
6.99

0.54
7.88
7.86

11.02

/ 3

Ci

13.13
8.21

10.69
14.99

5.10
11.28
14.75
10.74

-3.17
11.15
6.71

13.79

1.86
5.32
3.53
5.73

0.91
-2.79

5.04
4.62

m),

27.53
25.82
20.32
21.56

13.30
1&.02
11.97
19.61

13.46
13.25
15.15
21.99

6.84
6.57
6.16
6.93

0.61
8.54
6.66
7.41
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the large problems (n = 20, m — 10), the average running time per problem
was 6 s for I\ and 18 s for 1% when minimizing ]T w%C%. When minimizing
Cmax, where the objective function value after inserting an opération (i, j)
can be obtained by considering only the old value and T%J + Uj + z%j, the
average running time per problem was 1.5 s for I\ and approximately 4 s
for ƒ3. For ƒ3 the average running time was about 2 min for both objective
functions. For the small problems (n = 10, m — 5), the running times were
less than 2 s for ƒ3 and less than 1 s for I\. For 73 the average running time
was about 8 s. All applied priority rules run in less than 1 s.

4.6. Special technological routes

Next, we tested the two priority rules ECT and FIFO against three variants
II, h and 73 of the insertion algorithm for special technological routes:

TR A: Choose the same technological route for all jobs of a group;

TR B: Choose an individual technological route for each job but each
job has to be processed first on the machines 1,..., \_m/2\ and then on the
machines j_rrt/2j + 1,..., m, where the séquence of machines within each of
both sets of machines is randomly determined.

TR C: Choose randomly one "basic" technological route from which
the concrete individual technological routes for each job are determined
by performing exactly m inversions in the permutation of the machines in
the basic technological route {Le. m interchanges of adjacent machines are
performed in the initial permutation).

TR D: Apply the same procedure as in TR C but for each group separately,
Le. choose one basic technological route for each group and détermine then
the individual technological routes of each job of the corresponding group
from this basic route as in TR C.

The average percentage improvements of the individual variants over the
référence algorithm ECT are given in Table 6. We included into our tests
three combinations of n and m with DST and, to test whether different
conclusions can be drawn for different types of processing and setup times,
we selected one combination (n = m = 10) in connection with DPT and
SIT problems. We give here all results in detail since various new tendencies
can be observed in comparison with the previously obtained results.

First, in almost all cases ECT now outperforms the other priority rule FIFO
(with a few exceptions for DPT problems with makespan minimization).
Comparing ECT with the different insertion variants, we can observe that for
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the problems with batch availability the insertion variants are much better
than ECT independently of the objective function. Moreover, the refinements
of the basic insertion variant often leads to substantially larger percentage
improvements over I\ than for the randomly generated problems. This is
especially true for the parallel insertion variant 73 (see for instance TR B or
TR C when minimizing the weighted sum of completion times). A different
behaviour can be observed for the problems with item availability. Hère in
some cases the ECT rule works surprisingly good. Whereas in the cases
of minimizing the weighted sum of completion times, the refinements of
the basic insertion variant (in particular 73) clearly outperform ECT, for
large DST problems even the refinements of the insertion algorithms do
not beat ECT However, in particular for minimizing Yl wi Cï> the parallel
insertion variant yields substantial improvements over the basic variant. One
conclusion of the results in Table VI is that possibly for special technological
routes another insertion order could be préférable than in the case of usual
randomly generated problems but 73 is able to "compensate" this difficulty
and it yields in most cases clearly the best results among the constructive
algorithms.

4.7. Nonregular criterion

Finally, we considered job shop problems with family setup times
and a nonregular criterion, namely, we consider the minimization of
^2 Wi (Ci — di)2 as a special case of earliness and tardiness penalties.
In our tests we assumed correlated release and due dates. By means of the
generated release dates we calculated due dates according to

di = n +y

In the experiments we applied y G {4, 6, 8, 10}. Since the objective function
values vary in a rather large range for the considered problems, we present
the average values in rounded thousands in Tables 7 and 8.

In Table 7 we give the results of Algorithm 7i using different insertion
orders for problems with 10 jobs and 10 machines. In initial tests we have
found that it is often advantageous to reverse some of the insertion orders
proposed above for regular criteria, since the schedules are constructed from
the right. Therefore, we included the results for the orders a* (nondecreasing
job weights) and 6* (nonincreasing release dates) into the table. It can be
seen that insertion order 3 a* is clearly the best one. However, the second
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TABLE 7

A comparison of several insertion orders for a nonregular criterion.

241

io

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

DST
DPT
SIT

2a

12,029
553

1,159

717
3,701
206

747
5,544
1,397

723
9,861
2,653

2b

12,709
1,099
310

1,254
2,336
958

523
2,641
678

1,094
4,476
1,016

2c

7,453
2,470
813

1,781
3,099
1,464

264
2,706
1,406

384
5,855
1,532

2d

10,719
3,392
913

225
6,508
1,833

1,028
8,624
2,191

1,534
1,843
2,959

2a*

8,503
1,076
337

755
1,514
571

379
3,550
969

339
1,012
486

2b*

y = 4

4,317
2,171
2,137

y = 6

674
3,647
1,123

946
5,283
1,622

y = 10

291
1,930
1,193

3a

4,972
1,026
411

416
1,302
411

1,352
2,558
1,336

1,430
4,963
1,297

3b

7,698
437
316

434
3,764
316

180
1,766
819

221
3,472
412

3c

6,643
2,755
1,453

908
4,668
1,453

392
1,348
2,390

273
3,181
1,020

3d

5,379
624
323

451
2,117
323

460
1,332
962

173
381
550

3a*

7,721
973
855

406
927
380

176
819
374

204
814
275

3b*

5,564
1,524
504

1,115
2,637
1,000

408
1,317
409

322
881
714

best order is the random groupwise insertion (order 3d). This also indicates
why sometimes even the opposite insertion of the jobs can be préférable
in certain situations.

Then we tested some insertion variants against priority rules. The results
are presented in Table 8. In all insertion algorithms we applied order 3 a*.
In addition to the basic variant I\, we applied unforced shifts after each
inserted job {Le, n times during the algorithm; variant h/n) and unforced
shifts one time to all jobs after a complete schedule has been obtained
( / l / l ) . Among the priority rules, we give the results for the three best rules
with applied unforced shifts to all jobs in the complete schedule {ECT/l,
URG/l and SLACK/l), We present the results for problems with 10 jobs and
5 as well as 10 machines.

Although the objective function values for the priority rules vary in a
large range, mie URG turns out to be the best one. However, only in 3 of
24 problem types considered in Table 8, the best average value has been
obtained by a priority rule. In most cases the favourite is algorithm I i / l ,
which yields partially substantially better objective function values than all
other variants. It can be seen from Table 8 that the considération of unforced
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shifts for all jobs at the end is usually prefererable than trying unforced
shifts after each inserted job.

TABLE 8

A comparison with priority rules for a nonregular criterion.

y=4 DST
DPT
SIT

y = 6 DST
DPT
SIT

y=8 DST
DPT
SIT

y = 10 DST
DPT
SIT

y=4 DST
DPT
SIT

y = 6 DST
DPT
SIT

y = 8 DST
DPT
SIT

3/ = 10 DST
DPT
SIT

Ecrn

6,586
5,002
2,706

4,848
8,651
3,858

5,801
261,441

5,510

7,167
542,034

8,534

3,598
6,679
2,619

4,791
864,317

4,362

6,361
2,205,109

175,202

8,392
1,663,658

610,297

URG/l

7 1 = 10 ,

14,335
558
811

4,749
2,154

388

1,632
134,884

356

1,077
556,502

1,220

n = 10,

7,932
658
711

23,734
814,162

518

1,810
1,870,364

962

1,374
1,604,671

509,206

SLACK/1

m — 5

12,305
2,338
1,927

4,850
1,767
1,198

2,682
111,805

883

2,654
576,113

800

m = 10

7,373
1,030
1,220

29,216
857,407

669

2,643
1,860,964

1,429

2,317
1,648,409

535,353

h

11,287
827
747

4,131
485
367

943
415
350

644
558
252

8,503
1,076

337

755
1,514

571

379
3,550

969

338
1,012

485

h/1

11,287
729
746

4,123
375
295

926
277
233

596
344
155

8,503
1,065

329

749
924
299

306
1,844

540

255
588
299

il/71

11,617
834
911

3,835
452
293

992
403
356

1,055
555
191

7,500
1,077

377

870
1,490

564

353
3,598

957

315
1,002

508

5. CONCLUDING REMARKS

In this paper we performed a computational study on insertion algorithms
for job shop problems with family and batch setup times, different types of job
availabilities and différent objective functions. In addition, a comparison with
some typical priority rules has been performed. The following conclusions
can be drawn from our experiments.
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1. Generally spoken, insertion algorithms usually clearly outperform
priority rules. Although the computational expense is higher, insertion
algorithms should be applied to get a heuristic solution of various scheduling
problems instead of priority rules, which are often more sensitive with
respect to the problem structure.

2. A suitable insertion order of the opérations dépends on the type of the
considered problem. The objective function strongly influences the choice
of a suitable order but also the concrete structure of a special problem.
We recommend to insert successively all opérations of a job. In the case
of minimizing the makespan it is préférable to insert the jobs according to
increasing "slack" times (Le. "due date" minus release date minus required
time for processing). When minimizing the weighted sum of completion
times, it is recommendable to insert the jobs according to nonincreasing
weights. For problems with dominant setup times, it is préférable to insert
all jobs of the same group consecutively.

3. In connection with the considered regular criteria, the proposed
refinements improved the results in particular for the "hard" problems.
Ho wever, for some special situations (cf. Tab. 6) the performance of the
chosen insertion variant is still unsatisfactory. Hère additional investigations
seem to be necessary. One possibility consists in applying a filtered variant
of beam search in such cases.

4. For problems with a nonregular criterion, it turns out to be very difficult
to détermine a good heuristic constructive solution. Hère the investigations
are only in an initial stage. For the considered problem, the objective function
values vary for the individual algorithms in a large range. Whereas the
modified priority rules perforai poor in gênerai, the insertion algorithm with
the selected best insertion order (nondecreasing weights) works substantially
better. However, even the objective function values for the various insertion
orders vary in a large range. In comparison with regular criteria we observed
that it is sometimes advantageous to apply the opposite insertion orders
(cf. orders 2a*, 2b*, 3a* and 3b*). It tumed out to be préférable to insert
the jobs groupwise according to the selected insertion order.

5. Job shop problems with setup times are very hard to solve (only
problems with very small dimensions can be solved exactly). Therefore,
besides constructive algorithms the development of itérative algorithms based
on local search is necessary. In this connection the main problem is to design
suitable neighbourhoods that are sufficiently flexible to handle the different
situations even within the same problem type.
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