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ON THE INDUSTRIAL AND MECHANICAL APPLICATIONS
OF DUAL VARIABLES IN LINEAR PROGRAMMING (*)

by Letizia PELLEGRINI (*)

Communicated by Franco GIANNESSI

Abstract. - The interprétation of a linear program in an industrial context is a well-known fact:
it models a problem of maximum profit with scarce resources and the optimal solution of its dual
problem is interpreted as a shadow prices vector. Nevertheless, as pointed out by Dantzig and
Jackson in [3], this classic interprétation cornes short when one of the resources is not completely
exhausted in the optimal production process; in fact, in such case, its value is set to zero. In this
paper a generalization ofthe improvement based on a perturbation method and proposed by Dantzig
and Jackson is analysed, discussed and compared with another approach [1]; it is proved thaï such
a perturbation can lead to a situation where dual variables do not allow any évaluation of the
resources. This inadequacy is brought up every time we apply Linear Programming in order to
model a real problem: in this paper this shortcoming is presented and discussed in a primal-dual
pair describing a classic problem of Mechanics. © Elsevier, Paris

Keywords: Dual variables, shadow prices.

Résumé. - L'interprétation d'un problème de programmation linéaire dans un contexte industriel
est bien connue : il représente un problème de profit maximal avec de maigres ressources et la
solution optimale de son problème dual est interprétée comme un vecteur de prix ombre. Néanmoins,
comme Dantzig et Jackson l'ont remarqué dans [3], cette interprétation classique montre un défaut
quand une des ressources n 'est pas complètement employée dans le procédé optimal de production;
en effet, dans ce cas sa valeur est imposée égale à zéro. Dans cet article on analyse et on
discute une généralisation de la solution basée sur une méthode de perturbation et proposée par
Dantzig et Jackson tout en la comparant avec une approche différente [1]. On démontre que dans
certains cas cette perturbation peut conduire à une situation dans laquelle les variables duales ne
permettent pas d'évaluer les ressources. Cette inadéquation se présente chaque fois qu'on utilise
la Programmation Linéaire pour modéliser un problème réel : dans cet article cette inadéquation
est présentée et discutée en utilisant une paire primale-duale qui décrit un problème classique de
Mécanique. © Elsevier, Paris

Mots clés : Variables duales, prix ombre.

1. INTRODUCTION

Let us consider a linear programming problem in the following format:

(1.1) maxcT#, s.t. Ax < 6, x > 0,
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426 L. PELLEGRINI

where A — (a^), i = 1,..., m; j = 1,..., n is a matrix of order m x n,
cT = (ei,..., cn) a row n-vector, 6 a column m-vector, all with real entries,
and T dénotes transposition. In the sequel, Ar will dénote the r-th row of A
and br the r-th element of b; "s.t." means "subject to".

Problem (1.1) is called primai problem, when it is associated with the dual
problem, which is another linear program in the following format:

(1.2) minAT&, s.t. XT A > c r , A > 0,

where XT = (À/,..., Am) is a row m-vector with real entries.

In an industrial context, an interprétation of (1.1) is a well-known fact: it
arises when A is the so-called technological matrix, c the vector of incomes
and b the vector of available factors of production (Le., the resources); x is
the unknown vector of outputs. Consequently, even the dual of (1.1) has a
classic interprétation as shown below.

The industry, instead of transforming the resources b into the outputs x,
can, hypothetically, consider the conditions under which it should be more
convenient to sell the resources directly (instead of transforming them into
goods); this leads to problem (1.2): any existing feasible solution would make
the direct selling of resources more convenient or at least not worse than their
transformation in final consumption goods. The minimum point A° of (1.2)
is the vector of so-called shadow prices of the m resources; it represents
the worst situation of this second model and, as implied by the Duality
Theorem for Linear Programming [2], leads in (1.2) to the same optimal
value of (1.1), Le. to economie equilibrium.

In 1978 Dantzig and Jackson [3] made the following important remark. If
a maximum point of (1.1), say x°, is such that:

(1.3) Arx° < br,

then, because of the well-known Complementarity Slackness Theorem [2], it
results that Â  = 0; in other words, if a resource is not completely expended
in the production process, its value is set to zero. This is obviously in contrast
with the real situation, where a limited resource, if employed in a positive
quantity, receives a positive quantification, even in the case of a surplus in
the production process. Hence the classic model fails.

This shortcoming will be analysed in this paper by exploiting the properties
of primai and dual problems. Moreover, the rectification proposed in [3] and
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based on a particular perturbation technique will be examined, discussed and
compared together with another approach [1], by pro ving that a generalization
of the perturbation technique can lead to a situation where dual variables
do not allow any évaluation of the resources. The inadequacy of the classic
model (and consequently the failure of the perturbation technique) is not
a peculiarity of the industrial problem, but is present every time we apply
the Linear Programming in order to model a real problem: for example, it
will be shown that a similar "pathology" is present in a primal-dual pair
describing a classic and elementary problem of Mechanics.

2. RELATIONSHIPS BETWEEN PRIMAL AND DUAL PROBLEMS

The Duality Theory [2] establishes important relationships between a
primai problem and its dual.

Let us consider problem (1.1) with the addition, in Ax < b, of slack
non-negative variables, whose row vector is yT = (yi,..., ym). If the
(m + n)-vector (x°T,y°T) — (x°g,x^) is an optimal non-degenerate
basic solution of (1.1) and (A, / ) = (B, N) is the corresponding (unique)
décomposition into basic and non-basic submatrices, then (A°)T — CQB~1

is a minimum point of (1.2); this allows to express the maximum of (1.1)
in terms of 6, Le.

G(b):= max_ cT x = cT
B B~l b,

where (c^, c^r) is the partitioning of (cT, 0) in a accordance with that of
(A, I) = {B, N). It follows that the minimum point of (1.2) is the gradient
of G(b):

Hence A° may be interpreted as the "instantaneous velocity" of the
maximum function G (b) with respect to a variation of b. In the industrial
context these velocities, being the rates of change of the maximum function
with respect to the vector b of available factors of production, are assumed
to be the shadow prices of the m resources.

Unfortunately, this assumption is not correct when (1.3) occurs, Le., when
the slack variable yr is positive, so that the corresponding value of A£
collapses to zero. In this case, in [1] a proposai has been made to obtain
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a non-zero shadow price associated to the r-th resource. Such a proposai
consists in replacing in (1.1) the r-th constraint with ATx < 6r, where
~br :— Ar x°', this means that the r-th resource is reduced in such a way that
its use in the optimal production process is exactly equal to its availability.

Consider the following problem:

(2.1) maxc T #, s.t. Ax + y = &, (x, y) > 0,

where 6 = (&i,..., 6 r - i , &r, &r+i)..., &m); it turns out that (x°T, y°T)
is a degenerate basic optimal solution of (2.1). Hence, there are h > 1
optimal basic matrices Bi, ï = 1,..., ft; each of these bases characterizes
a dual optimal solution, say A°\ Since it results that (XOl)T = Cg. B~l,
i = 1,..., /i, the r-th element of every vector A01,..., XOh may be assumed
to be a shadow price of the r-th resource; in fact, since there are h different
ways (Le., h different bases) for identifying the production strategy x°,
then we meet not neeessarily a unique évaluation of the r-th price. It is
important to observe that in this case the function G (b) is not neeessarily
differentiable at b.

The évaluation can be even more gênerai. Let us consider in R™ the
convex huil of A01,..., A0/i; it is a subset of a face, say F, of the feasible
set of the dual of (2.1). Every point of this face (A01,..., Xoh included) is
an optimal solution of the dual of (2.1); hence it can be chosen as vector
of shadow prices and, in particular, the r-th element of every vector of the
face F can be interpreted as price of the r-th resource.

Generally, a function /x : F Ç R"2 —> R^ can be defined in such a way
that \iT (A), A € f, is the price of the r-th resource.

3. A PERTURBATION METHOD

In [3] Dantzig and Jackson made the observation that suggested the
procedure explained in Section 2; moreover, they also proposed a solution
based on a particular perturbation technique.

Following their suggestion, we introducé, starting from problem (2.1), a
perturbed problem, called P (e) because of its dependence on a parameter a\
The idea consists in employing the e perturbation in such a way that the
optimal solution of P (e) is non-degenerate, and subsequently studying the
optimal solution of the primai problem and the limits of the corresponding
dual solutions as e goes to zero, i.e. as the perturbation vanishes.
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We will show that the above perturbation method does not enlarge -with
respect to the proposai made in [1]- the possibilities of évaluation of shadow
priées; and even, an example will prove that, by using a gênerai perturbation
method (and not only the above special one), it is possible to obtain a
situation where no évaluation is allowed.

Let us consider an optimal basic solution of (1.1), say (x° , y0 ). Since
br = Ar x° < br> then (x°T, y°T) is an optimal basic solution of (2.1) too;
however it is degenerate because x° satisfies at least n + 1 constraints as
equalities, while exactly n of these constraints identify x° in a non-degenerate
way.

Further, we will refer to (2.1) instead of (1.1); 6 will be replaced by b
and (2.1) will be called P.

Let us consider a perturbation of the m constraints A x < b and define
the problem P (e):

maxcTx> s.t. Ax + y = b(e), (#, y) > 0,

where b(e) = b - e and eT := (ei,..., em) > 0. Obviously, if ei = 0
then the z-th constraint is not perturbed; hence the number of constraints
effectively perturbed is < m.

Let us suppose that the maximum point (x°T, y°T) of (2.1) is unique
and call (xT (e), yT (e)) an optimal solution of problem P(e). Among
ail possible ways of perturbing the problem, we will consider only those
for which (xT (e), yT (e)) is the unique optimal solution of P (e) and is
individuated by one of the h bases which correspond to (x°T, y°T).

Obviously, by the définition of P (e), it results that lim£io P (£) = P and
moreover the following proposition holds.

PROPOSITION 3.1: It results that lim^o (xT (e), yT (e)) — (x°T, y°T)
Proof: For every e > 0 there exists a partitioning of (A, / ) , say (B£y NE),

such that {x°T, y°T) - ({B'1 b)T, 0) and such that

Since lim£|o b (e) = 6, then -whatever Be may b e - it follows that

lim£i0 (xT (e), yT (e)) = limei0 (C^"1 b (e)f, 0)

( ( e i 6 f , O ) = (*or,y°T). D
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The continuity of the minimum of P (e) follows from Proposition 3,1; in
f act, it turns out that lim£jo °T x (£) — cT x°.

Let P* and P* (e) be the dual problems of P and P(e) , respeetively;
obviously, it results that lim^o P* (e) — P*- Moreover, let À (e) be the
optimal solution of P* (e) (that is unique under the above hypotheses),
while -as already observed- there is no uniqueness for the optimal solution
of P* • The continuity of the optimal value also holds for the dual problem; in
f act, from the Duality Theorem for Linear Programming [2], it results that:

Hm AT (e) b (e) = lim cT x (e) = cTx°1

where cT x° is equal to the optimal value of P*, given by all h bases or
equivalently by all h optimal solutions of P*. However, lim£|o ^ (£) m a y
not exist, as shown in the following example.

Example 3.1: Let us consider the problem P:

max (3 xi + X2), s.t 2 ^ i + X 2 < 3 , 0 < X{ < 1, i = 1, 2.

The maximum point of P is (x°)T = (rcj, x®) = (15 1) which is degenerate;
there are two optimal bases corresponding to x° that imply, in the standard
form,

X'B1 = (^1) X2, V2) and x%2 = (xi, x2l ys)*

The corresponding optimal dual solutions are:

cT
Bi B^1 = (1, 0, 1) and cg2 B^1 = (3, 1, 0),

respeetively. Now, let us consider the perturbed problem P (e) obtained
by posing

n e

Obviously, lime|o (^i5 ^2? £3) = (0? 05 0). If n is even, then the maximum
point of P (e) in Standard form is (#1 = 1 — f, X2 — 1, yi = 0, 1/2 = 0,
ï/3 = i ) and the dual optimal solution is À = (3, 1, 0); if n is odd, the
maximum point of P (e) is (xj = 1, #2 = 1 - f. yi = 0, 7/2 = f> 1/3 = 0)
and the dual optimal solution isA = ( l , 0 , l ) . Hence, when n —» +00, the
limit of the dual solution does not exist. D
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Let E Ç R™ be the set where the perturbation parameter e runs. The
foliowing result holds.

PROPOSITION 3.2: Every accumulation point of the set À := {À (e) : e G E}
is a vertex of E

Proof: Let À be an accumulation point of A; hence there exists a séquence
{A(en)}iS converging to À. Therefore, for every n G N\{0} there exists
a problem P (en) such that X(en) is an optimal solution of P* (en) or
equivalently there exists a base Bn such that XT (en) = c^ B"1. Let us
consider a subsequence of {X(en)}^1, call it {A (enfc)}j£^, such that to
every index k corresponds the same base B; hence we have that:

XT = lim A T ( e n J = lim c% B~^ = c% B ~ \

Le,, À is a vertex of F . D

4. AN INDUSTRIAL PROBLEM

Let us recall the industrial problem that can be classically represented
by (1.1). If an industry produces n goods by employing m resources in the
transformation process, then the following définitions are given:

xT = (xi1..., xn) is the vector of outputs; Le., XJ is the unknown quantity
of j-th good to be produced, j = 1,..., n;

cT — (ei,..., cn) is the vector of profits; Le,, CJ represents the profit
resulting from the production and the selling of one unit of the j-th good,
j = 1,..., n;

bT — (öi,..., bm) is the vector of input quantities; Le., bi is the quantity
available of the i-th resource, i = 1,..., m;

A = (aij), i — 1,..., m; j = 1,..., n is the technological matrix; Le.,
aij is the consumption of the i-th resource necessary to produce one unit
of the j-th good.

If we assume that the industry is a linear system, then it is evident that
the problem of maximum profit has the formulation (1.1).

If we suppose that the industry may sell the resources directly instead
of transforming them, then an alternative problem naturally arises. This is
represented by the dual (1.2), where XT — (Ai,..., Am) is the vector of prices
of the m resources, and the j-th constraint means that the direct selling of
all the resources, which are employed to produce one unit of the j-th good,
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gives an economie result not worse than that implied by the production of
one unit of the j-th good. It is interesting to consider those vee tors À which
minimize the total income deriving from the direct selling of the resources:
they are the shadow prices. The comparison between the optimal solution
A° of (1.2) and the real prices of the resources, call them p = (pi,..., pm)9

leads us to important information on how the resources are exploited in
the industry. Such a comparison is determined by setting up the ratios |%
i = I j . . . , m where the critical value is of course 1.

The remark made in [3] points out a shortcoming of the classic model; if
x°, maximum point of (1.1), strictly vérifies one of the constraints on the
consumption of the resources, for example the r-th, then A$? is zero. Since À£
is interpreted as the value of one unit of the r-th resource, when exploited
in the production process, we should conclude that the r-th resource, even
if used in a positive quantity, has zero value. In other words, in the classic
model the value of a resource not completely expended in the optimal
production strategy x° is set to zero, while in the real situation the positive
use of a resource implies a non-zero value of it.

The proposai of Dantzig and Jackson for overcoming this inadequacy
is based on a perturbation method. Example 3.1 shows the possibility that
the perturbation method does not work; in fact, even if all the variable
éléments appearing in the primai problem converge, it may happen that the
corresponding dual solutions don't converge; there are only accumulation
points. Since an optimal solution of the dual problem is assumed to be a
shadow prices vector, the non-existence of the limit implies the impossibility
of a correct évaluation of such prices. If we consider the accumulation
points of set A defined in proposition 3.2, we obtain some éléments (the
vertices) of the face F of the feasible région of the dual problem; therefore
the perturbation method does not improve the évaluation already obtained.

The remark of Dantzig and Jackson about the inadequacy of the classic
model is interesting and appropriate, but the proposed rectification is not; in
fact it does not improve the direct évaluation of the dual solutions. In [3]
the inadequacy of the classic model and the subjective resolution of such
inadequacy are merged, while the correct way of dealing with the problem
is to keep the two aspects apart.

5. A MECHANICAL PROBLEM

The linear model and the Duality Theory can be applied in many fields. In
this section we discuss their use in the analysis of a classic and elementary
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mechanical problem. It is important to observe that for such a problem the
analysis is suggested by the mathematical formulation of the dual problem;
nevertheless, in this case too the dual variables turn out to give important
information.

We consider an arbitrary elastic static System S supported on edges (for
example a string, a rod or an elastic beam) and choose on it n points,
Pi,..., Pn- At every of these points we apply a force; hence we have n forces
i7!,..., Fn, where, for every j — 1,..., n, F3 is expressed as the product
between the intensity of the force, supposed equal to 1, and a multiplicative
coefficient XJ. Moreover, we consider m other points Qi,..., Qm on 5 (not
necessarily coincident with the previous n points), and we are interested in
observing the displacements (sags) involved in the m points Qi,..., Qm by
the forces i*i,..., Fn applied at Pi,..., Pn-

Hence we dénote by:
A = (dij), i = 1,..., m\j — 1,..., n the matrix of coefficients of influence;

Le., a%3 is the displacement of Qi under the action of a unit force applied
at Pji

bT = (6i,..., bm) the vector of the maximum allowed displacements in
Ql,..., Qm.

We assume that the forces and the displacements are parallel to one and
the same direction; moreover, we assume that S is a linear System:

1) under the combined action of two Systems of forces the corresponding
displacements are added together;

2) when the magnitude of all the forces are multiplied by one and the same
real number, then all the displacements are multiplied by the same number.

Under these assumptions, the problem of maximum charge supportable by
System S has the following formulation:

{max(rri + ... + xn)

au x\ + ... + ain xn < bi, i = 1,..., m,

Xj > 0, j = 1,..., n,

Le., problem (1.1) with CJ = 1, j = 1,.-, n.
Consider a hypothetical System of forces, alternative to the given one,

applied at the points where the displacements are estimated, Le., Q\,..., Qm
instead of Pi,. . . , Pn\ for every i — 1,..., m, define the variable À̂  as
the intensity of a (hypothetically existing) force per unit displacement. In
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other words, Ai,...,Am are hypothetical forces, applied simultaneously at
Qi,. . . , Qm> respectively; each of them involves an unit displacement at
every of these points.

A comparison between the set of actual forces and the hypothetical one
turns out to be interesting. Such a comparison will be made at every point
Pj7 j = 1,..., n, and under the same displacement: for every i — 1,..., m,
Xi dij is the hypothetical charge applied directly at Qn hence, for every
j — 1,..., n, 5^"=i ^iaij represents the sum of hypothetical charges at
Qi,. . . , Qm to be compared with the given unit charge applied at Pj. The
hypothetical System of forces would be not worse than the given one iff
the above hypothetical charge was greater than or equal to the unit charge
considered in the assigned system:

(5.2) Ai a\j + A2 ü2 j + ... + Am amj > 1, j — 1,..., n;

Le., every solution AT = (Ai,..., Am) of (5.2) is -from the point of view of
the charge supported by the system- not worse than the given set of forces.

Obviously, among all these solutions, it is interesting to know a critical
one, Le. a solution implying the minimum value of the total charge which
can be achieved in the system alternative to S. Since A?; is the force per
unit displacement and bi the maximum displacement allowed at Qi, h Xi
represents the intensity of force (Le., the charge) hypothetically allowed
at Qi. Hence, the above total charge is given by b\ Ai + ... + bm ATO and
the "alternative" problem is

(min (61 Ai + ... + bm Xm)

Ai aij + ... + Am amj > 1, j = 1,..., n,

A» > 0, i = 1,..., m,

which turns out to be the dual of (5.1).
In the industrial problem it is interesting to compare the éléments of an

optimal dual solution, Le. the shadow priées, with the real priées. In the
mechanical problem an analogous comparison is not possible because of
the absence, in the given system, of actual forces associated to the points
Qi>~"i Qm* when they do not coincide with Pi,... , Pn-

On the contrary, following the reasoning of Section 2, there is a perfect
analogy with the interprétation of dual variables as velocities. For the sake
of simplicity, suppose that the minimum point A0 of (5.3) is unique; then
the i-th component of this dual optimal solution gives the variation, Le., the
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instantaneous velocity, of the maximum charge with respect to the variation
of the allowed displacement in Q%. This interprétation gives an important
information: let us suppose, for example, that we want to augment the total
charge and that À° > À°, i / r; i, r = 1, „., m; the dual alternative model
indicates that it is beter to increase the intensity of force in Qr rather than
in Qi, because Qr is a point with greater velocity. Obviously, if n — m
and the points Pi,..., Pn coincide respectively with Qi,..., Qm, the above
information concerns with the given real System and not the hypothetical one.

Finally, if the maximum point x° of (5.1) strictly vérifies the r-th constraint,
then À° = 0; that is, À$? is null if at point Qr the maximum allowed
displacement is not attained by the optimal solution. If we consider À° as the
velocity of variation, then this latter is the correct interprétation; if we define
Ar as the variation of maximum charge with respect to the altération of 6r,
then this variation is not necessarily zero when ar\ x\ + ... + arn x^ < br.
The shortage of the model, like in the industrial case, consists in considering
valid the passage from the mathematical interprétation (A°, i = 1,..., m
are derivatives, Le. velocities) to the industrial or mechanical one (shadow
priées or changes of maximum charge) not only when Aj! > 0, but also when
A° — 0. Hence the same considérations about the method for overcoming
this lack in the industrial case apply to the mechanical one.
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