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(V, p) INVEXITY AND NON-SMOOTH
MULTIOBJECTIVE PROGRAMMING (*)

b y D . BHATIA (*) a n d PANKAJ K U M A R G A R G ( 2 )

Communicated by Jean Pierre CROUZEIX

Abstract. — The concept of (V, p) invexity has been introduced for non-smooth vector functions
and is used to establish duality results for multiobjective programs. © Elsevier, Paris

Keywords: (V". /9)-Invexity, duality, multiobjective programming.

Résumé. — Le concept de (V, p)-invexité est introduit pour les fonctions vectorielles non lisses,
et est utilisé pour établir des résultats de dualité pour les programmes à plusieurs objectifs.
© Elsevier, Paris

Mots clés : (V, p)-invexité, dualité, programmation multiobjectif.

1. INTRODUCTION

Hanson [6] introduced the concept of invexity as a very broad
generalization of convexity. Jeyakumar [8] introduced p-invex functions
and studied various results for a single objective non-linear programming
problem. Mond and Jeyakumar [9] have introduced the notion of F-invexity
for vector function ƒ and discussed its application to a class of multiobjective
programming problems. Jeyakumar [9] established the équivalence between
saddle points and optima, and duality theorems for a class of non-smooth
non-convex problems in which functions are locally Lipschitz and satisfying
invex type conditions of Hanson and Craven.

Recently, Bector et al [2] developed sufficient optimality conditions and
established duality results under F-invexity type of assumptions on the
objective and constraint functions.
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400 D. BHATIA, PANKAJ KUMAR GARG

In all the above références the authors worked under differentiability
assumptions. In the present paper, we have defined (V, p) invexity for
non-smooth functions. Duality results for multiobjective programmes are
established under these restrictions.

2. PRELIMINAIRES AND DEFINITIONS

Here we consider the following multiobjective non-linear program:

(VOP) Minimize [h (*), ƒ2 ( s ) , • • •, fP (x)]

Subject to:

9j(x)<0 j = 1, 2, . . . , m (1)

x G X (2)

where functions

ft:R
n^R t = l, 2, . . . , p

g3:R
n^R j = 1, 2, . . . , m

and X is an open subset of Rn. Also / j , i = 1, 2, . . . , p, ^ , j = 1, 2, . . . , m
are locally Lipschitz functions around a point of X.

DÉFINITION 1: A feasible point x G X is said to be efficient solution
for (VOP) if there is no other feasible solution x such that for some
r e {1, 2, . . . , p}

fr(x)<fr(x)
and

fi (x) < fi(x) for ail î = l , 2 , t t . , p z ^ r

DÉFINITION 2: Let X be an open subset of Rn, the function h : X -+ R
is locally Lipschitz around x G X if there exists a positive constant & and
a positive number e such that

< K || Xl - X2 ||
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(V, p) INVEXITY AND NON-SMOOTH MULTIOBJECTIVE PROGRAMMING 401

where x + eB is the open bail of radius e about x.

DÉFINITION 3: [4] If h : X -> R, the directional derivative of h at x G X
in the direction of v £ Rn denoted by hf (x; v) is defined as follows:

, / / x ,. h(x + Xv) -h(x)
h (ar, v) = hm — ~ 1^-.

DÉFINITION 4: [4] If h : X —> R is locally Lipschitz around a; G X, the
generalized derivative of h at x G X in the direction of v G Rn, denoted
by hP (x, v) is given by

h (x: v) = lim sup
V y A|0 yJx

h(y)

A

The Lipschitz condition on the function guarantees that the above limit
is a well defined quantity as | /i°(x; v)\ < K\\v |] where K is a Lipschitz
constant.

DÉFINITION 5: [4] The generalized gradient of h at x G X, denoted by
dh(x) is defined as follows

0/i (x) = [^Giïn : / io(x; Ü) > f r v Vu € i2n].

DÉFINITION 6: [4] The function h : X -* J? is said to be regular at # G X
provided that

(i) For all f, the usual one-sided directional derivative h! [x\ v) exists.
(ii) For all v, h'(x, v) = /i° (a?; u).
Now, we introducé the foliowing définitions:
A vector function ƒ : X —> i?p is locally Lipschitz around u G X if every

component ƒ«, i = 1, 2, . . . , p, is locally Lipschitz around u G X.

DÉFINITION 7: A vector function ƒ : X —> i2p, locally Lipschitz at w G I , is
said to be ( V, p)-invex at n if there exist fonctions 77, ̂  : X x X —> i2n, a real
number p and 0* : I x I ^ ^ + \ { 0 } i = 1, 2, . . . , p such that for all x G X
and for ï = 1, 2, . . . , p fi(x)-fi (u) > Bi (ar, u)£fr}(x, u) + p\\i/>{x, u) ||2

for every ^ G dfi («), i = 1, 2, . . . , p.
If
(7a) p > 0, then the function is strongly F-invex at u
(7b) p = 0 then the function is V-invex at u
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402 D. BHATIA, PANKAJ KUMAR GARG

(7c) p < 0 then the function is weakly F-invex at u
(7d) V x G l , x / u and for i = 1, 2, . . . , p

h (x) - f% (u) > et (z, u) Çf v (z, u)+p\\il> (x, u) ||2

for every & e ô/i (u), i = 1, 2, . . . , p then ƒ is called strictly (V, p)
invex at u.

DÉFINITION 8: A vector function ƒ : X —> iîp locally Lipschitz at u G I , is
said to be ( F, p) pseudoinvex at u if there exist functions r\, ̂  : X x X —> Rn\
a real number p and fc : X x X —> i?+ \{0}, i = 1, 2, . . . , p such that
for ail a; G X

p

(fit (X, U) Ji [X) > 2_^ 4>i (^Î V<) Ji W
i=l i=l

for every & G dfi (u), i — 1, 2, . . . , p.
If
(8a) p > 0, then the function is strongly y-pseudoinvex at u
(8b) p = 0 then the function is F-pseudoinvex at u
(8c) p < 0, then the function is weakly V-pseudoinvex at u
(8d) Mx G X, x ^ n

p p

(a;, u) /t (x) > ^2 <f>i (x, u) ft (u)

for every & G ô/z (u), i = 1, 2, . . . , p then the function is strictly (V, p)
pseudoinvex at u.

DÉFINITION 9: A vector function ƒ : X -> J?p, locally Lipschitz at u G X, is
said to be (V, p) quasiinvex at u if there exist functions r},i/j : X xX —> Rn,
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(F, p) INVEXITY AND NON-SMOOTH MULTIOBJECTIVE PROGRAMMING 403

a real number p, 4>i : X x X —> i?+\{0}, i = 1, 2, . . . , p such that for
ail x E X

p p

2 = 1 ï = l

•g 7/ ( x , u ) < —y9 || ^ ( x , l i ) ||

for every & G ô/« (u), i = 1, 2, . . . , p
(9a) p > 0 then the function is strongly F-quasiinvex at u
(9b) p — 0 then the function is F-quasiinvex at u
(9c) p < 0 then the function is weakly F-quasiinvex at u
If ƒ is (F, p) invex at each u € X then the function is (V, p) invex on X.
Sinülar is the définition of other functions.

It is evident that every (F, p) invex function is both (V, p) pseudoinvex
and (V, p) quasiinvex with 6% = 1/0$ and

P

y ^ (f>i (x} u) = î .
8 = 1

From the définitions it is clear that every strictly ( V, p)-pseudoinvex function
on X is (V, p)-quasiinvex on X.

Example 1 : Let / i and ƒ2 be real valued functions defined on an interval
Xo - [-1, 1] as follows:

„ , . f _ 6T>2 _ I < r < n / s f 7r^ 4- Qr^ —1 < r < 0
^ ' 1 r\ ^^ «™ ^^ 1 ^ ' l ™ O ^̂ " ^«^ 1

l Jb \J _^* Jb ^ J- l Jü \J ^ Jb _H^ -L

Hère,

a h (o) - df2 (o) - {e : 0 < e < 1}

Define

TJ : Xo x Xo —> R as

T (̂X, u) - 1 - 2x2 +u
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404 D. BHATIA, PANKAJ KUMAR GARG

ip : XQ x XQ —> R as

ip (ar, u) =

01 : XQ X XQ —> i£ as

01 (x, u) = x2 + 1

and

(f)2 : XQ X XQ -> i? as

For p = 1, the vector function ƒ (x) — [f\ (x), ƒ2 (#)] is (F, p) pseudoinvex
at u = 0 but not (F, p) quasiinvex as at u — 0 and x = —JY

01 (x, w) / i (x) + 02 (x, u) ƒ2 (x) = 0i (x, w) ƒ1 (w) + 02 (ar, u)f2 (u)

but

(6 + 6 ) *7 (s, «) + P II V7 (ar, «) II2 > 0
for every £1 G dfi (0) and £2 e df2 (0)
Hence one can say that there exist non differentiable functions which are
(V, p) pseudoinvex but not (F, p) quasiinvex.

Example 2: Let ƒ1 and f2 be real valued functions defined on an interval
XQ = (—1, 1) as follows:

f «»2 1 / T / A f Q/r^ 1 <C rr <? (\
£ f \ l JU — JL "̂̂  Ju ^ * \J j p / \ I — Ovt/ — X ^*- Ju ^^ VJ

I 'T* O ^^ T* ^* 1 o» f i ^^ T> ^* "I
I *A/ V/ ^^ Ju ^̂ * _L l Ju \J ^^ tX/ ^ *̂ -L,

Here,

ö/i (0) = dji (0) = {̂  : 0 < i < 1}

Recherche opérationnelle/Opérations Research
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Define

77 : XQ x XQ —> R as

77 (rr, it) = x2 — 1 + «

V> : XQ x XQ -» .R as

^ (x, ti) — y x 2 — 1 — u2

01 :X0 xX0^R+\{0} as

<f)\ {x, U) = X + 1
and

02 : ̂ o x Xo -> i2+\{0} as

02 (x, w) — n + 1 .

For p = 1, the function is (V, p) quasiinvex at u — 0 but ƒ is not (V, p)
pseudoinvex as at u = 0, x — - 1

(a?, n) | |2 - 0 forevery 6 eö/ i (0)and£> e af2 (0)

but

01 (X, U) f\ (x) + 02 (X, U) f2 (x) < 01 (X, U) fl (u) + 02 (X, U)f2 (u)

Thus there exists a class of non differentiable functions which are (F, p)
quasiinvex but not (V, p) pseudoinvex.

LEMMA 1: [3] x is an efficient solution for (VOP) is and only ifx solves
P r (x) Minimize fr (x)

Subject to

fi(x) <ft(x) i^r} i = l, 2, . . . , p

9j(x)<0 j = l, 2, . . . , m

for each r — 1, 2, . . . , p.
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The following scalar optimization problem:

(PI) Minimize p (x)

Subject to

9j(x) < 0, j = 1, 2, . . . , m

where

p:Rn->R g3:R
n-^R j = l , 2, . . . , m

are locally Lipschitz around x and regular at x, for s G Rm is associated

to the following problem:

(P2) Minimize p (x)

Subject to

gj{x) < Sj, j = 1, 2, . . . , m

by using the following définition:

DÉFINITION 13: [12] Problem (PI) is said to be calm at x G Rn if for
all séquences xk —• x with sk —»• 0 such that xk is feasible for (P2) with
s — sk, we have

v ,, f V — - < M for some constant M.
\\sk\\

Noting again that if x is an efficient solution of (VOP), then by Lemma 1,
x solves Pi (x) for all i e P, the following result holds:

THEOREM 1: (Necessary Conditions) [4, Proposition 6.4.4]. IfPi(x) is calm
at x for at least one i, say i = r then 3 Xt G i2+, i = 1, 2, . . . , p, i / r
y G R™ such that

p m

0 G dfr (x) + ^ k dft (3?) + J2 y3 d9j (x)

yj93{x) = 0, j = 1, 2, . . . , m

where i G P , F = {1, 2, . . . , p}.
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3. WOLFE VECTOR DUALITY

In this section we obtain weak and strong duality relations between (VOP)
and the following Wolfe vector dual:

(DiVOP) Maximize [fx (u) + yT g (u), . . . , fp (u) + yT g (u)}
Subject to

XT e = 1 (4)

y > 0, A > 0 (5)

XeBP, y e Rm

and where e = (1, 1, . . . , 1) € EP.

THEOREM 2: (Weak Duality) For all feasible x for (VOP) and all feasible
(u, X, y) for (DiVOP), ifany one of the following holds with p > 0.

ia) [Ai ƒ!(•) , A 2 / 2 ( - ) , . . . , Ap ƒ„(•)] and

are (V, p)-pseudoinvex at u for common 77, ijj : X x X —» i2n

* : I x I ^ iï+ \{0}, ï = 1, 2, . . . , p and A,- > 0, ï = 1, 2, . . . , p.
(*) [Ai ƒ1 (0,

[Ai y r ^ (0, MyTg ( • ) , . . . , A p y r
f l ( . ) ]

are strictly (V, p)-quasiinvex at u for common r), t^ : X x X -* Rn and

<pi : X x X -4 i?+\{0} , i = 1, 2, . . . , p anrf A* > 0, i = 1, 2, . . . , p

ï/ien r^e following cannot hold:

ft (x) < fi (u) +yT g (u) for all i e P, i ^ r (6)

fr (x) < fr (u) + yT g (u) for some r G P. (7)

Proof: Since (w, A, y) is feasible for (Dj VOP) therefore from (3), we have
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(8)

where & G dfi (u), i G P and fy; G dgj (u), j = 1, 2, . . . , m.

Using vector notation (8) can be rewritten as

0 = ATe + yTp. (9)

Now, contrary to the result of the theorem, let (6) and (7) hold.

As x is feasible for (VOP) and y > 0, (6) and (7) imply.

fz(x) + y T g ( x ) < f t { u ) + y T g { u ) Vt G P , i ^ r (10)

and

fr(x) + yTg(x) < fr(u) + yTg(u) for some r G P (11)

Now from (10) and (11), in case hypothesis (a) holds, there exists a real
number p, functions r}} ip : X x X -^ Rn and <j>i : X x X —> J R + \ { 0 } ,

i = 1, 2, . . . , p such that for all x G X

^ (x, «) [^ [/Ï (a?) + yT ^ (ar)]] < £ & (ar, ti) {A,- [fi (u) + yT g (ar)]}

| «) |i2 (12)

for Çj G 9/?; (u), i = 1, 2, , . . , p and f3j G % (u), j = 1, 2, . . . , m using
ATe = 1? (12) can be rewritten as

(AT e + VT 0f V (x, u) < -2p || i> (x, u) ||2 (13)

As p > 0, using it in (13)

Recherche opérationnelle/Opérations Research
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a contradiction to (9).

Again from (10) and (11), when hypothesis (b) holds, there exist a real
number />. fonctions TJ, é : X x X -» Rn and <& : X x X -* JR+\{0},
% — 1, 2, . . . 5 p such that for all x G X

p

[A- ff- (r} 4-iiT a(r)]] < S^ rh- (T ?/WA- \f- (it\ -4- ?iT a (TÏÏ\

| f (ar, u) |2 (14)

for & G $ƒ« (w), i = 1, 2, . . . , p and /?ƒ G dgj (u)> j = 1, 2, . . . , m. Again
using ATe = 1 and p > 0 relation (14) can be rewritten as

(XTC + ̂ pfrl(x,u)<0 (15)

a contradiction to (9).

Hence the proof of the theorem is complete,

COROLLARY 1: Let (û, À, y) be a feasible solution for {D\VOP) such
that yT g (u) = 0 and assume that ü is feasible (VOP). If the weak duality
theorem holds between (VOP) and (DiVOP) then ü is efficient for (VOP)
and (% Â, y) is efficient for (D\VOP).

THEOREM 3: (Strong Duality). Let x be a feasible solution for (VOP) and
assume that

(i) x is an efficient solution for (VOP).

(ii) for at least one i € P, problem Pi (x) is calm at x then there exist
Â G Rp

+J y G K% such that (x, Â, y) is feasible for (DiVOP), and
yTg(x) = 0.

Further if weak duality theorem 2 holds between (VOP) and (DiVOP).
then (x, Â, y) is efficient for (DiVOP).
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Proof: Since x is efficient for (VOP) from Lemma 1, x solves Pz(x)
is calm at x for at least one z, say for i = r, it therefore follows from
Theorem 1 that there exists Xi G R+, i G P, i / r y G it!™ such that

0 G dfr (x) + 2 ^ A* dU (x) + 2 ^ y3 8g3 (x)
2 = 1 J = l

Vj9j(x) = 0, jf = 1, 2, . . . , m .

Set

A?; -
i + E ^

Ar = for ail j — 1, 2, . . . , m
1 + g A,

It follows that (xy A, y) is feasible to (D\VOP) and y T ^ (^) = 0.
Efficiency of (öf, A, y) for ( J D I F O P ) follows from Corollary 1.

4. MOND-WEIR VECTOR DUALITY

In this section duality results are established between (VOP) and the
following Mond-Weir dual of the problem (VOP):
(D2VOP) Maximize [h (u), . . . , ƒ „ (u)]

Subject to

(16)

(17)

ATe = l (18)

> 0 A > 0 (19)

Recherche opérationnelle/Opérations Research
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THEOREM 4: (Weak Duality). Let x be feasible for (VOP) (u, A, y) be
feasiblefor (D2VOP) and (y\g\, . . . , ym9m) is (V, p) quasiinvex at u with
respect to 77, ijj, with p > 0 and if any one of the following holds.

(i) (Ai / i , . . . , Xp fp) is strictly (V, p')-pseudoinvex at u with respect to
same 77, tp and À* > 0, i = 1, 2, . . . , p and p' > 0.

(ii) (Ai / i , . . . . A« /p) is (V. pf) pseudoinvex at 7/, with respect to same
77, ^, and À8- > 0, ï = 1, 2, . . . , p and p' > 0
then the following cannot hold:

fi {x) < h (u) for a l l i G P , i / r (20)

/r (a;) < /r (tt) for some r E P. (21)

Proof: Since ^ is feasible for (VOP) and (u, A, y) is feasible for
(D2 VOP) therefore from (16)

wft (22)

7 = 1 J = l

where

6 e ô / i ( u ) i = l , 2, . . . , p

/3j G 95j («) 3 = 1, 2, . . . , m.

Also

Sj (x) < 0 and as ^ > 0 j = 1, 2, . . . , m

y3gj(x) <o

Using (17) and (23) we get

Vj 9j (x) < yjgj (u) j = 1, 2, . . . , m (24)

Now as (y3 gj, . . . , ymgm) is (F, p) quasiinvex at tt with respect to 77, ̂  there
exists a real number p, r/, ^ : X x X —> i în and <pj : X x X —> R+\{0}
such that for ail a; G X

E

vol. 32, n° 4, 1998
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for /3j G dgj (u) j = 1, 2, . . . , m. As p > 0. Using it in (25)

J f = l

For (22) and (26) implies that

^ûCifri(^u)>0 (27)
8 = 1

Now contrary to the results of the theorem, let (20) and (21) hold

From (20) and (21) and Xi > 0, in case (à) holds, there exist functions
77, i\) : X x X - • Rn, a real number p' and ^ : X x X -> i2+\{0} such
that for all x € X

p p

2 = 1

, u) ||2 (28)

for î G dfi{u), i — 1, 2, . . . , p which implies

a contradiction to (27).

Again, from (20) and (21) in case hypothesis (b) holds, there exist functions
7?, ip : X x X -^ Rn, a real number p' and 52; : X x X -> R+\{0} such
that for all x G X

p P

(re, u) Xtft (x) < ^2 h (x> u) x*fi (u)
8 = 1

p
2Xi^i) Tj {x^ u) <C —p || i\) {xy 11)

for ^ G dfi(u), i = 1 , 2 , . . . , p .

Recherche opérationnelle/Opérations Research
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Again we have

v
&)Tfl(x, u)<0 ( a s p ' > 0 )

a contradiction to (27).
This complètes the proof.

COROLLARY 2: Assume weak duality holds between (VOP) and (D2VOP).
If(x, À, y) is feasible to (D2VOP) such that ü is feasible for (VOP) then
ü is efficient for (VOP) and (ü, À, y) is efficient for (D2VOP).

THEOREM 5: (Strong Duality). Letx be feasible for (VOP) and assume
(a) x is efficient for (VOP)

(b) for at least one i G P, problem Pi (x) is calm at x then there exist
Â G Rp

+,y G K'? such that (x, Â, y) is feasible for (D2VOP).
Further if also weak duality theorem 4 holds between (VOP) and

(D2VOP) then (x, À, y) is efficient for (D2VOP).

Proof: The proof runs on the Unes as that of theorem 3 and is hence
omitted.

ACKNOWLEDGEMENT

The authors wish to express their deep gratitude to Prof. R. N. Kaul for his inspiring guidance
throughout the préparation of the paper. The authors are grateful to the unknown référées for
their comments.

REFERENCES

1. D. BHATIA and P. JAIN, Generalized (F, ^)-Convexity and Duality for Non-smooth
Multiobjective Programming, Optimization, 1994, 31, pp. 153-164.

2. C R. BECTOR, S. CHANDRA and V. KUMAR, Duality for Minmax Programming Involving
y-Invex Functions, Optimization, 1994, 30, pp. 93-103.

3. V. CHANKONG and Y. Y. HAÏMES, Multiobjective Décision Making, Theory and
Methodology, North-Holland, New York.

4. F. H. CLARKE, Optimization and Non-smooth Analysis, Wiley-Interscience, New
York, Numerical Analysis and Application Sciences, 1983, pp. 514-550.

5. R. R. EGUDO, Efficiency and Generalized Convex Duality for Multiobjective
Programs, Journal of Mathematical Analysis and Applications, 1989, 138, pp. 184-
194.

6. M. M. HANSON, On Sufficiency of Kuhn-Tucker Conditions, Journal of Mathematical
Analysis and Applications, 1981, 80, pp. 544-550.

vol. 32, n° 4, 1998



414 D. BHATIA, PANKAJ KUMAR GARG

7. M. A. HANSON and B. MOND, Furhter Generalization of Convexity in Mathematical
Programming, Journal Information and Optimization Science, 1982, 4, pp. 25-32.

8. V. JEYAKUMAR, Strong and Weak Invexity in Mathematical Programming, Method
Oper. Res., 1985, 55, pp. 109-125.

9. V. JEYAKUMAR, Equivalence of Saddle Points and Optima, and Duality for a Class
of Non-convex Problems, Journal of Mathematical Analysis and Application, 1988,
130, pp. 334-343.

10. V. JEYAKUMAR and B. MOND, On Generalized Convex Mathematical Programming,
Journal of Austral Math. Soc. (Ser. B), 1992, 34, pp. 43-53.

11. V. PREDA, On Efficiency and Duality for Multiobjective Programs, Journal of
Mathematical Analysis and Application, 1992, 166, pp. 365-377.

12. Y. TANAKA M. FUKUSHIMA and T. IBARAKI, On Generalized Pseudo Convex Functions,
Journal of Math. Analysis and Application, 1989, 144, pp. 342-355.

13. P. WOLFE, A Duality Theorem for Nonlinear Programming, Quarterly Application
Math., 1961, 19, pp. 239-244.

Recherche opérationnelle/Opérations Research


