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Abstract. — The concept of (V, p) invexity has been introduced for non-smooth vector functions
and is used to establish duality results for multiobjective programs. © Elsevier, Paris
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Résumé. — Le concept de (V, p)-invexité est introduit pour les fonctions vectorielles non lisses,

et est utilisé pour établir des résultats de dualité pour les programmes a plusieurs objectifs.
© Elsevier, Paris
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1. INTRODUCTION

Hanson [6] introduced the concept of invexity as a very broad
generalization of convexity. Jeyakumar [8] introduced p-invex functions
and studied various results for a single objective non-linear programming
problem. Mond and Jeyakumar [9] have introduced the notion of V-invexity
for vector function f and discussed its application to a class of multiobjective
programming problems. Jeyakumar [9] established the equivalence between
saddle points and optima, and duality theorems for a class of non-smooth
non-convex problems in which functions are locally Lipschitz and satisfying
invex type conditions of Hanson and Craven.

Recently, Bector ez al. [2] developed sufficient optimality conditions and
established duality results under V-invexity type of assumptions on the
objective and constraint functions.
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In all the above references the authors worked under differentiability
assumptions. In the present paper, we have defined (V, p) invexity for
non-smooth functions. Duality results for multiobjective programmes are
established under these restrictions.

2. PRELIMINARIES AND DEFINITIONS

Here we consider the following multiobjective non-linear program:

(VOP) Minimize [f1(2), fo(z), ..., fp(x)]
Subject to:
g; () L0 i=1,2,...,m €))
reX 2)

where functions

fi:R® >R i=1,2,...,p

gi:R"—>R j=1,2,...., m
and X is an open subset of R". Also f;,1=1,2,...,p,9;,7=1,2,...,m
are locally Lipschitz functions around a point of X.

DermNiTION 1: A feasible point T € X is said to be efficient solution
for (VOP) if there is no other feasible solution z such that for some

re{l,2 ..., p}

fr(2) < fr(T)

and
fi(z) < fi(z) forall i=1,2,...,p 1#T

DermNiTION 2: Let X be an open subset of R", the function » : X — R
is locally Lipschitz around x € X if there exists a positive constant k& and
a positive number ¢ such that

|h(z1) — h(z2)| < K||z1 — 22| V1, x2 €z +€eB
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(V, p) INVEXITY AND NON-SMOOTH MULTIOBJECTIVE PROGRAMMING 401
where z + B 1is the open ball of radius ¢ about z.

DerinitioN 3: [4] If A : X — R, the directional derivative of h at z € X
in the direction of v € R" denoted by A’ (z; v) is defined as follows:
h(z + Av) — h(z)

3 .

7 T
h(w,v)—)l‘l_n%

DeriNiTION 4: [4] If A : X — R is locally Lipschitz around z € X, the
generalized derivative of h at x € X in the direction of v € R", denoted
by A0 (z, v) is given by

1O (z; v) = lim sup [h(y'i‘)\’l))\) - h(y)}

The Lipschitz condition on the function guarantees that the above limit
is a well defined quantity as | A%(z; v)| < K ||v| where K is a Lipschitz
constant.

DEermnTION 5: [4] The generalized gradient of h at x € X, denoted by
Oh (x) is defined as follows

Oh(z)=[6 € R": K0 (z; v) > €¢Tv Vwe R".

DeriniTiON 6: [4] The function h : X — R is said to be regular at z € X
provided that

(i) For all v, the usual one-sided directional derivative A’ (z; v) exists.
(i) For all v, b/ (z, v) = A0 (z; v).
Now, we introduce the following definitions:

A vector function f : X — RP is locally Lipschitz around v € X if every
component f;, ¢ =1, 2, ..., p, is locally Lipschitz around v € X.

DEeFINITION 7: A vector function f : X — RP| locally Lipschitz at v € X, is
said to be (V, p)-invex at v if there exist functions 7, % : X x X — R", areal
number pand §; : X x X — RT\{0}i=1,2,...,psuchthatforallz € X
andfori=1,2,...,p fi(x)— fi (u) > 0; (z, u) & n(z, u)+p | ¥ (z, u) ||?
for every & € Of; (u), 1 =1,2, ..., p.

If
(7a) p > 0, then the function is strongly V-invex at u
(7b) p = O then the function is V-invex at u
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(7c) p < O then the function is weakly V-invex at u
(7dy Vze X, z#wuwandfori=1,2,...,p

fi(2) = fi (u) > bi (2, w) & (2, w) + o1 (2, ) |

for every & € Ofi(u), 1 = 1, 2,..., p then f is called strictly (V, p)
invex at wu.

DerNiTION 8: A vector function f : X — RP locally Lipschitz at w € X, is
said to be (V, p) pseudoinvex at u if there exist functions 7,9 : X x X — R",
a real number p and ¢; : X x X — RT\{0}, i =1, 2, ..., p such that
for all z € X

P
S &, w+pll¢(z, v >0
i=1

P P

> 3 iz w) fi(2) 2 Y di (e u) fi (w)
i=1 i=1

for every & € 0fi(u), 1 =1,2, ..., p.

If

(8a) p > 0, then the function is strongly V-pseudoinvex at u

(8b) p = 0 then the function is V-pseudoinvex at u

(8c) p < 0, then the function is weakly V-pseudoinvex at u

@8d) Vx e X, = # u

r

S &z, u) > —pllv (2, w) |

i=1

P P
= ¢i(z, w) fi(z) > iz, w) fi(w)
for every & € Ofi (u), i = 1, 2, ..., p then the function is strictly (V, p)

pseudoinvex at w.

DEermNITION 9: A vector function f : X — RP, locally Lipschitz at u € X, is
said to be (V, p) quasiinvex at u if there exist functions 7, ¢ : X x X — R™,
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a real number p, ¢; : X x X — R*\{0}, 4 =1, 2, ..., p such that for
all z € X

-

1l
-

p
b3 W) i () <3 i, ) fi (u)
=1

T

b
= S T u) < —pllb e )P
=1

for every & € Ofi(u), 1 =1,2, ..., p

(9a) p > O then the function is strongly V' -quasiinvex at u
(9b) p = 0 then the function is V-quasiinvex at u

(9c) p < 0 then the function is weakly V-quasiinvex at u

If fis (V, p) invex at each u € X then the function is (V, p) invex on X.
Similar is the definition of other functions.

It is evident that every (V, p) invex function is both (V, p) pseudoinvex
and (V, p) quasiinvex with 6; = 1/¢; and

p
> ¢ilw, u)=1.
=1

From the definitions it is clear that every strictly (V, p)-pseudoinvex function
on X is (V, p)-quasiinvex on X.

Example I: Let f1 and fo be real valued functions defined on an interval
Xo = [-1, 1] as follows:

2

_ -6z —-1<z<0 722 +925 —1<z<0
fl(x)—{m 0<z<1 andfz(x)—{x 0<z<1
Here,

0f1(0)=0f2(0)={£:0<{< 1}
Define

n:XoxXo— R as

n(z,u)=1-2z%>+u
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P:Xox Xo— R as
¥ (z, u) = /1 -2 (22 +u?)
(]51:X0XX0—->R as

1 (2, u) =22 +1

and

¢ : Xox Xg— R as

o2 (z, u) =u?+1.

For p = 1, the vector function f (z) = [f1 (z), f2 (z)] is (V, p) pseudoinvex
at u = 0 but not (V, p) quasiinvex as at u = 0 and z = —/1/3.

¢1 (l’, u) fl (CL‘) +¢2 (ZL’, 'LL) f2 (l‘) = ¢1 (fL‘, u) fl (u) +¢2 (:1;’ U)fZ (’U.)

but

G+ &)n(z, v +pll¢(z, w)|?>0

for every & € 9f1(0) and & € 9f2 (0)
Hence one can say that there exist non differentiable functions which are
(V, p) pseudoinvex but not (V, p) quasiinvex.

Example 2: Let f1 and f> be real valued functions defined on an interval
Xo = (-1, 1) as follows:

<z<0
X

— IA

rw={ ;L wd fo@)={ 7% 5

5 A

IN 8
= IA
=)

T

<

Here,
0f1(0)=8f2(0) = {£:0< €< 1)
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Define

n:XoXx Xo— R as

n(z,u)=2z>-1+u

P : Xogx Xg— R as

¥(z, u) = Va? —1-u
¢1: Xo x Xo — R*\{0} as

¢1(z, u) =2% +1
and

$2 : Xo x Xo — RT\{0} as

b2 (z, u) =u? +1.

For p = 1, the function is (V, p) quasiinvex at u = 0 but f is not (V, p)
pseudoinvex as at v = 0, x = —1

€n(z, u)+p |9 (@, u) |> = 0 for every &1 € 9f1 (0) and & € 8> (0)
but

¢1 (2, u) f1 (z) + ¢2 (2, u) f2(z) < d1 (2, w) f1 (v) + 62 (, w)f2 (u)
Thus there exists a class of non differentiable functions which are (V, p)

quasiinvex but not (V| p) pseudoinvex.

Lemma 1: [3] T is an efficient solution for (VOP) is and only if T solves
P. (Z) Minimize f, (z)

Subject to
g; (z) <0 i=1,2 ..., m
for each r = 1, 2, ..., p.
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The following scalar optimization problem:
(P1) Minimize p(x)
Subject to
g](x)S07 j=1721~'-)m

where

p:R" >R gi:R"—>R j=1,2,...,m

are locally Lipschitz around T and regular at T, for s € R™ is associated
to the following problem:

(P2) Minimize p(x)
Subject to

gi () <sj, ij=1,2,...,m
by using the following definition:

DEerINITION 13: [12] Problem (P1) is said to be calm at T € R" if for

all sequences ¥ — T with s* — 0 such that z¥ is feasible for (P2) with

s = sk, we have

p(z) — p(¥)

TS| < M for some constant M.
s

Noting again that if = is an efficient solution of (VOP), then by Lemma 1,
T solves P; (T) for all ¢ € P, the following result holds:

THeoreM 1: (Necessary Conditions) [4, I:‘roposition 6.4.4]. If Pi(T) is calm

at T for at least one i, say i = rthen 3 A\; € Ry,1=1,2, ..., p,t #r
9 € RY such that

p m
0€df (@) + Y Mofi(@) + ) 199, (x)
i=1 j=1

i#Er

959, ()=0, 7=1,2,...,m
where 1 € P, P = {1, 2, ..., p}.
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3. WOLFE VECTOR DUALITY

In this section we obtain weak and strong duality relations between (VOP)
and the following Wolfe vector dual:

(D1VOP) Maximize [f1(u)+yT g(u), ..., fp (u) +yT g (u)]

Subject to

/4 m
0> Xidfi(u)+ Y y;0g; (u) 3)

i=1 j=1
Me=1 (4)
y2>0, A>0 (S)

A€ RP, yeR™
and where e = (1, 1, ..., 1) € RP.

THEOREM 2: (Weak Duality) For all feasible x for (VOP) and all feasible
(u, A, y) for (D1VOP), if any one of the following holds with p > 0.

@ M fi(), A2 fa(), oy Ap fp (V)] and

MyTg(), ayTa(), oy MyTg ()]

are (V, p)-pseudoinvex at u for common n, ¢ : X x X — R" and
¢ X x X - RT\{0},i=1,2,...,pand \; >0,i=1,2, ..., p.
) [)‘1 fl ()a A2 f2 ()7 R )‘P fp ()] and

[’\1 yTQ ()a /\2 yTg ()a ceey /\IJ yTg ()]

are strictly (V, p)-quasiinvex at u for common 1, ¢ : X x X — R" and
$i: X xX - RM\{0},i=1,2,...,pand \; >0,i=1,2, ..., p
then the following cannot hold:

fi@) < fitw+y g(u) forallie P, i#r (6)

fr (@) < fr (u) + yT g (u) for somer € P. @)
Proof: Since (u, A, y) is feasible for (D; VOP) therefore from (3), we have
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Y4 m
0€ D> Xdfi(w)+ Yy 99 (u)
=1

Jj=1
Y4 m
= 0=) N&+Y_ yB ®)
=1 7=1

where & € 0f;(u), s € P and B € 9g; (u), j =1, 2, ..., m.
Using vector notation (8) can be rewritten as
0=xT¢+478. ©)
Now, contrary to the result of the theorem, let (6) and (7) hold.
As z is feasible for (VOP) and y > 0, (6) and (7) imply.
fi (x)+yTg(x)§f,- (u)+yTg(u) VieP, i#r (10)
and
fr @) +vyT g(z) < fr (w) +yT g(u) for some r € P 1

Now from (10) and (11), in case hypothesis (a) holds, there exists a real
number p, functions 1, ¥ : X x X — R™ and ¢; : X x X — R*\{0},

i=1,2,..., p such that for all z € X
14 P
Do il wilfi@+y 9@ < dile, w) {Nilfi (W) +y" 9 (@)}
=1 =1

p T
= {Z i [&i +yTﬁ]} n(z, u) < =2p[¢( ) |> (12

=1

for § € 0fi(u),i=1,2,...,pand B € dg; (u), =1, 2,..., m using
Me = 1, (12) can be rewritten as

W é+y" B n(z, w) < =209 (2, w)|? (13)
As p > 0, using it in (13)

Recherche opérationnelle/Operations Research
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W e+y" BT n(z, u) <0

a contradiction to (9).

Again from (10) and (11), when hypothesis () holds, there exist a real
number p, functions m, 1 : X x X — R" and ¢; : X x X — Rt\{0},
2 =1,2, ..., psuch that for all z € X

P P .
Yo dilm, wNilfi@)+y" g@N <D di(mw) (i lfi (w) + 7 g ()]}
i=1

=1

=1

) T
= {E Ai & +yTﬁ]} n(z,u) <=2p|9(z, w) P (14)

for§ € 0fi(u),i=1,2,...,pand B; € 9g; (u), 7 =1, 2, ..., m. Again
using Me =1 and p > 0 relation (14) can be rewritten as

A e+ BT n(z, u) <0 (15)

a contradiction to (9).

Hence the proof of the theorem is complete.

CoroLLARY 1: Let (T, X, ) be a feasible solution for (D1VOP) such
that 3* g (@) = 0 and assume that T is feasible (VOP). If the weak duality
theorem holds between (VOP) and (D1V OP) then @ is efficient for (VOP)
and (G, X, ) is efficient for (D1VOP).

THEOREM 3: (Strong Duality). Let T be a feasible solution for (VOP) and
assume that

(i) T is an efficient solution for (VOP).
B (ii) for at least one i € P, probleﬁz P; (T) is calm at T then there exist
/\Te RY, y € R such that (T, X, Y) is feasible for (D1VOP). and
v 9() = 0.

Further if weak duality theorem 2 holds between (VOP) and (D1VOP).
then (Z, A, ) is efficient for (D1VOP).
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Proof: Since 7 is efficient for (VOP) from Lemma 1, T solves P;(T)

is calm at T for at least one ¢, say for ¢« = r, it therefore follows from
Theorem 1 that there exists \; € Ry, 4 € P, 1 # r §j € R such that

P m
0€df (B)+ Y Xidfi(@)+ > 95095 (%)
=1

Jj=1
Set
X —
14+ 3 &
e
A = 7 forall j=1,2,...,m
1+Z A
i

It follows that (T, X, ) is feasible to (D1VOP) and 7* g (%) = 0.
Efficiency of (Z, A, §) for (D1VOP) follows from Corollary 1.

4. MOND-WEIR VECTOR DUALITY

In this section duality results are established between (VOP) and the
following Mond-Weir dual of the problem (VOP):

(D2VOP) Maximize [fi(w),..., fp(u)]

Subject to
p m
0> XNdfi(u)+ > y;dg;(u) (16)
1=1 1=1
A g(u) >0 a7
Me=1 (18)
y>0 A>0 (19)
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THEOREM 4: (Weak Duality). Let x be feasible for (VOP) (u, A, y) be
feasible for (DaVOP) and (y191, - - -, Ymgm) is (V, p) quasiinvex at u with
respect to 1, ¥, with p > 0 and if any one of the following holds.

@ (M f1, -- -, Ap fp) is strictly (V, p')-pseudoinvex at u with respect to
same 7, % and \; > 0,2=1,2, ..., pand p/ > 0.

(i) (M fi, ..., Ap fp) is (V, 0') psendoinvex at 1 with respect to same
n,,and \; >0,i=1,2,...,pand p' >0
then the following cannot hold:

fi(x) < fi(u) forallie P, i#r (20)

fr(z) < fr (u) for some r € P. (21)

Proof: Since z is feasible for (VOP) and (u, A, y) is feasible for
(D2 VOP) therefore from (16)

P m
= 0= N&+> yb (22)
i=1 j=1
where
&Ledfi(u) i=1,2,...,p
Bj€0g;(u) j=1,2,...,m.
Also
gj(z) <0 andas y; >0 j=1,2,...,m 23)
yj 95(x) <0
Using (17) and (23) we get
yjg; (x) <yjgi(w) 7=1,2,...,m 24
Now as (y; g5, - - -, Ymgm) is (V, p) quasiinvex at u with respect to ), ¢ there

exists a real number p, , ¥ : X x X — R" and ¢; : X x X — R*T\{0}
such that for all z € X

> biigi (®) <Y divigs ()
j=1

5=1

= Y @B 0z, w) < —pllY(z, v (25)

=1
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for B; € 9g; (u) j =1, 2, ..., m. As p > 0. Using it in (25)

> (@i, ) n(x, w) <0 (26)
=1

For (22) and (26) implies that

P
> i &) (@, w) >0 (27)
i=1

Now contrary to the results of the theorem, let (20) and (21) hold

From (20) and (21) and \; > 0, in case (a) holds, there exist functions
n, ¥ : X x X — R"™, a real number p' and §; : X x X — R*\{0} such
that for all z € X

p p
> Sim w) Aifi(@) <Y 6 (=, w) Nifi (u)
1=1 i=1

p
= > (&) (=, uw) < =p1Y (2, w) | (28)

=1

for & € 8fi(u), ¢ = 1, 2, ..., p which implies

(&) n(z, u) <0 (asp' > 0)

a contradiction to (27).

Again, from (20) and (21) in case hypothesis (b) holds, there exist functions
n, ¥ : X x X — R"™, a real number p' and §; : X x X — R*\{0} such
that for all z € X

P P
Y bile, w) Xifi(@) <Y 6z, w) Aifi (u)
i=1 i=1
»
= > )T (2, u) < =Y (z, w) |
1=1

for & € Ofi(u), 1 =1, 2,..., p.
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Again we have

p
Y ) a(z, u) <0 (asp 20)

=1
a contradiction to (27).
This completes the proof.

COROLLARY 2: Assume weak duality holds between (VOP) and (D2V OP).
If (7, A, ) is feasible to (D2 V OP) such that u is feasible for (VOP) then
u is efficient for (VOP) and (T, A, 3) is efficient for (D2VOP).

THEOREM 5: (Strong Duality). Let T be feasible for (VOP) and assume

(a) T is efficient for (VOP)

(b) for at least one i € P, problem P;(z) is calm at T then there exist
X € RY,y € RY such that (%, X, §) is feasible for (D2VOP).

Further if also weak duality theorem 4 holds between (VOP) and
(DVOP) then (Z, A, 3) is efficient for (D,VOP).

Proof: The proof runs on the lines as that of theorem 3 and is hence
omitted.
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