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A MONTE CARLO SIMULATION OF THE FLOW NETWORK
RELIABILITY USING IMPORTANCE AND STRATIFIED SAMPLING

by S. BULTEAU C1) and M. EL KHADIRI (2)

Abstract. - We consider the évaluation of the flow network reliabiîity parameter, Be cause lts exact
computation has exponential time complexity, simulation methods are alternatives used to evaluate
large networks. In this paper, we use the state space décomposition methodology of Doulliez and
Jamoulle in order to construct a new simulation method which combines the importance and the
stratified Monte Carlo principles. We show that the related estimator belongs to the variance
réduction family and it offers more accurate estimâtes than those obtained by a previous stratified
sampling technique based on the same décomposition, By expérimental results, we show the interest
of the proposed method when compared to previous methods. © Elsevier, Paris

Keywords: Flow network, maximum sf-flow, Monte Carlo simulation, reliabiîity, variance
réduction.

Résumé. - Nous considérons le problème de l'évaluation de la fiabilité d'un réseau de transport
stochastique. Le fait que le calcul analytique de ce paramètre soit de complexité temporelle
exponentielle, conduit à utiliser des simulations de Monte Carlo pour l'analyse des réseaux de
grande taille, Dans ce papier, nous exploitons la procédure de décomposition de Vespace d'états
de Doulliez et Jamoulle pour construire une nouvelle méthode de simulation. Elle est basée sur
les échantillonnages stratifié et préférentiel. Nous démontrons théoriquement que cette méthode
appartient à la famille des méthodes de réduction de la variance et que l'estimateur associé est
de variance plus réduite que celle d'un estimateur stratifié basé sur la même décomposition. Par
des résultats expérimentaux, nous montrons l'intérêt de la méthode proposée en la comparant à
d'autres méthodes. © Elsevier, Paris

Mots clés : Réseau de transport, st-üoï maximal, simulation de Monte Carlo, fiabilité, réduction
de la variance.

1. INTRODUCTION

A basic mission of a flow network is the establishment of a flow between
a source node s and a sink node t that meets or exceeds a fixed demand d.
In the stochastic case, the network components have random capacities
and the success of this mission is a random event. Systems that can
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be regarded as flow networks are electric-power transmission, distribution
Systems, transportation networks and computer networks. The probability of
successful mission is a performance measure, often called the flow network
reliability measure.

Several papers have been devoted to its évaluation when nodes do not
limit flow transmission and when arcs capacities are discrete, multi-valued
and statistically independent random variables [1, 7, 11, 15, 16]. When all
arcs have only two possible capacities 1 or 0 and the demand is d = 1, the
problem becomes the source-terminal reliability problem [3, 6, 10] which is
NP-hard [2], Consequently, the gênerai case considered here is also an NP-
hard problem. This implies that the computational time will be prohibitive
when the network size is large [8]. Then Monte Carlo approaches are
alternatives allowing, in a reasonable time, the évaluation of large networks.

For a specified sample size K, the estimation of the flow network reliability
parameter by the standard estimator is the frequency of operating capacity
vectors in the set of K independent trials drawn from the whole state space
Q of the random capacity vector. The well known drawback of the standard
Monte Carlo sampling is the large size K required to obtain sufficiently
small variance and reasonable relative error [10]. The objective of variance
réduction methods is to offer more accurate estimâtes than those obtained
by using the standard estimator, for the same sample size K.

The Doulliez and Jamoulle décomposition (DJD) procedure [1,7] partitions
an input rectangular subset i JÇf l that contains operating and failed vectors
into an operating rectangular set of operating vectors, failed rectangular
sets of failed vectors and undetermined rectangular sets of vectors not yet
classified as failed or operating. Based on this procedure, Fishman and Shaw
proposed a stratified Monte Carlo technique [13]. Bounds on the reliability
parameter and other informations produced by calls to the DJD procedure,
are exploited to reduce the sampling to a subset U of ft. Moreover, the K
samples are distributed on strata of U. Unfortunateïy, the trials within each
stratum is accomplished by the standard sampling technique. The aim of our
work is to show that if we estimate the contribution of each stratum by the
importance sampling method proposed in [5], we induce additional accuracy
in the évaluation of the measure of interest.

The paper is organized as follows. The foliowing section introduces gênerai
notation and définitions. In section 3, we briefly explain the use of the DJD
procedure in the exact computation context and its use to transform the
considered problem to the évaluation of networks with state spaces smaller
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than ft. In section 4, we present the stratified technique of Fishman and Shaw
[13]. In section 5, we explain our stratified Monte Carlo technique. Section 6
is devoted to numerical comparisons and Section 7 to some conclusions.

2. NOTATION AND MODEL DEFINITION

We will use the following notation and définitions. For ease of explanation,
additional définitions and notation will be given in later sections.

• G = (V, A, C, s, t, d): the flow network
• V: the set of nodes
• n: the number of nodes
• A — {e i , . . . , ea}: the set of arcs
• a: the number of arcs
• s: the source node
• t: the sink node
• d: the demand required at node t
• For each arc e3 G A,

- Cj\ the random discrete capacity of arc e?

- rij : the cardinality of the state space of the random capacity of arc ej
- 0 < Cji < CJ2 < . . . < cJTlj < +oo: the UJ possible values of the

random variable Cj
- Çtj — {CJI, . . . , Cj-n.}: the state space of the random variable Cj
- pjn: the probability that Cj has capacity cjn in ftj

• C = ' (Ci, - • •, Ca): the random state vector of the network G
a

• iï — (g) QJ: the network state space (the state space of random

variable C)
• A set R Ç Q, is rectangular if and ony if there is a lower and

an upper vector of capacities a (R) = (ai (R),..., aa {R)) and
/3 (R) - (/?! ( i?) , . . . , (3a (R))9 respectively, in fi such that every vector
of capacities C — ( c i , . . . , ca) with OLJ (R) < CJ < (3j (R) for ail arcs
ej, belongs to R and R contains only those vectors [7]

• v (c i , . . . , ca): the value of maximum st-flow when the arc e7 has
capacity c,, e3 G A

• $ the non-decreasing structure function of the network G defined for
all state vectors C by

O otherwise
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• For any rectangle R C 0,
- C(R): the random vector having the same distribution as the

conditional distribution of C given that C £ R

- g(R) = E{B(R)} = E{#(C(i2))} = E{$(C)\C € R}
• g (O) = J? {çj> (C)} — £ {g (û)}: the flow network performance measure

of interest.

3. THE EXACT COMPILATION AND THE NETWORK RELIABILITY TRANSFOR-
MATION BASED ON THE DJD PROCEDURE

The Doulliez and Jamoulle décomposition (DJD) procedure [7] partitions
an input rectangular subset R Ç Q that contains operating and failed vectors
into an operating rectangular set, failed rectangular sets and undetermined
rectangular sets of vectors not yet classified as failed or operating. In this
section, we recall the use of this décomposition in the exact computation
context and its use to transform this problem to the évaluation of networks
with state spaces smaller than O.

3.1. The DJD procedure in the exact évaluation context

The exact algorithm of Doulliez and Jamoulle [1, 7] starts by calling
the DJD procedure to partition the state space O. Each undetermined set
subsequently undergoes the same procedure for its décomposition. This
process terminâtes when ail generated sets are classified operating or failed.
The probability that the random vector state belongs to any generated
operating set is easy to compute and the flow network reliabïlity parameter
is the sum of these probabilities [1,. 7}. More formally, we have

g(Ü)= Y, Pr{CeWi(ft)} (I)

where T (O) is the number of generated operating rectangular subsets and
Wi (O), 1 < i < T (ïl), are these sets. Thïs number corresponds to the
number of calls to the DJD procedure. A detailled example of this process
is given in [9];.

As the DJD procedure has polynomial time complexity [13}y the
exponential time complexity of the exact évaluation of g (O) by the formula
(1) results from the exponential growth of T (ft), the number of calls to the
DJD procedure. Cönsequently, we will interest in later sections to Monte
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Carlo methods that exploit bounds dëduced from a number M of calls to
the DJD procedure, with M smaller than T (fi).

3.2. The network reliability transformation based on the DJD procedure

Some additional notation and définitions folïow, which are needed to
define the transformation in lemma 3.1 and ail random variables that serve
to construct the estimators; in later sections. They concern all undetermined
rectanguïar sets R Ç fi resulting from the DJD procedure when it is called
to compute exactly #(fi) by formula (1),

• T{R): the number of décompositions that allows to compute exactly the
parameter g(R) as in formula (1),

(2)

where Wi(R), 1 < i < T(R), are the generated operating rectanguïar
subsets of R,
For a fixed integer M such that M < T(R) (M <T (R) < T (fi)),

- W(R): the subset of vectors classified as operating in first M calls
to the DJD in order to compute g{R) by formula (2)

- F(R): the subset of vectors classified as faïled in ftrst M calls to
the DJD in order to compute g(R) by formula (2)

- h(R): the number of undetermined rectanguïar subsets not y et
decomposed

-S(R) = {Ui (R)r..., Uh(R} (R)}'- the set of undetermined
rectanguïar subsets not yet decomposed

h(R)

-U(R)= U (
M

- gt (R) - Pr {C (R) E W (R)} = £ Pr {C (R) £ W> (R^}: a lower
*=rl

bound on g(R)
- 7T, (R) - Fr{C(R) G. UT (R)}, for j G { 1 , . . . , h (R)}

k(R)

= PT{C{R) G U(R)} = E ^
i

- gM (R) = gi (R) + K (R): an upper bound on g(R)
- If S (R) =̂  ̂ , H(R) dénotes the random variable defined by

Pr {H (R) - k} - Pr {C(R) G Uh (R) | C(R) e U (R)}

= *h(R)/ir(R)t for h € {1, ,

vol. 32, rv° 3, 1998
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The following lemma expresses the parameter g (ft) as a fonction of
bounds on this parameter and the exact reliabilities of networks with state
spaces smaller than O. Both stratified simulation methods presented hère
use this transformation.

LEMMA 3.1: For the fixed integer M < T(O), we have the following
transformation

g (fi) = gi (fi) + J2 *h (Û) g (Uh (il)). (3)
h=l

Proof: As the sets W (Q), F(ft) and the undetermined sets Uh (O),
h G { 1 , . - - , h(Q)}9 forai a partition of fi, the total expectation theorem
gives

g{ü) = E {B (O)} = E{B (O) \(CeW (O))} Pr {C G

+ E{B(n)\(CeF(n))}Fr{C£F(n)}
h (fi)

+ £ E{B(Q)\(CeUh(a))}Px{C€Uh(Q)}.
h=l

Since W (O) is an operating set and F (Û) is a failed set, we have

E{B(Q)\(CeW(ü))} = l

and

E{B(Ü)\(CeF(Ü))} = 0.

We then obtain

h(ü)

g(Ü) = E {B (ft)} = gi (O) + Y, 9 (Uh (O)) ̂  (ft). (4)

4. THE STRATIFIED SAMPLING METHOD OF FISHMAN AND SHAW [13]

The stratified sampling technique of Fishman and Shaw is based on
the transformation given in the previous lemma and the standard sampling
technique that we recall below.

Recherche opérationnelle/Opérations Research



A MONTE CARLO SIMULATION OF THE FLOW NETWORK RELIABILITY 277

4.1. The standard Monte Carlo method

For a sample size K and any rectangular set R Ç Çl, the standard
Monte Carlo estimator of the parameter g(R) is a sample mean based on
K independent trials $ ((51) (R)),..., $ (<5JO (R)) of the random variable
B(R) = $(C(R)). More formally, this estimator is

Its variance is

Va, . . ( 6 )

4.2. The Monte Carlo method of Fishman and Shaw [13]

By replacing R by fi in derinition (5), we obtain the standard estimator
of <j (fi) with the sample size K. The well known drawback of the standard
estimator is the large sample size K required to obtain sufficiently small
variance and reasonable relative error [10]. Variance réduction methods is
based on estimators having smaller variance than the standard one with the
same sample size. Consequently, they get more accurate estimâtes.

Instead of drawing the K trials from fi using the distribution function of
C = <?(fi), as in the standard Monte Carlo method, the transformation (3)
leads Fishman and Shaw [13] to concentrate the K samples in the set

h(Ü).

uh(n).

Moreover, they propose to distribute the K trials on the undetermined
sets. The number K^ of trials drawn from each Uh (fi) is fixed proportional
to TTfc (fi)/7r (fi), that is the probability that C belongs to Uh (fi) given that
C belongs to U (fi). The reader can see [13] for a discussion about the rules
to distribute the K trials.

More formally, they suggest to use the following unbiased estimator

h(Q)

(Khi Uh (fi)) (7)
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where

Kh = K P ) }

= Kirh (Ü)/TT (SI), for h = 1 , . . . , h (Û),

and ê (Kh, U-h (0)) is the standard unbiased estimator of g (£4 (fy) based
on K^ independent trials of C{Uh (fi)). In [13], the authors show that the
variance of this estimator is

Var {f} = (g (Q) - 9l <fî)) (gu (fî) - g (Q))/K

Then

Vax {f} < (g (ft) - g, (fi)) (5„ (ft) - g (Q))/K

Because g(ft)(l — g(Q))jK corresponds to the variance of the standard
estimator of g (Cl), the last inequality implies that T offers more accurate
estimâtes than the standard one.

4.3. Algorithmic description of the metfaod of Fishman and Shaw

For a given sample size K, an estimate of g (Q) by this sampling strategy
can be obtained from the following function with the parameter R equal to fi.

Function StratîfiedSamplingl(K, R)

0. Preiiminary step: Bounds (R, M, çji(R), gu(Rh HR)* S(R), {TT1(JR), . . . , 7vh^Ry(R)})
1. Initializatïon: Est := 0
2. For h •:= 1 to h{R) do

2.1. Evaluate the size Kh : /<"h := ii x Tv,h(R)/7r(R)
2.2. Compute the standard estimation of g(Ui7,(R)) : S-sth := StandardSampling

(Uh{R), Kh)
2.3. Add the contribution of the stratum /̂  to E^t : Est :=

3. Return the estimate of g(R) : return(gi(R) +

In step 0, we use the procedure Bounds (R, M, gi(R), gu (R), h(R),
S(R), {TTI (R), , ^h(R)(R)})) Ûiat computes, for a given rectangular
subset R of Q and a fixed integer M of décompositions, the bounds
gi(R), gu(R), the number h(R) of undetermined rectangular subsets, the
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set of undetermined sets S (R) — {Ui(R), , Uh(Ry(R)}> the set of
associated weights {TTI (.R),..., -KH ̂  (A)}. If T (R) < M, this procedure
gives gi(R) = gu (R) = g(R) and h(R) = 0. The reader can see [7, 13],
for details about the Computing process of the procedure Bounds ( ), even if
this is not necessary to understand our work.

The standard sampling function used in step 2.2 can be written as follows:

Function StandardSampling(Ry K)

1. Initialization: Est := 0
2. For each experiment k := 1,.. . . , K do

2.1. For each link j € A accomplish a trial CJ of C3(R)
2.2. Compute v (ci, oi,..., ca )
2.3. If u (ci, c 2 , . . . , ca) > d then .Est := £?st + 1

3. Return (Est/K)

The Ford-Fulkerson flow-augmenting method can be used to compute
v (ci, C2-, - • -, ca), that is the maximum ŝ -flow corresponding to the capacity
vector (ci, C2,..., ca). A method to generate a trial of a discrete random
variable can be found for instance in [12].

5. A NEW STRATIFIED SAMPLÏNG ESTIMATOR

In the above algorithm, the estimation of each reliability parameter
g (Uh (fî)) associated to the stratum Uh (îî) is accomplished by the standard
sampling. If these reliabilities are evaluated by estimators that belong to
the variance réduction family, we will obtain more accurate estimator than
f (7). As a conséquence, we propose to replace the standard estirnator by
the recursive importance sampling one presented in [4, 5]. This estimator is
briefly recalled in the next subsection.

5.1. The recursive importance sampling estimator [4, 5]

In [4, 5], we proposed an efficient variance réduction method. It transforms
the sampling in a given rectangular set R Ç ft of state vectors into the
sampling is one subset among the undetermined subsets resulting from the
DJD procedure when it is called to partition the rectangle R, This subset
subsequently undergoes a similar step until the transformation is called on a

vol. 32, n° 3, 1998
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rectangular set R with T(R) smaller or equal to M. The related estimator
is a sample mean

1 K

Z(K,R) = -J2Z^(R), (9)

based on the random variable Z(R) given in the folio wing lemma.

LEMMA 5.1: The recursive random variable Z (R) defined by

1 ' ~ \ 91 (R) + ir(R)Z (UH(fl) (R)) otherwise,

where all parameters are defined as in section 3,2, satisfies

and

Var {Z (R)} < (g (R) - 9l (R)) (gu (R) - g (R))

(12)

The proof is given in [4, 5].

Results (11) and (12) implie that the estimator defined by (9) belongs to
the variance-reduction family.

5.2. The proposée! stratified estimator

PROPOSITION 5.2: The estimator defined by

h(Q)

z = m («) + Yl ê (Kh, uh (fi)) irh (fi) (13)
h=l

vérifies

E{T} (14)
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and

Var {Z} < Var {f} < Var {$ (C)} (15)

where

, Kh

is the sample mean based on K^ independent trials using the distribution
function of Z(Uh(Ü)).

Proof: By replacing R by ^ (fi) in equality (11), we obtain that
E {Z (Kh, Uh (fi))} - g (Uh (fi)) and then,

h(Q)

E {Z} = 9l (fi) + X ; 7T/, (fi) E {Z {Kh, Uh (fi))}

h (Cl)

For the variance, by applying the resuit (12) with R equal to Uh (fi),
we obtain

As

and

Var {Z} = Y, 4 (^) Var {Z (Kh,
h=l

h(Ù)

Var {F} = Y 4 (fi) Var

vol. 32, n° 3, 1998
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We deduee that

Resuit (14) implies that Ê is an unbiased estimator of g (SI). Resuit
(15) implies that the use of the reeursive importance sampling to evaluate
the contributions of the strata leads to a more accurate estimator than the
stratified estimator proposed in [13].

5.3. Algorithmic description

For a given sample size K, an estimate of g (O) by the proposed strategy
can be obtained from the function StratifiedSamplinglQ with the parameters
K and O. As in the function StratifiedSamplinglQ, the new function uses
the procedure Bounds ().

Function StratifiedSampling2{K, R)

0. Preliminary step:
Bounds (R, M, 9l(R), gu(R), h(R),

1. Initialization: Est := 0
2- For h := 1 to h (R) do

2.1, Evaluate the size Kh : Kh := K x
2.2. Compute the standard estimation of g(Uh(R)) by a sample mean based on Kh trials

of Z (Uh(R)) :
2.2.1. Esth := 0
2.2.2. For k := 1 to Kh do Estu := Esth + Importance S'amplïng (Uh(R))
2.23. Esth := Esth/Kh

23. Add the contribution of the stratum h to Est : Est := Est + ^h(R) X Esth
3. Return the estimate of g(R) : return(m(R) + Est)

The function ImportanceSampling () used in step 2.2.2. gives a trial of
the random variable Z{R) defined by the reeursive formula (10). It can be
described as follows:

Function ImportanceSampling (R)

1. Check and recursion condition;
l.L Bounds (R, M, 9î(R), 9u(R), h(R), S(R)7 {*!<#),..., 7rh{R)(R)})
1.2. If (h(R) = 0) return (gi(R))

2. AccompHsh a trial h of H(R)
3. Reeursive call: return (gt(R) + TT(R) X ImportanceSampling (Uh{R)))

The reader can see [4, 5] for details about this procedure.
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6. NUMERICAL ILLUSTRATIONS

For ail simulation methods presented in this paper we fix the parameter
M to 1 and we use two topologies.

The first topology used in [13] and presented in Figure 1 has 10 nodes
and 25 arcs. For each arc j of this network, the random discrete capacity
Cj is a BernouUi random variable that takes the value 0 with probability q
and the value on the arc j with probability p = 1 — q. When the capacity
of every arc is fixed at its upper value, the maximum sf-flow is equal to
71. Consequently a demand greater than 71 at the sink node t can not be
satisfied. We consider five different demands d — 20, 36, 50, 60 and 71, and
the probability p = 0.9. The corresponding exact flow network reliability
values are tabulated rn Column 2 of Table 1.

Figure 1. - The network [13] used for numerical résulte in Tables 1 and 2.

In Table 1, we present in Columns 2 and 3 the exact values of g (fi) and
their estimâtes by Z with K — 216. It can be observed that each estimate
is close to the corresponding g'(Q) computed by the exact algorithm of
Doulliez and Jamoulle. Also, this algorithm is used to deduce the parameters
g (U (Q)), g (Uh (fi)) for h = 1 , . . . , h (fi).. These values serve to tabulate,
in Column 4, the variance of B (fi), which is equal to g (fi) (1 — g (fi)) and,
in Column 5 the variance of T evaluated by formula (8). Since the variance
of Z is unknown, its unbiased estimator [14]

(16)
h=l

is used to obtain estimâtes of Var {Z} at Column 6.

vol. 32, n° 3, 1998
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TABLE ^ 1 _

Evolution ofvariances of$ (C), T and Z, as afunction
ofthe demand d on the network in Figure 1, with p = 0.9, M = 1 and K — 21 6 .

d

20
36
50
60
71

0.985506
0.909608
0.667960
0.456285
0.372807

i

0.985520
0.909620
0.667936
0.456283
0.372810

Var {4(3}

2.180 x lu"7

1.255 x 10"6

3.384 x HT6

3.785 x 10"6

3.568 x 10"6

Var{#>

9.495 x 10"8

6.692 x 10"7

2.452 x 10"7

3.130 x 10~8

2.015 x 10"8

Var {S}

5.069 x 10"10

2.616 x 10"9

1.064 x 10"9

3.210x10-"
5.113 x 10"12

Table 2 compares the performance of &(C), T and Z defined by (5),
(7) and (13), respectively. In Column 2, we give the variance-reduction
ratio achieved by the estimator T when compared to the standard sampling
4>(C). In Column 3, we present the variance-reduction ratio achieved by
the estimator 2'relatively to $((?). This ratio is always greater than the
variance-reduction ratio achieved by the estimator T. It results that Z is
more accurate than T. In Column 4, the quantity T ($ (C))/T (Z) gives the
ratio of the time required to collect 216 trials for $ (C) and the time required
to collect 216 trials for Z. Because this ratio is always smaller than 1, the
reduced variance has been achieved at a higher cost per trial for Z than
for the standard estimator. A concise performance parameter that takes into
account both variance-reduction ratio and time ratio is the product

W{è(C)) _ Var
W{Z)

•(C")}xT(ê(C))
T{Z)

This parameter is called the speedup of the estimator Z with respect to
$ (C) and gives the time that the estimator $ (C) requires to obtain the
same variance obtained by the estimator É in one unit of time. The speedup

TABLE 2

Evolution ofthe speedup ofthe estimator É with respect to <È (C) and f [13], as afunction
ofthe demand d on the network in Figure 1, with p = 0.9, Af = 1 and K = 21 6 .

d

20
36
50
60
71

Var{4(C)}
Var {T}

2.30
1.87

13.80
120.94
180.11

Var{*(C)}
Var {2}

430
479

3180
117928
697790

T($(C))
T(È)

0.156
0.215
0.238
0.327
0.461

VV ($ ((f))
W(Z)

67
103
758

38610
321988

W{Z)

29
55
55

319
1787
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values, presented in Column 5, are always greater than 1, showing a better
performance of the estimator Z,

As the cost of the estimating by T is about the same as the cost of
estimating by ê (C) [13] with the same sample size, the speedup of T with
respect to the standard estimator is close to the variance-reduction ratio, and
the speedup of Z with respect to the stratified sampling estimator can be
estimated by the ratio of the values in Columns 5 and 2, for each case. These
speedups are tabulated in Column 6. They show that our methodology is
more attractive than the stratified sampling in [13].

The speedup of Z with respect to T is improved in the case of highly
reliable components. For instance, when p is set to 0.99, we obtain the
speedups from 18159 to 2048026.

The second topology in Figure 2 is a more interesting example. Its
évaluation by the exact algorithm of Doulliez and Jamoulle takes more
than week (we have aborted the exécution after 8 days). For each arc j of
this network, the random discrete capacity Cj takes 0 with probability q and
the value on the arc j , or 1 if there is no value on the arc, with probability
p = 1 — q, When the capacity of every arc is fixed at its upper value, the

Figure 2. - A version of the French packet switching network TRANSPAC.
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TABLE 3

Evolution of the speedup of the estimator Z with respect to T [13] and Z [4] on the
French packet switching network TRANSPAC, with p = 0.99, M ~ 1 and K = 1016.

d

4
7
9

Z

0.99999999
0.99906758
0.90429149

T(Z)

0.0243
0.0398
0.0273

Var {T)
Var(Z)

2816612.22
2972.05

129711.04

: W(Z)

68498,15
118.38

3544.65

W(Z)

308.82
205.98
996.24

maximum st-üow is equal to 9. Then a demand greater than 9 at the node t
can not be satisfied. For this example, we consider three demands d = 4, 7,
9 and p equal to 0.99. For each case, we tabulate in Column 2 the estimate
of g (fî) by the proposed estimator Z with K = 106 and M = 1. The CPU
exécution time consummed by each estimate is about 15 hours. In Column 3,
we give the ratio of the time required to collect IQ6 trials for T and the time
required to collect 106 trials for Z. In Columns 5 and 6, we tabulate the
speedups of the estimator Z with respect to the estimator f of Fishman and
Shaw [13] and the estimator Z [4] respectively. Each speedup value gives
the time needed by the corresponding estimator to obtain the same variance
obtained by the estimator Z in one unit of time.

7. CONCLUSIONS

The problem of the exact évaluation of the probability that the maximum
st-üow exceeds a fixed value d in a stochastic fîow network is an NP-
hard problem. Consequently, algorithms to résolve it exactly have a high
computational cost. When exact algorithms fail or when their computational
time is prohibitive, Monte Carlo methods can supply an estimate in a
reasonable time. In this paper, we have proposed to use the décomposition
procedure of Doulliez and Jamoulle in order to construct a new stratified
sampling estimator. We have shown that it belongs to the variance-reduction
family and that it is more accurate than the previous stratified sampling
estimator based on the same décomposition [13]. We deduce from the
results of several tests that our methodology offers substantial gains with
respect to previous simulation methods. Further research can be performed
in two directions. On one hand, one can attempt to accomplish the M
décompositions such that the bounds are close, at each call of the procedure
Bounds ( ). This will lead to more accurate estimâtes. On the other hand, one
can quantify the effects of varying the number of décompositions M in order
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to establish some rules to suitably fix this parameter. An other interesting
point is to study the incorporation of recursive stratification within the
nnrlfttprminftd setsundetermined sets.
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