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ON THE NUMERICAL RESOLUTION
OF ISAAC'S INEQUALITIES (*)

by Silvia C. Di MARCO (l)

Communicated by Jean-Pierre CROUZEIX

Abstract. - This paper deals with the numerical solution of the bilatéral ïsaacs' inequality
associated to stopping time games. We present two algorithms which converge in a finite numbers
of steps. The numerical computaüonal task is considerably reduced by starting at special initial
conditions.

Keywords: ïsaacs' inequality, bilatéral variational inequalities, accelerated algorithms.

Résumé. - On étudie la résolution numérique de Vinégalité bilatérale de Isaacs associée aux jeux
différentiels avec temps d''arrêt. On présente deux algorithmes qui convergent en un nombre fini
d'itérations. Le calcul numérique est réduit grâce aux choix de points de départ convenables.

Mots clés : Inégalité de Isaacs, inéquation variationnelle bilatérale, algorithmes améliorés.

1. INTRODUCTION

Differential games with stopping times are a well known problem in
the field of optimal dynamic décisions (see [1, 5, II]), They originate
bilatéral variational inequalities (BVI) (see [6, 7, 9]) when analyzed with
the dynamic programming methodology. Such BVI are solved numerically
using fîxed point algorithms. The convergence of those algorithms dépends
on the actualization rate and, in some cases the procedure may converge very
siowly. Several algorithms have been devised to accelerate such convergence.
For example, Tidball-Gonzâlez in [12], have obtained an algorithm which
converges in a finite number of steps, (3^ itérations in the worst case, where
N is the cardinal of the discretized space). In this work - continuing the
developments presented in [2] - we devise algorithms that finish in a finite
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and small number of steps (number smaller than N in one case and smaller
than 2N in the other one).

We consider the solution of the system (1)

M (w) = Pfr^Bw + f), (1)
where P^ ^ (x) dénotes the Euclidean projection of x E RN on the box

[01, ^i] X [02, ^2] X . . . X [0jv, <ipN].

The expression (1) is a bilatéral inequality that results from discretizing the
Isaacs' inequality associated to a zero sum differential game problem with
stopping times (see [4, 5, 6, 9, 12]), when the methodology of discretization
described in [8] is applied. The vector w represents an approximation to the
value of the game. Besides, the system (1) can be considered as the dynamic
programming équation for the value of a stopping time game defined on a
finite Markov chain.

The problem consists in finding the unique fixed point of the operator M,
which is a contraction, (see [12]); Le., finding w such that

w = Mw. (2)
We analyze the methodology obtained by starting at some suitable initial

conditions and we obtain some properties that enables us to modify the usual
fixed point algorithm for obtaining convergence in a small number of steps.

2. ELEMENTS OF THE PROBLEM

In what follows B is a N x N matrix, 0, -0 and ƒ E UN\ and we assume
there are a > 0 and 7 < 1 such that

bij>0 V i , j = l, . . . , N ,

Be<1e, (3)

^ — 0 > ae,

where e dénotes the vector of RiY such that CJ = 1 for all j . Then, from
the assumptions on J3, it follows that M is a contraction and therefore there
exists a unique w such that Mw = w.

From (1), we deduce that the components w% take only one of the following
values

w% = l ^ Vi : (BW + ƒ),• > ^ (4)
[ )i Vi : 0, < (BW+f)i < fa.
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ON THE NUMERICAL RESOLUTION OF ISAACS' INEQUALITIES 365

According to these three possible values, we define three index sets

51 = {i : wt = fa},

52 = {i : Wi= ipi},

C = {i : <f>i < Wi < ipi}.

3. ALGORITHMS WITH SPECIAL INITIAL CONDITIONS

3.1. Preliminary définitions

We now introducé some définitions to describe more easily the properties
used in the algorithms presented in this section. Let N dénote the set of
non négative integer numbers.

We consider sets 5 j \ S% which are approximations of Si, 82- They
are suitably defined for each algorithm in order to get a séquence {wn}
converging to w in a fast way. Starting with B°, / ° and w° defined in each
particular case, we generate séquences {S71}, {ƒ"} and {wn} as follows.

(6)

(7)
Remark 3.1: It is clear that the séquence {wn} is well defined since, by

construction, (/ — Bn) is nonsingular. Furthermore wn is the unique fixed
point of the transformation £ H^ Bn^ + fn.

Remark 3.2: For each n G N\{0}, the vector wn vérifies

\ Si V i E Si ,
{w)l = \l Viesr\ (8)

3.2. Algorithm Al

Let B° =• B, / ° = ƒ and. wp — ( # - B ) " 1 ƒ be the initiai conditions
to generate the séquences defined in (5), (6) and (7). Moreover, for each
n E N we define

i
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3 6 6 S. C. DI MARCO

<S? = {3 • K ) y > *l>i, (wn - fl>)j = max(u;n - 1>)i}; (10)

%

n

S?=\JST; (il)
m= 0

n

S2 = IJ Sf ; (12)m = 0

LEMMA 3.1: For rac& n G N, 5^ C S2 and S? Ç 5i.

Proof: We only prove 5 | Ç 52. The remaining inclusions can be proved
in a sinülar way.

We dénote 6 ~ max(w° — ^)f, and with the same symbol the vector Se.

It is easy to see that

(wo-S)<iJj (13)

(w° - 6)i = &, Vie SI (14)

From (3) and (7), we have B8 < S and

B(w° -6) + f = w°-B6> w° - 6. (15)

The operator M is monotone, Le. v\ < V2 => MÜI < Mv2- From this
property, (13) and (15), it follows that

M(w° - S) - P[4,M(B(w° -6) + f)> P[m{w0 - S) > w° - 6. ( 1 6 )

Therefore, for each k E N\{0}

MW(W° -S)> M(W° - 8)>w° - S: (17)

where M^fc) dénote the composition of the operator M, fe times.

As M is a contraction, we have

Hm M{k\w° -6)=w. (18)

Then, from (4), (14), (17) and (18),

^ > ^ > K - *)i - ^ . ' (19)

Then, wi = ^ , /.e. z G ^ . D

Let Mnw = P[^^](J5raiü+ / n ) . Then, M n is a contraction which has
the same fixed point than M.
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LEMMA 3.2: For each n G N, w ïs the fixed point of operator Mn, Le.

Mnw = w., (20)
Proof: Let i G 5J" 1 . So, (6n)?i = 0 Vj and (fn)t = ^ . Hence,

Mn(w)i = ^ . From the previous lemma, we have Wi = ^ . Then,
M n (wJ)j = wi. Similarly, we can obtain that i G S^"1 implies
Mn(w)i — w%.

Let i g S?" 1 U #2-1- Then, for each j G { 1 , . . . , iV}, (6n)y = ^ and
(fn)i = / j . Hence, M"(^;)2 = M(w)rl. Since, ü; is the fixed point of the
operator M, condition (20) follows. D

Algorithm Al
Step 0: n = 0;
Step 1: Compute wn as in (7).

Construct S^ and S^ as in (9) and (10).

Step 2: If 5£ US? = 0,stop.
Else,
Construct (&n+1)i> and (fn+1)i Vi, j as in (5)
and (6).
Set n — n + 1 and go to Step 1.

Convergence of Al

LEMMA 3.3: For each n G N the folïowing alternative holds

5fU5?^0 or wn = w. ^ (21)
Proof: wn = w implies ^ < wn < ip and therefore, 5f ü 5J = 0. On the

other hand, 5? U SJ = 0 implies <f> < wn < f. Then,

Mn(wn). = P[M](B
nwn + H = P[^}(™n) = ™n-

From Lemma 3.2, it follows that wn — w. D

From Lemma 3.3 the algorithm finds the fixed point of operator M. Let
us prove that this occurs in a finite number of itérations.

THEOREM 3.1: The algorithm converges in at most N steps:

Proof: Let card(X) dénote the cardinal of the set X. While 5f U-5J ^ 0,
we have card(Cft) < card(Cn~1). As there are at most N indices, there
exists an index n < N such that

card(C^) - card(C^-1), (22)
5f U5J#0. (23)
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From (23) and Lemma 3.3,

wn ~ w.

•
3.3. Algorithm A2

Starting with B° = 0, f° = w° = ^, we generate séquences {Bn}, {ƒ"}
and {w™} as in (5), (6) and (7). The approximated sets are given by
5£ = { 1 , . . . , JV}, SJ = 0 and, for each n G N,

^ * - ^h (24)

= 5?U5J*; (25)

= {i E S? : (.Bti;" + f)i > ^ } - (26)

= {ie 5? : ( B ^ n + f)i < ^ } . (27)

Clearly,
• from construction we have that S1^1 C 5f;
• it can be proved as in Lemma 3.1 that S f Ç 5i

LEMMA 3.4: For each n e N, Cn Ç Si U C.

Proof: From construction, it follows that for each i G C", (it;n)?; = Vv In

conséquence, (Bwn + f)i < (wn)i. Since M is a monotone operator, we have

M(fc>(™n),- < M^-^iw^i < (wn)i - ^ . (28)
As M is a contraction, we deduce that lim M ^ ( ^ ) = ïû.

Therefore, ïïi < fy. D

Algorithm A2
Step 0: n = 0, C° = Sf = 0, 52° = { 1 , . . . , N}, w° = ^
Step 1: Construct C n + 1 as in (27).

If Cn+l = 0, stop.
Else, set

cn+1 = cn ucn + 1 ,

. V j e { i , . . . , J V } ,

j otherwise
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fi otherwise
n = n + 1 and go to Step 2.

Step 2: Compute wn = (I - Bn)
Construct Sf as in (24).
If 5? = 0, go to Step 1.

Else, set

n)~l f\f

'i + 1 Cïî i i en nn+l
-i — O-i U J i j O2 —

)a)ij otherwise
wi V i G S\

(ƒ )i = \
l(fn)i otherwise

n — n + 1 and restait Step 2.

Convergence of A2

Now, we prove that when the stopping rule is verified, the fixed point
has been found.

LEMMA 3.5: If Ck = 0 for some k G N\{0}, then

wk = w. (29)

Proof: If (7fc = 0 for some fc G N, we have for each i G Sf, ('^/c)z = ^
and (Bti;fc + /)?; > ipi, so

M(îx;fc)i = («;fc)i, ieS2
fc. (30)

For each i G Sf, we have (w;A),: = <̂?; and we know from définition of Sk

that (Bwk + f)i < <f>i, which implies

M{wk)i = {wk)h % G Si (31)
Finally, from construction of wk, for each i g Sk U Sk it follows that
>̂i < (Wk)i < Ipi, SO

M(wk)i = (u;A')/, i 0 5f U 5f. (32)
From (30), (31) and (32), we have

M(wk') = wk\ (33)
which implies

wk = w. (34)
n
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We have just proved that the algorithm converges to the fixed point of
operator M. Let us prove that this occurs in a finite number of itérations.

THEOREM 3.2: The aïgorithm converges in at most 2N steps.

Proof: At each time Step 1 is executed, at least one index leaves S\ and
enters Ct. At each exécution of Step 2 at least one index leaves C* and enters
S\. Then, at most 2N itérations are needed to complete the computation. D

Remark 33: In a similar way and with the same rate of convergence as in
the last algorithm, it is possible to construct another one starting at w° — </>.

4. EXAMPLES

In tables I and II we show how 5", 5J and Cn e volve when Al and A2 are
used. These examples correspond to N — 15 and data randomly generated.

To describe the évolution, we define for each n E N the fonction
In :{1,...,N}~ { -1 ,0 ,1} ,

if

if

if

ieCn

ie S£.

TABLE I

Evolution of Al

Index

1
2
3
4
5
6
7
8
9

10
; 11
. 12

13
14
15

1°

0
0
0
0
0
0
0
0
0
0

: 0
0
0
0

i 0

I1

0
0
1
0
0
0
0
0

- 1
0
0
0
0
0
0

Itération

I2

0
0
1
0
1
0
0
0

- 1
0
0
0

- 1
0
0

I 3

0
0
1
1
I
0
0
0

- 1
0
0
0

- 1
0
0

J4

0
0
1
1
Î
0
0
0

- 1
0
0
0

- 1
• 0

0
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TABLE ÏÏ
Evolution ofÂ2

Index

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Itération

1°

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

f

1
0
1
1
1
0
0
1
0
0
1
1
0
0
0

I2

1
0
1
1
1
0 ;

0 \
1

- 1
0
1
1
0

o ;
0

i3

î
0
1
1
1
0
0
1

- 1
0
1
1
0
0
0

I4 :

0
0
I
1
1
0
0
0

- 1
0
1

o :
- 1 ;

0
0

I5

0
0
î
î
î
0 .
0
0

- 1
0
0
0

- 1
0
0

I6

0
0
1
1
1
0
0
0

- 1
0
0
0

- 1
0
0

Tables III and IV are eornparisons of itération number and CPU times
between Al and A2 for problems specially devised to show that neither
algorithm has the best performance in ail cases.

In table V we give an example where the algorithm developed in [12] by
Tidball-Gonzâlez (algorithm TG) converges more slowly than the algorithms
Al and A2."

TABLE III

Best performance for Al.

AI ;

A2 ;

Itérations ;

4 ;

31

Time

03,89 s

14,55 s

TABLE IV
Best performance for A2,

Al ;

A2

Itérations

16 :

11

Time

14,39 s ••

05,16 s
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372 S. C. DI MARCO

TABLE V

Comparison with TG.

Al

A2

TG

Time

03,89 s

14,55 s

31,94 s

These examples were computed in a PC 486, 50 Mhz, using the
programming System MAT-LAB. In the last three examples the data are
N = 33,

b^à+i = 0.945 i = 1, . . . , 32

&33;i = 0.945

bij — 0 otherwise,
i = 1, . . . , 32

fi =
- 1

999 i = 33.

For the examples shown in table 3 and 5, </>{ = —9i and ipi =
m a x { l ? - 9 9 9 + 99 i}. For the example corresponding to table 4, (f>% = 0
and ifri — 999 i.

5. CONCLUSIONS AND COMMENTS

The algorithms developed in this paper to solve the discrete stopping time
game problem improve the results obtained in [12] for the same problem. In
f act, Al and A2 have polynomial complexity while TG may have exponential
complexity. Besides, in Table 5 we have shown an example where Al and
A2 are f as ter than TG. Our algorithms start at special initial conditions which
can be computed easily from the data of the problem.

Actually, the problem is a stopping time game on a Markov chain (see
[10]), defined as follows

• The chain has N nodes or states "i".

• The transition probabilities pv] are defined by pij — bll/ J2k=i f̂c-

(We only consider the case X^i=i ^ik > 0 because the other one can be
transformed in the previous case through an additional variable).

The results presented here can be further improved by using the Markov
chain structure associated to the problem. We present in [3] an algorithm on
a hierarchical décomposition of the Markov chain associated to the problem.
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The obtained décomposition - comprising the récurrent and transient states
of the chain - enables us to divide the linear System appearing in (1) into sub-
Systems. By using Al or A2, we obtain the solution of the System (1) after
solving a finite number of sub-systems associated to each communicated
states class.
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