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Recherche opérationnelle/Opérations Research

•(vol. 31, n° 3, 1997, p. 211 à 230)

CONE CONVEXITY OF MEASURED SET VECTOR FUNCTIONS
AND VECTOR OPTIMIZATION (*)

by I. KOUADA C) C)

Communicated by Jean-Pierre CROUZEIX

Abstract. — With the absence of a linear structure on a a-algebra of sets, an acceptée concept
of convexity on it is defined through Morris séquences. Some known results on such a convexity
for scalar valued set functions are generalized to cone convexity of vector valued measured set
functions. Finally these notions are exploited in a study of vector optimization involving the latter
functions, a study in which cone-optimal and proper cone-optimal solutions are characterized in
a duality setting.

Keywords: Cone-convex set function, vector optimization, cone-optimal solution, proper cone-
optimal solution, primai problem, dual problem.

Résumé. - En Vubsence d'une structure linéaire sur une a-algèbre d'ensembles, un concept de
convexité accepté dessus est défini à travers les suites de Morris. Quelques résultats connus sur
une telle convexité de fonctions scalaires d'ensemble mesuré sont généralisés à la cône-convexité
de fonctions vectorielles d'ensemble mesuré. Finalement ces notions sont exploitées dans Vétude
de l'optimisation vectorielle comportant ces dernières fonctions, étude dans laquelle des solutions
cône-optimales et proprement cône-optimales sont caractérisées en situation de dualité.

Mots clés : Fonction cône-convexe d'ensemble, optimisation vectorielle, solution cône-optimale,
solution proprement cône-optimale, problême primai, problème dual.

1. INTRODUCTION

Throughout the paper, (fî, A, p) is a measure space where Vt is a non
empty set, A a a-algebra of subsets of Q, and \i a finite, positive non-null
and atomless measure. L^ the space of real /i-integrable functions on fl is
supposed to be separable. It's topological dual L^ = L£° is supposed to
be equipped with the weak-*-topology to which we simply refer to as the
weak topology. By identifying any A G A to its indicator function IA and
any subset S of A to Is = {IA - A G S}, it can be shown (Lemma 3.3
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2 1 2 I. KOUADA

in [6]) that for any A G A and a G [0, 1], a IA G A C L£° where A
is the weak closure of A in L£°. Furthermore, for any A and B E A,
a G [0, 1] and any two séquences (An) and (Bn) in A such that (s.t.)
Lim 7 ^ — aIA\B and L i m / ^ = (ƒ - a) IB\A weakly, A\B and B\A
being the set différences, we have LunIjinUBnu(AnB) = a IA + (1 - ot) IB
weakly (Proposition 3.2 in [6]) and the resuit holds in the absence of the
separability of L^. The séquence (Zn) with Zn — An U Bn U (A H B) is
called a Morris séquence associated with (ce, A, B) : (Zn) ~ (a, A, fi).
Morris in [6] defines a numerical function H on .A as being convex if
it is s.t. for any a G [0, 1], A and B G A and (Zn) ~ (a, A, fi),
L imsup i ï (Z n ) < a t f ( A ) + (1 - a)H(B). We recall that because of
the separability hypothesis on LM, for any a G [0, 1], A and B e A
there exists (a Morris séquence) (Zn) ~ (a, A, fi) (i.e. (Zn) C A and
lim / ^ — QLIA + {I — ot) IB weakly).

Chou, Hsia and Lee in [1] generalized Morris procedure the folio wing way.

Let S be and remain a non empty subset of A. When S is identified
to Is C Z^°, S is its weak closure, co(<S) its (usual) convex huil and,
cö(«S) its weakly closed convex huil. S (non identified to Is) is said
to be a convex subset of A if for any a G [0, 1], A and B E S
and {Zn) in A s.t. {Zn) ~ (a, A, fi) there exists a subsequence (Znk)
in <S. If S is convex (in the sensé just given), a numerical function H
on <S is said to be convex if for any a G [0, 1], A and B e S and
(Zn) in A s.t. (Zn) ~ (a, A, fi) there exists a subsequence (Znfc) in S
verifying lim sup H {(ZUk) < a H {A) + (1 - a)H(B). Results related to
this convexity are given in [1] along with the f act that if S is convex in
the sensé above, then identified to Is C L£°, S — œ(<S) so that <S C L£°
is convex in the usual sensé (Proposition 3.5 in [1]). It follows that in L^°,
A = {ƒ G L™ : 0 < ƒ < 1} (Corollary 3.6 in [1]). It follows again that
A is nowhere dense in L™ since any non-empty weakly open set in L£? is
unbounded. Further, since A is weakly compact in L£° and L^ separable,
A is metrizable (Remark 3.7 in [1]).

Now for any ƒ G A, if Af(/) is the set of weak neighborhoods of ƒ
in A and H is a numerical function on <S, then the weak closure or weak
lower semi-continuous (resp. weak upper semi-continuous) hull of H is the
numerical function H (resp. H) on <S s.t. for any ƒ G <S,

# ( ƒ ) = sup inf ff<A) (resp. £ ( ƒ ) = inf sup ff(A)).
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CONE CONVEXITY OF MEASURED SET VECTOR FONCTIONS 213

H is weakly lower semi-continuous (resp. weakly upper semi-continuous,
weakly continuous) if H = Tï (resp. H = H, H = ~H = H) (Définition 3.8
in [1]).

In so doing S has been identified to Is C L£° and H considered as a
fonction on 1$. In any case H (resp. H) is weakly lower semi-continuous
(resp. weakly upper semi-continuous) on S, H < H < H on S and if H is
weakly continuous on S then H = H on S and H is the unique extension
of H to a weakly continuous fonction on <S. We may also observe that H is
weakly continuous if and only if (iff) for any ƒ G S and ail séquences (An)
in *S converging weakly to ƒ, the séquences (S"(An)) have the same limit.
To close the paragraph, the scalar product of two Euclidean vectors x and
y of the same dimension is noted xy, x > y (resp. x > y) means x% > y%

(resp. X{ > y%) for ail i, the product of x with a real matrix U is x U or C/ x
depending on the one allowed (where in x U, x is taken as a row vector
while in U x it is a column vector). Finally e will always be an Euclidean
vector of appropriate dimension, the components of which are ail unity and
if Si and 52 are two subsets of an Euclidean space, then

- xeSuye 52}, S1-S2 = {x-y : x e Su y e S2},

- S i = {-x : x e Si}-, and if Si = {z}) then

S! + S2 = z + 52 , S2-Si = S2- z.

In the second paragraph below, we çonsider convex set vector fonctions
and among other results, generalizations to such fonctions of properties of
scalar convex set fonctions. Ail those notions are used in the third paragraph
on vector optimization involving set vector fonctions.

2. CONE-CONVEXITY OF SET VECTOR FUNCTIONS

The measure space (îî, A, /x) and Lp remain as above and S is a non-
empty convex subfarhily of A. We let C ^ {0} be a closed, convex cone
in Up with apex 0 G C and positive polar

C* = {a-e Rp : ax > 0 for ail x E C} s.t. interiorof C*, int C* / <f>

so that int C* = {a e Rp : ax > 0 for ail x G C\{0}} and C (1-C = {0}
Le. C is pointed. We suppose that R ^ c C and that C is s.t. if (yk) and (afc)
are séquences in Up with Lim ak = a G Rp and afc G yfc + C for ail & then
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2 1 4 I. KOUADA

a G Limsupyfc + C where Lim sup yk = (Lim.sup.yf,..., Limsup y^). Let
us observe that G — R+ satisfies all those conditions.

Let F = (Fi, ..., Fp) be a set vector function from S to W\

In generalization of the convexity, the weak continuity and the epigraph
of a scalar set function, we have:

1. Définitions: a) F is said to be C-convex if for any a G [0, 1], A and
B E S and (Zn) in .A s.t. (Zn) ~ (a, A, J5), there exists a subsequence
(Z„J in <S s.t. û F ( A ) + ( l - a)F(B) G LimsupF(Z„J + C.

b) F is said to be weakly continuous if each Fi is weakly continuous.

c) The C-epigraph of F is the subset epi F of A x Rp s.t.

epiF = {(A, a)eSx Rp : a E F (A) +C}. D

2. Remarks: a) If F is weakly continuous then F = (Fj . . . . , F p) is the
unique extension of F to a weakly continuous function on S and since
C D R ^ , hence C* C R+, then a F is weakly continuous Va G C*.

b) Let F be C-convex and weakly continuous.

a) For any real a > 0, it is easily checked that a F is weakly continuous
and C-convex.

0) Let H be C-convex and weakly continuous from S to Rp. Then for any
a G [0, 1], A and B e S and (Zn) in A s.t. (Zra) ~ (a, A, B), there exists
a subsequence (Z* ) in 5 s.t. a F (A) + (1 - a) F (S) G Lira F (Z£) + C.
As (Zn) ~ (a, A, S) , there exists a subsequence (Z^) of (Z^) s.t.
a ^ (A) + (1. - a)H(B) e Limiî (Z£) + C.

Consequently a [F (A) + ^ (A) ] + (1 - a)[F(B) + ^ ( 5 ) ] G
I i m [ F ( Z ^ ) + H(Z%)]+'C, so'F + H is C-convex and it is obviously
weakly continuous.

c) Saying that F is weakly continuous amounts to saying that for any ƒ G «S
and ail séquences (An) in S converging weakly to ƒ (i.e. L i m / ^ — ƒ
weakly in L™), ail séquences (F (An)) have the same limit (this is the
définition of weak continuity of F in [2, 3]).

d) If F is weakly continuous, then F is C-convex iff for any a G [0, 1],
A and B G <S and (Zn) in 5 s.t. (Zn) ~ (a, A, B), we have
a F (A) + (1 - a) F (B) G Lim F (Zn) + C. D

For the remaining of the paper, we suppose F weakly continuous. Hère
also L™ x Rp has the weak *-topology (simply called weak topology) product
of the weak topology of U^ and the topology of Rp.
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CONE CONVEXITY OF MEASÜRED SET VECTOR FUNCTIONS 215

Any subset W of A x Rp identifiée to Jw — {IA X OL : A x .a G W}
becomes a subset of L£° x R^ and we can therefore define in a similar
fashion as in the preceding section the subsets W, co (W) and eu (W) of
Lf x W. We also set:

2. Définition: A subset W of A x Kp (non identified to Jw C
L£° x FP) is said to be convex if for any a G [0, 1];, (A, a?-) and (B, y) G VF
and (Zn) in .4 s.t. (Zn) ~ (ar A, B), there exists a subsequmee (^ f c) of
(Zn) and a séquence (z^) in R? verifying l i m ^ = • ax + (1 — a)?/ and
(Zn , , ^ ) 6 W for ail fc. D

This is obviously a generalization of the convexity of subsets of A x R.

3. PROPOSITION: F is C-convex iff epi F is convex. •

Proof: Let F be C-convex,-a G [0, 1], (A, x) and (JB, gr) G epi F
and (Zn) in .4 s.t. (Zn) ~ (a,-A, 5 ) . Since S is convex, F C-
convex and weakly continuons, there. exists a subsequence (Znk) in S
s.t a F (A) + (1 - a)F(B) G LimF(Z r e J + C. On the other hand
ax + (1 - ûf)y G ö F ( A ) + (1 - a) F (B) + C\ thus aar + (1 - a)y G
LimF(Zrafc.) + C and LimF(Znfc) = ax+ (1 - a) y — c for some
cG C. It follows that for each k there exists Qj- a member of (Znk) s.t.

l-a) y—c+(l/k)e, that is a ^ + (l - a ) ^ + ( l / f c ) e G
, so arc + (l - a) y+{l/k) e G F(Qfc)-+.C since R^ c C.

With ^ = a x + (1 — a) y + (l/A;) e, we have Lim t/t = a x H-: (1 — a} y and
for each k9 (Qk, tk) ^ epi F, thus epi F is convex.

Conversely let epi F be convex, a G [0, 1], A and B £ S and (<2Tn) in A
s.t. (Zra) - (a, A, B), (A, F (A)) and (B7F(B)) G epi F , therefore,
there exist a subsequence (Znjfc) in *S, a séquence (^ ) converging to
aF(A) + (1 -a)F(B) and (Znfcî 2fe) G epïF for each fe. Consequently
zfc G F ( Z n J + C a n d a F ( A ) + ( l - a) F (B) G Lim F ( Z n J + C according
to the conditions on C so that F is C-convex. D

4. PROPOSITION: Le? W be a convex subset ofA x W. Then W = co ( W). •

Proof: If (A, x) and (B, y) e W, a e [0, 1] and (Zn) in A s..t.
(Zn) ~ (a, A, B), then there exists a subsequence (Qn) of (Zn) s.t. (/çn)"
converges weakly to a IA + (1 — a) IB, also there exists a séquence ( ^ ) in
W converging to a x + (1 — a) y and (Qn, zn) G W for each n. It follows
that co{W) C W and so W C cô(W) c W). D

5. Remark: It could also be concluded from the proposition above that
S = • cô (5) and that for p = 1, ^ = {ƒ G Z£° : 0 < ƒ < 1}. •
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6. DÉFINITIONS: a) The C-epigraph of F is epi F = {(ƒ, a) G S x Rp :
a G F ( / ) + C}.

b) F is said to be C-convex if epi F is convex (in the usual sensé) in
Lf x RP. •

7. Remark: Let (ƒ&, a^) be a séquence in epi F converging to (ƒ, a).
Then because of the conditions on C, a G.Lim supF(/&) + C and since
F is weakly continuous, F is weakly continuous, therefore (ƒ, a) G epi F
and epi F is closed. D

8. PROPOSITION: epi F = epi F . D

Proof: F = F on S implies epi F C epi F and since epi F is closed,
epi F C epi F . Now let ( ƒ, a) G epi F , then a G F{f) + C with ƒ G «S, so
a = F ( ƒ) + c for some c G C. Now ƒ G <S C A and A being metrizable,
there exists a séquence (A„) in 5 s.t. Lim/4n = ƒ weakly. Since F
is weakly continuous, F (f) — F (LimlAn) = LimF (An). Consequently
there exists a subsequence (Ank) of (An) s.t. a + (1/fc) e > F (Arafc) + c
for each h, so a + (1/fc) e G F ( A „ J + c + R .̂ C F (AnJ + C and
(Anfc) a.+ (1/fc) e) G epiF, thus (ƒ, a) G epi F and epiF C epi F . D

9. LEMMA: 1. The following cases a), b) and c) are equivalent:

a) F is C-convex (Définitions 6);

b) For any ƒ and g e S and a € [0, 1], a~F(f) + (1 - a)T(g) G

c) För any a G C*, a F is convex.

2. /n £/z£ hypothesis of any of the above three équivalences, F (S) is
C-convex (Le. F (S) + C is convex) and C-closed (Le. F (S) + C is closed)
and F (S) = F (S).

3. F is C-convex on S iff F is C-convex on S.

Proof: Since 5 as a subset of L£° is convex in the ordinary sensé
and C** = C, then F is C-convex iff for any ƒ and g E S and
a_e [0,1], (afj-(l-a)g9 aF(f) +.(1 - a) F (g)) G epiF (Le.
a F (ƒ) + (1 - a) F (g) eF{af + (l-a)g) + C) iff for any a eC\aF
is convex in the usual sensé in which case (Corollary 3.2 in [10]), F (S) is
C-convex Le. F (S) + C is convex.

Let us also observe that F hence F being weakly continuous and F being
the unique extension of F to a weakly continuous function on S, we have
F (S) = F (S). Furthermore S being weakly compact,
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CONE CONVEXITY OF MEASURED SET VECTOR FUNCTIONS 217

F{S) = F (S) is compact and since C is closed, F (S) + C - F (S) + C
is closed. We have F weak continuous. Now F C-convex implies epi F
convex (Proposition 3) which in turn implies epi F convex in the usual sensé
(Proposition 4), thus epi F is convex in the usual sensé (Proposition 8). It
follows that F is C-convex (Définition 6) so T (S) + C = F (S) + C is
a closed and convex set.

In fact since F is weakly continuous, it is equivalent to say F is
C-convex or F is C-convex. For F is weakly continuous and if we
suppose F C-convex then for any a G [0,1], A and B G S and
(Zn) in À s.t. (Zn) ~ (a, A, 5 ) there exists a subsequence (Qn) of
(Zn) in 5 s.t. lim/Qn — al A + (1 - OL)IB (since S is convex) and
aT (IA)+(1 - a)T (iB) G F ( a / A + ( 1 - a ) / B ) + C (since F i s C-convex).
WealsohaveF"(a JA + (1 -OL)IB) =~F(UmIQJ = Lim F ( J Q J (since F
is weakly continuous), sothat CKF(/A) + (1 - a ) F ( / ^ ) G LïmF(/Qn)+<7.
As A, 5 , <2ÏÎ G 5 , we conclude that F is C-convex. D

We may therefore state the following comprehensive type resuit:

10. PROPOSITION: The following cases are equivalent:

a) F is C-convex;

b) F is C-convex;

c) aF is convex (in the usual sensé) for ail a G C*;

d) a F is convex for ail a E C*. D

Proof: a)-b) and b)-c) équivalences follow from Lemma 9 above. Now
since F hence F is weakly continuous and R̂ _ C C hence C* C R+, then for
any a G C*, a F is weakly continuous. On the other hand since aF = aF
on <S and a F is the unique extension of a F to a weakly continuous function
on <S, we have aF = aF. Since a F is weakly continuous, we deduce from
Corollary 3.10 and Corollary 3.11 in [1] that a F is convex i f faF hence
a F is convex (in the usual sensé), thus c) and d) are equivalent. D

3. SET VECTOR FUNCTION AND VECTOR OPTIMIZATION

Optimal sélection of a subset of a given space does arise in several cases
including electrical insulator design, optimal plasma confinement, fluid flow
as well as in other economical problems. For instance as in [6], let us
suppose that the cost per unit area of producing a given crop in a région
1Z is c for a return u function of the total production density p which is a
function of rainfall r in turn a function of longitude x and latitude y. If the
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area to be planted must not exceed a constant a, it is desired to choose a
subregion A to optimize the profit Le.

maxul ƒ p {r{xj y)) dxdy) — c. measure (A)
\JA )

subjet to measure (A) < a, A E A(1Z)

where A (1Z) is an appropriate Borel structure on Tl. We will deal with the
multicriteria version of such a problem.

The hypothesis on (ÎÎ, A, /x), 5, C, L^ and F still hold for the present
paragraph. Further we suppose that S contains at least two distinct éléments
and that the weakly continuons F from S to W is C-convex.

We consider at first the primai problem

(Pi) C-min {F (A) : A e S}

the object of which is to characterize the C-minimal solutions A* G S
and the C-rninimal criteria values F (A*) s.t there is no A G S verifying
F (A*) e F (A) + C\{0}. With E (S) = {F (A) : A e S} = F (S), the set
of such F {A*) is noted C-min E (S).

11. Remark: Since C ^ {0}, C-min E (S) C dE (S) the relative
boundary of E (S) so that if E (S) is open in IF, then C-min E (S) = 0 .
So let us suppose just for the time being that E (S) is closed so that
E (S) = Ê{5) = J5(5) = F {S) = T (5) and E (S) is a compact subset of
Rp. It follows that (Theorem 17.2 in [8]) its convex huil co(E(S)) is also
compact so that (resuit 10.5 p. 68) in [9]) the extreme points of co(2?(<S))
are in E (S). Now since intC* = 0 , it cornes from these considérations
that for any a E intC*, the set Y (à) = {XQ E E (S) : axo = min[ax :
x E ^{5)3} ^ 0 and it can easily be verified that Y (a) C C-min E (S),
so 0 / Y (intO*) - U{Y(a) : a E intC*} C C-min E (S).

Even when S (<S) is not closed, we do have the inclusion Y (int C*) C
C-min E (S) although we may have Y(intC*) = 0 . In any case the
éléments A* E S and F (A*) s.t. F (A*) E r ( ïn tC*) are said to be
respectively proper C-minimal solutions and proper C-minimal criteria values
for the problem (Pi). The problem of characterizing those éléments could
also be considered (see [2, 3]). With p C-min E (S) = F(intC*), it is
interesting to observe that pC-mmE(S) = E (S) H pC-mïnE (S). For
if yo E p C-min E (S), then y$ E E (S) and there exists a C intC* s.t.
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CONE CONVEXITY OF MEASURED SET VECTOR FONCTIONS 219

E (S) thus V y G ~E (S) so that yo G E (S) Dp C-min ~Ë (S).
The converse is evident. •

The problem (Pi) seen only in the criteria value space is to characterize
the éléments of C-min E (S) where E (S) = F (S). With E* (S) = {y G
RP :y # E (S) + C\{0}}, we define its dual as

(Ui) C-max E* (S)

about characterizing the C-maximal éléments yo E E* (S) s.t. there is no
y e E* (S) verifying y E yo + C\{0}, the set of such éléments is C-max
E* (S) c dE* (S) and C-max E* (S) = 0 if E* (S) is open.

12. Remarks: a) For any y E E (S) and 2 G £7* (5), we evidently have
z £ y + C\{0}, a kind of weak duality resuit.

b) If y G E (S) n E* (S) then y G C-min E (S) f) C-max E* (S) (same
proof as Proposition 13 in [5]).

c) C-min E (S) C C-max E* (S) j(same proof as the first part of
Theorem 14 in [5]).

d) It cornes from c) and the définition of Ë* (S) that if y G E (S)
then y G C-min E (S) iff y G C-max E* (S), in other words C-min
E (S) = E (S) H C-max E* (S) which could be seen as a duality resuit.
Further if E (S) — E (S), since E (S) +C is closed and convex, then C-min
E (S) — C-max E* (S), the proof being the same as the one of the second
part of Theorem 14 in [5J. D

13. PROPOSITION: We note F on S also: F so that

E(S) = F(S) - F (S) - F (S) = E(S) = E(S).

We set

M (S) - ~Ë(S) + C (a closed and convex subset of (FF),

T* (S) = {y G Mp : 3 a G int C*, ay < min [az : z eÊ (S)]},

Then we have:

a) (M(S))C C T* (S) C E* (S) C (M (S))c where for any set A,
is its complementary set.

b) pC-mmË(S) = C-max T* (S) / 0.
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c) pC-min E(S) = E (S) n p C-min E (S) = E (S) n C-max T* (<S)
so that the dual of the problem of characterising the éléments of
p C-min E (S) is the problem of characterizing those of E (S) n
C-max T*(<S). D

Proof: a) For the second inclusion, by taking y G T* (S) and supposing
that y 0 E* (S), we get a contradiction. For the last inclusion, let y E E* (S).
Then y g M (S) + C\{0}, thus y g int (M («S)) so y G {M(S))C. It remains
to show the first inclusion. Since p C-min E (S) ^ 0 (Remark 11), there
exist yo € P C-min E (S), CLQ G int C* s.t. d(ao) = ao yo — min[aox :
x G 25 (<S)] so that d(ao) '= min[aoy : y G M (5)]. We may therefore
state the existence of ao G int C* s.t. M («S) C H+ (ao) = {y G Rp :
ay > d (ao)}. Now M (<S) is a closed, convex and non empty set and if for
z G M (S) and a G IRP we have d (a) — az — min [ay : y G M (5)], then
y — z + c G M {S) Vc G C, thus ay = az + ac > az so that ac > 0 hence
a e C^. Consequently M (S) is the intersection of the H+ (a) with a e C*,
an intersection included in the one of the H+ (a) with a G int C*. For the
reverse inclusion, if M (S) C H+ (ai) with ai G dC*, then V* G [R+\{0}
and y G M(«S), /it (y) == (tai + ao)y - [td(ai) + d(a0)} > 0 and for
z G int iJ~ (ai) with H" (ai) = {y G Rp : ai y < d(ai)}9 by taking t > 0
large enough, we get ht (z) < 0. Since ta\ +ao G int C* V* > 0, 31 = t0 s.t.
â = t0 ai + a0 G int C*, M (5) C H+ (a) and z G H~ (a)9 that is dH+ (a)
is between M (S) and z. That implies the required reverse inclusion so
that M {S) = n[H+(a) : a G intC*], (M(5)) c = U[inti?-(a) : a e
intC*] C U[H- (a) : a G intC*] = T* (5).

b) p C-min 2? («S)_= C-maxT* {S)£®. This is so because from Remark
11 above, p C-min E (S) — 0 and if y G p C-min E (S), then the same
Remark 11 implies that y G T* (S), Now if y £ C-max T* («S) then
z G y + C\{0} for some z G T* (5), thus there exists a G int C* s.t.
az < axVx G ~Ë(S). It follows that ay < az < ax Vx G £(<S),
an absurdity since y G E (S). Conversely if y G C-max T* («S), then
y G T* (5) c £* (5), so y g Ê(S) + C\{0}, On the other hand, from
the first part (M (<S))C C T* (5) c (M(S))à. Since y G C-max T* (S) and
(M (5))c is open, then yed{M (S))c = dM (S). Now y g Ë (<S) + C\{0}
implies y g M (S) +_C\{0}. Consequently y G C-min M (S) and
C-min M (<S) = C-mïnTÎ(S) (Lemma 4.1 in [10]). As y G ÏÏ(S) and
y e T* (S), we conclude that y G-pC-minË(S).

c) It cornes from b) above and Remark 11 that

p C-min E(S) = E (S) n p C-min 25 (5) = E (S), n C-max T* (5).
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Consequently the dual of the problem of characterizing the éléments
of pC-mmE(S) is the problem of characterizing those of £"(5) n
C-maxT*(<S). D

The solutions and values properly C-minimal to (Pi) being more désirable
than those simply C-minimal (see [4] for example for the reasons), like in
[2-3], we will, in the remaining of the paper, concentrate on the first type.
On the other hand, in order to easily introducé dual variables, our interest
will be focused on a special class of problems. Formally, we let

V = {AeS : G (A) G -if}

where S is as above, K is a closed convex cone in IRm containing R™ and
is s.t. int if* ^ 0 and for any séquences (yk) and (ak) in Rm verifying
Limo^ = a G RTO and ak G yk + K for each k, then a G Limsupt/fc + K
and G = (G?i,..., Gm) is a vector function from S to Rm, K-convex and
weakly continuous. We consider the primai problem

(P2) pC-mm{F(A):AeV}

consisting in characterizing the solutions A E V and values F (A) that are
properly C-minimal. In the preceding notations the set of proper C-minimal
values is p G-min E (V).

We say that V (or G) satisfies Slater's constraint qualification or Slater's
condition, if there exists A$ € S s.t. G(AQ) G —int if. In quest of a dual
to (P2) we will exploit Proposition 13, but in order to do so we must have
E (V) C-convex, that is M (V) = U (D) + C convex in R^ and this is not
necessarily the case even though 5 is convex (see Example 3.1 in [2]). The
next two results will allow us to bypass the difficulty.

14. LEMMA: IfV satisfies Slater's condition, then V1 = {A G S : G (A) G
—int JT} is a non empty and convex subfamüy of A. D

Proof: V1 is evidently non empty. Let 'a G [0, 1], A, B G V and
(Zn) in A s.t. (Zn) - (a, A, B): Since A and B G S and S
is convex, there exists a subsequence (Z^) in S. Now G being K-
convex and weakly continuous, there exists a subsequence (Z^) of (Z\)
s.t. aG(A) + (1 - a)G{B) G UmG(Z%) + K and since G (A) and
G(B) G - int if, we have limG(Z^) G - in t if. Since int K is open,
there exists a subsequence (Z^) of (Z£) s.t. G(Z%) G — int if Vn so that
(Z%) C P ' and consequently V1 is convex. D
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As a very slight generalization of Proposition 3.1 in [2], we have:

15. PROPOSITION: IfV satisfies Slater's condition, then E(V) is C-convex,
that is M(V) = Ë(V) + C is convex in Rp. D

Proof: It is quite similar to the one of Proposition 3.1 in [2], We include
it. By définition Ê (V) = E(V) = F {V) and by the lemma P ' / 0
and convex, thus F (V!) = F(ï>') is C-convex according to Lemma 9. It
suffices to establish that F (V) = F (V) or that F (V) C F (V1).. So let
Ao G Vf and. So G V. Since V and D' C <S, for each n G N*, there exists
a séquence (Zn^k)k in <S s.t. (Zn^k) ~ (1/n, AQ, SO), thus there exists a
subsequence {Z\ k)k s.L

- i ) G ( 5 b ) € Lim G{Z^k)+K.

As G(A0) G - in t if and G(S0) G -K, we have Lim G(Z^k) G

—int^T, thus there exists a subsequence (Z^ k)k C {Z\ k) s.t. G{Z\ k) G
- i n t i f VA so that (Z^k)k C P ' C A. Since 34 is metrizable and IBQ is a
cluster point of (Z^k)k, there exists a subsequence (Zi) C (Zf% k)n^ s.t.
Lim Z2- = IBo weakly, so Lim F (Zi) = F (So) and hence F (So) G F(P ' )
implying that F ( P ) C F(P')* •

In the remaining of the paper, the unique weakly continuous extension of F
(resp. G) from S to S, that is F (resp. G), will also be noted F (resp. G). Let
us also note that for any a G int C*, if V satisfies Slater's condition, since
E (V) is C-convex according to the preceding Proposition 15, it cornes from
Remark 11 that there exists yp G F (V) s.t. ayo = min{ay : y G F (V)}
and since Ê (X>) = F (D) = F (V) = F (p), for any y G !?{£>), there
exists h G P s.t. y =

16. THEOREM: Le? D jaris^; Slater's condition, a G int C* and yo G
with yo = F (ho) for an ho G Ö. T/zen ayo = min [ay : y G F(£>)] /j^
r/îere ex/̂ 5̂1 ti G K* s.t. ayo = inf [a F (h) +uG (h) : h £ S] in which case
u G (ho) — 0 and the infimum may be replaced by a minimum. •

Proof: 1. If there exists u G if* s.t. ayo = inf [a F (h) -Vu G (h) : h G S]
then ayo < a F (h) + uG(h)V h G Ö. Since VA G £>, G (A) G - K ,
then uG(il) < OVA G V,uG{h) < OV/i G Ö since wG is weakly
continuous. It follows that ayo < aF(h)\/h G D le. ayo < ay
Vy e F(D) - Ë(D) so that ay0 = min [ay : y G F (£>)]. We also have
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ayo < a F (ho) + uG(ho) so that uG(ho) > 0 and uG(ho) < 0, hence
uG(ho) — 0, ayo — min [ay : y G E (V)} and inf may be replaced by min.

2. Conversely, let ayo = min [ay : y G E CD)] and let us set
S = {(z, ty) G.HxRm : 3h eS,aF(h)-ayo < z,w-G(h) G int i f} and
let us show that S is convex. So let a G [0, 1], (zi, wi) and (22? ^2) £ 5.
Then for i = 1,2, 3 /^ G S,- h G int if s.t Zi > aF(ht) -ayo,
Wi - G(h{) = h implying that az\ + (1 - a)z2 > àF{h\) + (1 - a)
F(/i2) - ayo, a tu i_+{l -a)*ü2 - [aG(/ii) + (l-a)G(h2)] = afei +
{1 —a)&2- Now 5 is a convex subset (in the usual sensé) of L£°
(Remark 5) and according to Proposition 10 a F is convex (in the usual
sensé) on S and G is ^-convex (sensé of Définition 6) on S so that
•ah\ + (1 — a) /i2 G S . az\ + (1 — a) Z2 > a F (ah\ + (1 — a) h2) — àyo,
a wi + (1 — a) W2 — [G (a h\ + (1 — a) h2) + k] —a k\ + (1 — a) k2 for
some k G K. It follows that (az\ + (1 - a ) z2i otw\ + (1 - <*) ^2) G 5 ,
hence S is convex.

3. Suppose that (0, 0) G S. Then there exists heS s.t. a F (h) - ayo < 0
and —G (/i) G int K. If h — Lim fej weakly with h{ G *S, then Lim G (hz) —
GÇLimhi) = G (h) G -int if and Lim a F (hi) = a F (Lim ht) =
a F (h) < ayo, thus for i large enough, G (hi) G —int if and a F {h%) < ayo,
a contradiction that implies (0, 0) ^ S.

Consequently, since S = 0 , there exist 0 G R and n G Rm s.t.
(/3, u) / {0, 0) and (3 z + uw > 0V(^, w) G 5 (Lemma 2 p. 47 in [7])
and since z could be arbitrarily large, we must have j3 > 0.

4. Let /i G S, r\ G R+\{0} and fei G int if be fixed. Then for any
(r, k) G R+x K, setting z — a F (h)—ayo+ri+r and w — G (h)+ki+kJ we
have (z, w) G S, hence yÔ [aF{h)-ayo\+/3ri+l3r+uG {h)+uki+uk > 0.
(r, k) being arbitrary in R+ x K, we must have (ƒ?, u) G (R+ x if)* =
R+ x if* and so (/?, w) G R+ x if*:\{(0, 0)}.

5. Let e G R+\{0} and k G int if. Then for any h e S, setting
z — a F (h) — ayo + e and w = G (h) + e k, we have (z, w) E S so
that j8[aF{fc) - ayo] + uG(h) > -e(f3 + uk).

If inf-{/3[aF(/i) - ayo] + uG{h) : /i G S} = -6 < 0, we have
0 < S < e (j3 + uk) and by taking e small enough, we get a contradiction
implying that ƒ? [a F (h) - ayo] +uG(h) > 0 V / i G 5 .

6. If /3 = 0, thus u G if *\{0}. Slater's condition implies the existence of
an Ai G 5 s.t. G (Ai) G - int if so that 11G (Ai) > 0 and uG(Ai) < 0.
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This contradiction implies that j3 > 0 and we may suppose that -/? — 1,
obtaining a F (h) + uG (h) > ayo V h G S. D

We will need the following remark (Remark 26 in [5]).

17. Remark: For any a G C*\{0} and u G ÜT*, since there exists b G C s.t.
a& = 1, taking the real p x rn-matrix U — (ni 6,..., nm 6), we get aU = u
and for any v E K, Uv = uvb so that Uv e C. With W as the set of all
real p x m-matrices U s.t. Vv e K, Uv e C, that is t/Jf C C, we just
showed that for any a G C*\{0} and u G K*, there exists U G W verifying
aU — u, UK c C and since'R^. C C, thus C* C R+, by supposing a
normalized {Le. ae = ai + ... + ap = 1) and taking C/ — (ui e,..., nm e),
we get f/v — (n^j..., uv) noted <C tt, v ^ VÎ; G üf. D

The last conclusion of the following proposition is a slight improvement
of Theorem 3.1 in [3].

18. PROPOSITION: We let V satisfy Slater's condition, AQ in S and define
the Lagrangian type function L on S x K* by

L(h,u) = F (h)+ < u, G (h) > .

Then F (Ao) G pC-min E{V) iff there exist a0 G intC*, u0 G K*9 s.t
aoF{A0) + uoG{A0) < a0 F(h) + u0G(h)V h G 5 a n d u 0 G ( i 0 ) = 0 in
which case there exists UQ G U s.t UQ G {Ao) = 0,

F{A0) + UQG(AO) ?F{h) + U0G{h) + C\{0}\fh G S,

F (Ao)+ < n0, G {Ao) > £ F (h)+ « nOî G(/i) > +C\{0} \fh G 5

and

F {Ao) G C-min {L (A, u0) : A e S} H C-min {L (A, n0) : A G 5}. D

Proof: We suppose that P satisfies Slater's condition and let AQ G S.
Then F(A0) G pC-minE{V) iff F(A0) G E {V) n pC-minË(2>),
in other words F (Ao) G -E (D) and there exists ao G int C* s.t.
ao F (Ao) = min [ay : y e E CD)]. It then cornes from Theorem 16 above
that this is equivalent to F (Ao) G E (V) and the existence of no G K* s.t.

ao F {Ao) + n0 G {Ao) < a0 F (h).+ uQG {h)VheS

and no G (Ao) — 0. From the preceding Remark 17, this implies that there
exists Uo G U s.t. ao Uo = ng So that

a0 [F (Ao) + C/0G (Ao)] < a0 [F (h) + C/o G (h)} V f t e S .
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It follows that the_ sets F (Ao) + UQG(A0) - C\{0} and {F (h) +
UQG (h) : h G S} are strictly separated by the hyperplane {z G
Up : aQz = ao[F(Ao) + UQG(AQ)]} so that F (Ao) + U0G(A0) £
F (h) + UoG(h) + C\{0}Vh G S. We now suppose ao normalized
since C* C R+. According to Remark 17 above, we may take UQ —
(noie,..., wome) and with <C no, G(ft) » = U$G(h)\/h G 5 , we get
F(A 0 )+ « no, G(A0) > £ F(/ i )+ < n0, G(/i) » +C\{0}V/i G 5 ,
thus M h G 5 and «oG(i4o) ^ 0 so t/0G(A0) = 0. With L(h, n) =
F(/i)+ < n, G(/i) > V/i G 5 and n G iT\ we get F (An) G C-min
[L(/i, n0) : /i G 5} n C-min[L(A, n0) : A G <S] and n 0 G(A 0 ) = 0.
Because of the weak continuity of F and G on <S, hence on <S, we
have {L(h, no) : h G S} = {L(A, no) : A 6 «S}. We conclude that
F(A0) G C-min{L(A, n0) : A G S} D C-min{L(A, n0) : A G <S} and
noG(Ao) = 0. D

19. Remark: Let D satisfy Slater's constraint qualification and also let
us recall from Remark 11 and Proposition 13 that: ~ËÇD) = E (V) =
F(V) = F (V) = E (V) (F on V has been noted F), E* (V) = {y G
W : y £ E(V) + C\{0} = {y G R^ : y # Ë(V) + C\{0}},
T*(V)_= {y G W : 3 a G intC*, ay < min[a^ : z G £?(2?)]}.
Since E (S) = E (S) it cornes from Proposition 13 that pC-minEÇD) =
E (V) n p C-min E (V) = E (V) D C-max T* (P). Also it cornes from
Theorem 16 above that

T*(V) = {yeRp : BaGintC*, u e K*,
ay < inf [a F (h)-\-u G (h) : h e S}}

= {y GRP : 3a G int C*, n G i^*;

5}. D

20. PROPOSITION: Let V satisfy Slater's constraint qualification. T* (V)
being as in the preceding Remark 19. Let

S* (V) = {y G Rp : 3 U G W, y £ F (/i) + C/G (/i) + C\{0} V/i G S}.

Then

C-min £? (P) D C-max 5* (P) D p C-min E (P) - C-max T* (P) ^ 0

so that

p C-min £ (P) = E (P) n p C-min E (P)
= E (P) n C-max T* (P) C E(V) n C-max 5* (P)
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with equality everywhere if (7-min E (P) =. p G-rnin E (P). D

Proof: For any t/o E T* (T>) it is easily seen (same procedure as in the
proof of Proposition 18) that y0 E S* (P) = {y £ Rp : 3U ett,y &
F (h)_+ UG (h) + C\{0} V h £ S}> so T* (7?) C S* (X>). On the_otherhand
with D in place of <S. Remarks 12 above still hold and since E (P) — E (P)
and S (P) + G is closed and convex, we get G-min E (P) = G-max E5* (P).

Now let t/o G S*(T>). Then there exists C/Q € W s.t. t/0 £ -F O) +
Db G (h) + C\{0} VheS hence VheV. For any A € 2>, either heV so
that G (/i) E --K" or h = L i m ^ weakly with h% e V so G (/ij) G - i f and
G (h) ~ G (Lim /i2) = Lim G(hi) £ —K since ÜT is closed and G is weakly
continuous. In any case, it comes from Remark 17 that Uo-G(h) £ — G and
since C is convex and pointed, we deduce that t/o ^ F (h) + C\{0} V h E V>
so 5* (2>) C E* (P), hence T* (2>) C 5* (P) C S* (P). Jtt follows from
Proposition 13 that (M (V)^c c T* (P) c 5* (P) c E* (P) C (M(5)) c

and pC-minE(V) = G-rnaxT* (P) # 0 .

Further the inclusion G-max S* (P) C G-min £" (P) can be shown in a
similar way as the inclusion G-max T* (S) C p G-min E (S) in part b) of
the proof of Proposition 13 since E (S) = E(S). To show that p G-min
E (P) C G-max S* (P), let y e p G-min E (P), Then y £ G-max T* (P)
so t/ € S*(P) since T* (V) C S* (P). If y £ G-max S* (P) then
there exists z E 5* (P) s.t. z E y + G\{0}. Since ^ E S* (P),
we have z E E* (T>). On the other hand since ?/ E p G-min E (P),
y E G-max E* (V) = G-min E(V). Consequently y £ G-max E* (P),
z £ E* (P) and ^ E t/ + G\{0}. We obtain a contradiction which implies
that y £ G-max 5* (P). It follows that C-mïnE(V) D C-maxS* (P) D
p G-min E (P) = G-max T* (P) # 0 and the remaining follows. G

We may therefore retain as dual to {P%) either

(D2): E ( P ) n G-maxT* (V)

or

(D3) : E ( P ) H G-max S*(P).

For better informations on these duals, we have:

21. LEMMA: Let P satisfy Slater's condition,

a) Let # be the set function defined on U by

- {y£F(V} : y 0 F(h) + UG(h) + G\{0} V/i E 5} .
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Then an equivalent formulation of (D3) is

(£>3) : C-max U [$(£/) : U eU].

Further if yo G C-max Ü [$ (U) : U € U] and UQ G U is sX yo G. $ (£/0)
then $ (C/b) C C-max U [$ (t/) : £/ E U] in which case such a UQ is said to
be a C-maximal solution to (D3) and the éléments of $ (UQ) are C-maximal
criteria values to (D$).

b) Let 3> be the set function defined on (int C*) x if* by

*(a , u) = {y G F ( P ) : ay < a F (h) + uG (h)\/ h <ES}.

Then an equivalent formulation of (D2) is

(D2) : C-max U [* (a, u) : a G int C*, u G ÜT*].

C-maxU^ (a, u) : a G int C*, ti G ÜT*] with ao G int C*, UQ G if*
5.?. yo ^ * (ao, «0)» ̂ w * (a0î wo) C C-max U [$ (a, u) : a G int C*,
i£ G iT*] in which case such a (ao, uo) is a C-maximal solution to (D2) and
the éléments ofty (ao, uo) cire C-maximal criteria values to (D2). •

Proof: Let us at first observe that E (V) H C-max 5* (V) =
C-max [E(V) n 5* (î>)]. For if y0 G £(2?) n C-max S* (V) then y0 €
E (D) RiS* (P) and if there exists yi G E (V) nS* (P) s.t. yi G yo + C\{0},
we get a contradiction to yo G C-max S* (P). Conversely, let yo G
C-max [£(P) n S* (p)]. Then y0 £ ^ ( P ) C £ ( P ) and y0 G 5* (P) C
£* (P), so yo G E (P) H £* (P), and it cornes from part b) of Remarks 12
that yo G C-minE (P) H C-max E* (P). Now y0 G C-max £?* (P)
and yo G 5* (P) C E* (P) implies that y0 G C-max5* (P), thus
yo G E (V) n C-max 5* (P). Secondly, we have E (P) n S* (P) = {y G
F{V) : 3Uelt, y• fÉ F(h) + UG{h)+ C\{0}Vh eS}.VU et(, setting
$(£ƒ) = {̂  G F ( P ) : y g F (A) + UG{h) + C\{0}V/> G 5} , we get
E{V) n 5* (P) - U[$(Z7) : £/ G U\.

Thirdly, let y0 G C-max [E (P) n 5* (P)] = C-max U [$ (LT) : C/ G U]
and [/"o G W s.t. yo G $(î/o)- We show the interesting fact that
$ (t/0) C C-max U [$ (t/) : t/ G «J.

Let also yi G $(E/"o). Then yi G F (P) = £ (P) C E (P) and
yi G 5* (P) C E* (P), so yi G £ ( P ) n E* (P) and again part b) of
Remarks 12 implies that y\ G C-mini?(P) n C-max E* (P). It foliows
that y g yi + C\{O}Vy G E* (P) thus Vy G 5* (P) c'E* (P) so that
yi G E (P) H C-max 5* (P) = C-max U [S (17) : U G W}. Similarly,
E{V) H C-maxT* (P) - C-max [E (P) n T* (P)] and Va e intC*,
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uE K*, setting * (a, u) = {y G F (V) : ay < a F (h) + uG (fc)V h G5},
we get £ (ï>) H T* (X>) = u [ * (a, u) : a G int C*, u G #*]. In addition if
yo G C-max U [* (a, u) : a G int C*, u G if*] with a0 G int C*, UQ G if *
s.t. yo G *(ao, UQ), then * (ao, uo) C C-max U [* (a, u) : a G intC*,
u G K*\. a

22. THEOREM (duality): Let V satisfy Slater's condition.

a) AQ G S is a proper C-minimal solution to (P2) iff there exists
(ao, UQ) G (intC*) x K* C-maximal for (D2) and sJ. F (Ao) G * (ao, UQ)
and UQ G (Ao) — 0 in which case * (ao, UQ) C p Cmin F (2?) = C-max U
[#(a, it) : a G intC*, u G K*].'

b) If AQ G S is a proper C-minimal solution to (P2) then there exists
Uo G U C-maximal for (L>3) and s.t. F (AQ) G $(*7o)> U0G(A0) = 0
and *([/"o) C C-max U [${U) : U e U] and in the case where
C-min E (V) = p C-min E (V) then the converse holds, •

Proof: The result is a conséquence of Proposition 18, Proposition 20 and
Lemma 21. D

23. Remarks: We suppose that P satisfies Slater's condition.
1. If V = V (Le. V is weakly closed, thus weakly compact), then

0 ^ p C-min E (V) = C-max T* (2?) c C-max S* (V). It is therefore non
necessary to require for any y G * (a, u) (resp. y G $ (t/)) that y G F (X>).
In other words we may set:

^(a, u) - {y G Up : ay < aF(h)+ uG(h)Vh ES}.

2;-r*(X>) - {y G Rp : 3a G intC*, ay < min [a F (h) : h G V]}.
Since C* C R+ we may suppose all the concerned a's normalized. From
Theorem 16 and Remark 17, we have:

T* (V) - {y G Up : 3a G intC*, u G if*,

ay< aF(h) + uG(h)VheS}

= {yeRp: 3a G int C*, u G K\

ay<a\F(h) + («j.*,...-, n^-e) G</i)j VJi^eg}.

We also have:
5* (2?) ={y G R̂  : 3u G K\ y £ F (h)

+ < u, G(/i) > +C\{0} V/i G 5},
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we recall (Remark 17) that <€.u, G (h) » = (ui e,..., um e) G (h). We may
therefore define $ on K* rather than on U by setting for each u E K*,
$ ( u ) . { y e F(Ü) : y # F(h)'+ « n, G(/i) > +C\{0}V/i G S} so
that (D3) becomes C-maxU [$ (n) : u G if*] and if yo G C-maxU [$ (u) :
u G K*] with wo G UT* s.t. 2/0 G $ (un), then the éléments of $ («o) are all
C-optimal values associated with the C-optimal solution UQ G K*. Finally
Theorem 22 could consequently be reformulated.

3. In [3], the main results that are Theorem 3.1 and the gênerai duality
Theorem 4.2 provide only necessary conditions for proper C-minimality
whereas we have elsewhere provided in this paragraph necessary and
sufficient conditions through a duality setting. D

4. CONCLUSION

We extended convexity to vector functions defined on convex sets of
measurable sets with values in an Euclidean space ordered by a closed,
convex and pointed cone. We gave some properties of such convex functions.
All these notions have been used to characterize, through a duality setting,
cone-optimal solutions to vector optimization problems involving set vector
functions.
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