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THE DISJOINT CLIQUES PROBLEM (*)

by Klaus JANSEN (*), Petra SCHEFFLER (2) and Gerhard WOEGINGER (3)

Communicated by Philippe CHRÉTIENNE

Abstract. - Given a graph G = (V, E), we consider the problem of finding a set of D
pairwise disjoint cliques in the graph with maximum overall number of vertices. We détermine
the computational complexity of îhis problem restricted to a variety of différent graph classes. We
give polynomial time algorithms for the problem restricted to interval graphs, cographs, directed
path graphs and partial k-trees. In contrast, we show the NP-completeness of this problem for
undirected path graphs.

Moreover, we investigate a closely related scheduling problem. Given D times units, we look
for a séquence of workers w\, • • •, Wk and a partition J\, • • •, Jjt of the job set such that Ji can
be executed by w% within D time units. The goal is to find a séquence with minimum total wage
of the workers.

Keywords: Disjoint cliques, interval graph, cograph, directed path graph, partial &-trees,
computational complexity, scheduling problem.

Résumé. - Etant donné un graphe G = (V, E), nous considérons le problème consistant à trouver
dans ce graphe un ensemble de D cliques deux à deux disjointes ayant un nombre total maximum de
sommets. Nous déterminons la complexité de ce problème lorsqu'il est restreint à diverses classes
de graphes. Nous donnons des algorithmes en temps polynomial pour le problème restreint aux
graphes d'intervalle, aux cographes, aux graphes de chemins orientés, et aux k-arbre partiels. Par
contre, nous montrons que ce problème, appliqué aux graphes non-orientés, est NP-complet.

En outre, nous examinons un problème d'ordonnancement fortement associé. Étant données D
unités de temps, nous cherchons une suite w1} • • •, u>k d'ouvriers et une partition Ju • - •, Jfc de
l'ensemble des travaux tels que Ji puisse être exécuté par wi en D unités de temps au plus.
L'objectif est de trouver une suite minimisant le salaire total des ouvriers.

Mots clés : Cliques disjointes, graphe d'intervalles, cographe, graphe à chemin orienté, &-arbre
partiel, complexité, problème d'ordonnancement.

1. INTRODUCTION

Let J be a set of unit-time jobs and let G be a compatibility graph on J.
Two adjacent jobs in G are compatible and may be performed at the same
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4 6 K. JANSEN, P. SCHEFFLER, G. WOEGINGER

time. Given a time period of D time units, we look for a feasible séquence
of workers w\, • * •, Wk together with a partition of the job set J into k sets
J i , - • •, Jk such that each job set Ji can be executed by a worker w{ within
D time units. The cost of a séquence is the overall wage of all workers. The
goal is to find a feasible séquence with minimum cost.

In Section 2, we propose an approximation algorithm for this scheduling
problem with worst case ratio O (log \J\). The algorithm uses the computation
of a maximum set of jobs exécutable by one worker within D time steps.
This problem can be described graph theoretical as follows:

INSTANCE: A finite undirected graph G — (V, E) and two positive integers
D, B < \V\.

QUESTION: DO there exit D pairwise disjoint cliques Ci, —^DD in G
such that X ^ i \Ci\ > B holds?

A set CÇV is a clique in a graph G — (V, E) if each pair v, v1 E C
of vertices with v / v1 is connected by an edge {t/, vf} G E. We call
the problem DISJOINT UNION OF CLIQUES (DUC for short). In this paper, we
analyse the computational complexity of Duc for several graph classes. We
obtain a polynomial time approximation algorithm for the scheduling problem
restricted to graph classes on which Duc is polynomial time solvable.

For arbitrary undirected graphs, Duc is easily seen to be the NP-complete:
For D — 1, it turns into the well-known CLIQUE problem, and for B = |V|,
it becomes the PARTITION INTO CLIQUES problem {cf. Garey and Johnson [GJ]
for more information on these two problems). Both problems (CLIQUE and
PARTITION INTO CLIQUES) are polynomially solvable for chordal graphs. This
yields to the natural question whether Duc is also polynomially solvable
when restricted to chordal graphs.

The NP-completeness of Duc restricted to split graphs, a subclass of
the chordal graphs has been proved by Yannakakis and Gavril [YG]. But
for interval graphs (Section 3) and for directed path graphs (Section 4)
we give algorithms with time complexity O(D • |^ |2) and 0{D2 • \V\2),
respectively. Furthermore, we show the NP-completeness for undirected
path graphs (Section 5)-another subclass of chordal graphs. Moreover, we
study some other important graph classes for that we found polynomial time
algorithms. These are the cographs (Section 6) and partial fc-tress (Section 7)
with O(|F|2) and O{D2 • |F|) as time complexity, respectively.
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THE DISJOINT CLIQUES PROBLEM 47

The problem Duc was analysed first by Frank [Fr]. He considered
comparability graphs and their complement graphs (co-comparability graphs)
and gave an algorithm for both graph classes with time complexity
O(a - b-\V\2) where a is the cardinality of a maximum clique and where 6 is
the cardinality of a maximum independent set. Gavril [Ga] proposed a slightly
better algorithm which needs O(D-\V\2) time steps for comparability graphs
and O(|y|3 + &|T |̂2 log(|X^|)) for co-comparability graphs. For subclasses
like the interval graphs (Section 3) and cographs (Section 6) we found
algorithms with a better time complexity. We notice that Duc can be solved
in O(y/fyr[|£|) time for bipartite graphs using a matching algorithm of
Micali and Vazirani [MV], The exact définitions of the graph classes are
given in the corresponding sections.

Notation: We consider the optimization version of Duc in ail those parts
of our paper where we give algorithms. That means, we describe how to
find the maximum number CÜJJ(D) of vertices in D disjoint cliques given
a graph G and a positive integer D. Given a graph G and a set HcV we
dénote by G\H the subgraph of G induced by H.

2. APPLICATION TO A SCHEDULING PROBLEM

The problem Duc is closely related to a scheduling problem defined as
follows. Let J be a set of unit-time jobs and let G — {J, E) be a compatibility
graph on J. If two jobs are adjacent in G, they are compatible with each other
and may be performed at the same time. The kind of jobs we consider are
simple supervision and control jobs as supervising the opération of machines.
Thus, these jobs are highly parallelizable and one person may perform two
or more of these jobs at the same time. If a worker performs several jobs at
the same time, he needs only one unit time to complete them all.

A worker w is described by his wage c(w) G N and by a set of jobs
J(w)ÇJ he is able to fulfill. We assume that there are several types of
workers collected in a set W. Workers of the same type have similar
éducation, similar knowledge and similar abilities, and hence they are able
to perform the same jobs and they earn the same wages. Moreover, we
assume that for each type there is an arbitrarily large number of workers
available. A worker w can exécute a job set J ' within D unit time intervals if
JfÇJ(w) and if J ' can be partitioned into D subsets of pairwise compatible
jobs. (The intuition is that during each time interval, the worker has to
supervise several compatible jobs in parallel).

vol. 31, n° 1, 1997



48 K. JANSEN, P. SCHEFFLER, G. WOEGINGER

We are looking for a schedule of the jobs to an appropriate subset of the
workers. The main goal is to keep the overall money paid to the workers as
small as possible while completing all jobs. Given a time period D, a feasible
schedule S with respect to D consists of a séquence of workers w\, • • •, wk
together with a partition of the jobs in J into k sets J\, • • •, Jj~ such that job
set Ji can be executed by worker wi within time D. The cost of a feasible
schedule is defined to be ^ - j C(IÜJ), the overall wage of all employed
workers. An optimum schedule is a feasible schedule with minimum cost.

It is straightforward to see that a set JfcJ(w) of jobs can be executed
by a worker w within D time intervals if and only if the subgraph of G
induced by J'. is the union of a most D cliques. Thus, the problem Duc can
be considered being a special case of our scheduling problem (to find the
maximum number of jobs for one worker). On the other hand, we propose
the following approximation algorithm for the scheduling problem.

1. Compute for each type of worker w G W the graph Gw which is the
vertex-induced subgraph of G induced by the set J(w).

2. Compute for each graph Gw the size CÜD(GW)-

3. Choose a type of worker wf that maximizes the quotient UJD(GW)/C(W).

4. Compute the corresponding set H(wf) of jobs in GW' which générâtes
u}j)(Gwr) and remove these jobs from each of the graphs Gw. Iterate the
algorithm until all jobs are covered.

The main step in the algorithm is Step 2, Computing for the induced
compatibility graph .Gw the maximum size of D cliques. Using the same
proof technique as in [Ja], we get the following theorem.

THEOREM 2.1: Let G be a graph class that is closed under the induced
subgraph opération and on that Duc is solvable inpolynomial time. Consider
a scheduling problem with compatibility graph G G G- Then, the above
approximation algorithm constructs a schedule whose cost is at most a factor
O(log|J|) away from the optimum cost.

3. INTERVAL GRAPHS

In this section we give an algorithm for Duc restricted to interval
graphs with time complexity O(D-\V\2. Since each interval graph is also
a co-comparability graph, we improve the algorithm of Gavril with time
complexity O(|T^|3 + b\V\2 log(\V\)). A graph G = (V, E) is an interval
graph if one can associate with each vertex v G V a closed interval Iv on
the real line such that two vertices u, v G V are adjacent in G if and only if
Iuf)Iv ^ 0. More precisely, an interval graph can be described as a séquence
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THE DISJOINT CLIQUES PROBLEM 49

of all its maximal cliques Ai, • * *, An such that each vertex v only occurs in
consécutive cliques. An example of an interval graph is given in Figure 1.
We note that the number n is bounded by |V|. A consécutive arrangement
of the maximal cliques can be obtained in O(\V\ + \E\) time [BL].

( 2 , 3 , 4 )

( 3 , 4 , 5 )

Figure 1. - An interval graph and its consécutive clique arrangement.

We dénote by u>k,i(G) the maximal size of a most k disjoint cliques in
the interval graph G^u-uA^ induced by the first i cliques. These values
satify the following recursive relation.

LEMMA 3.1

if i, k > 1
if i > 1, k = 1

|Ai| i = 1, if k>l
Proof: The statement directly follows from the définition of the values

Wk}i(G) and uses the consecutivity property of the maximal cliques
Ai, ••• ,A„. D

The optimal value U)D{G) is equal to w£).n(G). In the computation of
(JÜ£)(G) we have to compute O(JD-|V|) values u ^ . For our example in
Figure 1, we obtain the values uJk,i{G) for 1 < k < D — 2 and 1 < i < 4
that are shown in Table I. The optimal value u)2{G) is equal to u)2,A(G) — 6.

TABLE I

The values u)k^ (G).

k\i
1
2

1

3
3

2
3
4

3
3
5

4
3
6

In the following we consider the computation of the set différences.

vol. 31, n° 1, 1997



50 K. JANSEN, P. SCHEFFLER, G. WOEGÏNGER

LEMMA 3.2: The cardinalities of the set différences \Ai\Aj\ for
1 < j < i ^ n can be computed in O(n2) time.

Proof: For each pair j , i with j < i we have to compute

Let us dénote a3j, — \Aj,n Aj\. From the consécutive property of the cliques
we know that

ah;i — \{y e ^1 f° r ail fc, j < fc < i : v G Afc}|.

The value aJî2 gives the number of intervals starting before j and ending
after i. To compute these values we use numbers bjj = \{v G V\ for ail
k, j < k < i: v G Afc A v £ Aj-i}\. A number bjA gives the number
of intervals starting at j and ending after i. Moreover, we generate values
Cji — \{v G V\ for ail k, j < k < i: v E A^ A v £ A3-\ A v g Ai+i}\
where CJJ dénotes the number of intervals starting at j and ending at i.
The values c3^ can be computed directly from the séquence Ai, • • •, An in
O(n2) time. Then, using the recursion

ƒ dj—ij + bj^i for 1 < j
ah% ~ \ h A for l=j

and the recursion
f bj ï+i + CJ i fori<n

J'' Cj n for i — n

ail values b3^ and a3^ with 1 < j < i < n are computed in O(n2) time.
Therefore, the cardinalities of all set différences Ai\A3 can be generated in
O(n2) time. D

Summarizing, we derived the following resuit.

THEOREM 3.3: For an interval graph G — (V, E), U)D{G) can be computed

in time O(D-\V\2).

Proof: For each value u ^ ( G ) with 1 < k < D, 1 < i < \V\ we need at
most O(|V|) comparisons. D

4. DIRECTED PATH GRAPHS

In this section, we consider the directed path graphs, a generalization of
the interval graphs. We give a polynomial algorithm with time complexity
O(D2 • |V|2) for these graphs.

Recherche opérationnelle/Opérations Research
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A graph G = (V, E) is a directed path graph, if it is the intersection
graph of directed paths in a directed tree. That means, that there is a directed
tree T — (/, F) with ail arcs oriented from its root to the leaves and for
every vertex v G V there is a directed path Pv in T, such that for ail pairs
of vertices u, v G V with (u ^ v) there is an edge {u, ^} E £7, if and only
if Pu and Pv have at least one node in common. Such a représentation of
a directed path graph can be obtained in O(\V\ + |JE|) time [Di] and the
number of nodes in such a tree can be bounded by O(|V|). An example of
an directed path graph with its corresponding directed tree model is given in
Figure 2. Notice, that this graph is not an interval graph.

We dénote by Tx the subtree of T rooted at node x9 by Hx the set of
vertices v whose paths Pv go throught x and by Gx the subgraph of G
induced by those vertices Vx that correspond to path in Tx.

B

Figure 2. - A direct path graph and its corresponding directed tree.

For simplification we assume hère that the tree is given as a binary
tree. However, each tree which represents a directed path graph can be
transformed into an equivalent binary tree. For a transformation of a gênerai
tree into a binary tree we refer to Figure 3. It shows a transformation of a
node of out-degree k into a tree with only nodes of out-degree two. In the
following, we show how the maximum numbers cod(Gx) of vertices in d
disjoint cliques in Gx can be computed.

LEMMA 4.1: Let x be a node in the tree T with two children l(x) and r(x).
Then, üJd(Gx) with d G {1, • • • yD} can be computed by the maximum of
the following two values:

d)

vol. 31, n° 1, 1997



52 K. JANSEN, P. SCHEFFLER, G. WOEGINGER

(2) maxo^^d-iIw^G/^lfrç) +wd-i_1(Gr(x)|Hç) + \HX\],
where H% dénotes the complement set VX\HX and G^\H- is the subgraph
of G induced by vertices that correspond to paths in T^ not going through
the node x and Gr^\ffc is defined in Tr^ analogously.

/
/

H\Hk

\
• \

H

/ \

\

iSTfc-i

\

H\(H3U...uHk)

Figure 3. - Transformation of a node with out-degree k.

Proof: Note, that each set Hx is a clique in G. Let C\, • • •, Cd be a set
of d cliques in the graph Gx. For each clique C there exists a node y in Tx

with CcHy. Therefore, for each i e {1,, • • •, d}, if Ci<£H% then CiCV^
or CiCVr(xy If Ci<£Hx for each i e {1,, • • •, d} then the d cliques can be
divided into i cliques for the left and d — i cliques for the right subgraph. In
this case üüd(Gx) is equal to cüi(Gi^) + ujd-i{Gr^) with 0 < z < d.

If CiCHx for at least one i G {1,, • • •, d} then another set of at most d
disjoint cliques may be defined as:

(1) Cl - Hx,

(2)Vj E {1„ • • - , * } - { » } : CJ =Cj-Hx.

Clearly, S j = 1 |Cj| > ^ = 1 | C j | . Then, we may assume that the other
d — 1 cliques lie in the left or right subgraph. In this case, we must

^ and obtain uJd{Gx) —
D

anddelete the vertices of Hx in G
Hx\ + Wj(G|(x)|jïç) + ù;d_j_i(Gr

The main idea in computing the value ÜJD(G) is to generate for each
subtree Tx and for each predecessor y of x lying on the path from the root w
to x in T the values uJd{Gx\H

c) and the values ujd{Gx) with d G {1, • • •, £)}•

Recherche opérationnelle/Opérations Research
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TABLE II

The values Ui{Gx).

i \ x
0
1
2

A
0
2
2

B
0
2
2

C
0
2
2

D
0
2
4

E
0
3
4

The values Wd(Gx\Hc) ^& computed bottom up in the tree; first we compute
the values (^(G/^lifO, &d(Gr(x)\Hc) f°r the left and right children and
then the value ojd{Gx\}jc) for x. For a leaf we get for d > 0 the value
WD(GX\HC) — \Hx\Hy\ and for d — 0 the value zero. Using the fact that
the graph GX\HC is a subgraph of GX\HC w e take for u>d(Gx\H

c) now the
maximum of the following values:

/ o \ ™ f t r ( r^ i " \ i . ( f~* i \ i i n \ i r il
\Z,) mctXQ<2<d 1 Y^i KS^Ux)\ffc ) ' ^d—i—1 v^rf x) \HC ) i \-H-x \-"W |J i

In the following we consider the computation of the cardinalities of the
set différences \Hx\Hy\. In Table II we give for the example of Figure 2
the computed values u)i{Gx) for 0 < i < 2 and x G {A, S, C, i?, E}.

LEMMA 4.2: 77z£ cardinalities of the set différences \Hx\Hy\ can be
computed in O{\I\2) time for all pairs of nodes x and y, where y is a
predecessor of x in the tree T = (7, F).

Proof: Let us dénote aXjV = \HX D Hy\. To compute these values we use
numbers cXtV and bXiV, The value cx^y gives the number of paths Pv starting
at y and ending at x and the value bx.y gives the number of paths Pv starting
above to y and ending at x. The values cx,y can be computed directly from
the tree représentation in O(|7|2) time. The computation of the values bx,y
can be done using the following recursion also in quadratic time. Let p(y) be
the direct predecessor of a vertex y in the tree with y unequal to the root w.

if y ^ w
if y = w

Moreover, the values aXjV can be generated using the recursion:

ƒ ar(x),y + aUx),y + bx.y if x is not a leaf,
üx'y ~ \bx,y if x is a leaf.

Therefore, the sizes of set différences \Hx\Hy\ = \HX\ — \HX n Hy\ can be
generated in O(|7|2) time. D

vol. 31, n° 1, 1997



54 K. JANSEN, P. SCHEFFLER, G. WOEGINGER

THEOREM 4.3: For a directed path graph G = (V, E), the problem Duc
IJ solvable in time O(D2-\V\2).

Proof: Use that at most O(D-\V\2) values must be computed and that the
composition can be done in O(D) time for each recursion step. The sizes of
the set différences \Hx\Hy\ can be computed by preprocessing in O(|y|2)
time. Therefore, the complete algorithm needs O(D2-\V\2) time steps. D

5. UNDIRECTED PATH GRAPHS

An undirected path graph is a generalization of a direct path graph
introduced in the preceding section. Undirected path graphs are the
intersection graphs of undirected paths in an unrooted and undirected tree.
In Figure 4 we give an example of an undirected path graph which is not
a directed path graph.

Figure 4. - An undirected path graph which is not a directed path graph.

The class of undirected path graphs, directed path graphs and split graphs
all are subclasses of the chordal graphs. Hence, the NP-completeness result of
Duc for split graphs {see [YG]) implies that Duc is NP-complete for chordal
graphs. Whereas for directed path graphs there exists a polynomial time
algorithm, we show in this section that Duc is NP-complete for undirected
path graphs.

THEOREM 5.1: The problem Duc is NP-complete for undirected path graphs.

Proof: We prove this by réduction from the NP-complete 3-SAT problem.
We use the restricted version where each literal occurs at most three times
in the clauses (cf. [GJ]). Assume that an instance of 3-SAT is given. Let

Recherche opérationnelle/Opérations Research
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X — {xf, * • • ,;cn, x^} be its set of variables and {ci, • • • , cm} be its set
of clauses of size three. We construct now an undirected path graph that has
n + m cliques which cover (n + m)(6n + 3) vertices if and only if there is
a truth assignment that vérifies the given formula.

For each variable Xi we define six vertices xf\ xy, --,xf\ xy.
That means, that we have one vertex for every occurrence of a literal in
the formula. We dénote by Y3 — {yj.i, y3^, 2/7,3} the set of the vertices
corresponding to the variables in the j-th clause c3 with y3^ — xy or

Vj-.k — x\ - H e r e l stands for the number of the occurrence of Xi rsp. xï",
so Z G {1, 2, 3}. Using this setting, we define now some additional sets of
vertices that we need in order to get cliques of equal size in our graph:

• for each i G {1, , • • • , n} we take one set L% of size n and two sets

K\ and K\ \ each of size 5n.

• for each j G {1 , , • • •, m} we take three additional vertices c: , c- and

c[p and three sets Df\ D^ and Df\ each of size 6n.

We Hennte A • ~ t'A ' ^ • <r^ '\ R — / T ^ • -r^ • T^ *X anrlvv c u c i i u ic / i ^ — X^î » ^i ' *" % ƒ » -*-*i — X % ' i ' i J a n Cl

Xi = Ai U Sj for each i G {1, , • • •, n}. Furthermore, we set X1 = UiLi ̂ *
We now define the input graph G = (V, E) for the Duc problem. Its

vertices set is the union
n

F ^kTf i i I \ ( T i l 1^(1) i i Z^(2)\— A U M (i>i U A2 U A^ J

We take an edge between a pair of vertices if and only if one of the following
sets contains both vertices. Each of the following sets forms a clique in G.

• the set X'.

• for each i G {1, , • • • , n} :

- Xi U L%.

-AlULiUK^\
r> i i 7" i l Tc^\ )

- x?i <J l^i LJ xv •

• for each j G {1, , • • • ,m}:
v i i r (!) (2) (3)i

- Y3 U XCj » C j ' C J J '

L "J ; 1 J 1 j » j J j

vol. 31, n° 1, 1997



56 K. JANSEN, P. SCHEFFLER, G. WOEGINGER

(1) (3)ï (2)

~ {y? 2} U \c , c- } U D .

- te} u {cf\ c{P}uDf\
First, we note that the graph G, given in this way is an undirected path

graph. This follows from the fact that we can arrange the cliques in a tree
T, such that each vertex in G lies in cliques of an undirected path in T. A
possible arrangement of the cliques in a tree is illustrated in Figure 5.

Now we prove the équivalence that G contains D = n + m cliques of
size B = (6n + 3)-(n + m) if and only if there is a truth assignment that
vérifies all m clauses.

Figure 5. - An arrangement of the cliques in a tree.

Suppose we have a truth assignment, that vérifies the clauses. Let yj^.
with ij G {1, 2, 3} be a literal which satisfies the j'-th clause. In dependence
whether a variable Xi is true or false and whether a clause index ij is 1, 2 or
3 we take the following n + m cliques with total size B = (6n + 3)-(r

• if Xi is true, take B% U U U K\2\

• if Xi is false, take Ai U L% U üf}1^.

• if ij is one, take {J/J,I} U {c^2), c^3)} U Z^X).

if ij is two, take {y^2} U { c ^ , c^3)} U üf\

if ij is three, take {yi)3} U {cj-1}, cj2)} U £>j3).

Recherche opérationnelle/Opérations Research
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We show now, if a set of (n + m) cliques of total size (6n + 3)*(n + m)
is given, then there must be a truth assignment for ail m clauses. For that,
consider the sizes of the cliques. The maximum cliques have exactly the size
6n + 3 and can only be found under the following:

CLAUSE-CLIQUES: for j G {1, • * *, m}:

•ki}u{fMs)}uf.
. {yh2} U {cf\ cf} U Df\

.fc}u{cWcf}uf.

VARIABLE-CLIQUES: for i G {1, • • • , «} :

• A, U L,- U i^1 } .

Ail other cliques in the graph have size less than (6n + 3) and cannot be
chosen. But also the chosen sets must be pairwise disjoint, and we must take
(n + m) of them. So it is not possible to take for an index i G {1, • * *, n}
or j G {1, --,771} more than one of the cliques; otherwise we loose at
least one vertex. Therefore, the (n + m) cliques C\, • • •, Cn+m consists
of one clause clique for each j G {1, • • • ,m} and one variable clique for
each i G {1, • • •, n}.

For each i G {1, • • •, n}, we can define a truth assignment for the variables
as follows: If A% U L\ U K\ * is one of the n + m cliques, we set Xi false,

(2)

and if B{ U L{ U K\ } is one of the n + m cliques we set xi true. Consider
now the clause Yj = {%,i, yjt2, Vj^}- Without loss of generality we assume
that {VJA} U {cf\ cf^} U D^p is the choosen clause clique. If yjA = xf^

(Je)

then Bi must be a choosen variable clique, and if yjt\ — x\ then Ai must
be a choosen variable clique. In both cases, we obtain that y^\ is true. •

6. COGRAPHS

In this section, we show that Duc is solvable in O(|y |2) time when
restricted to cographs. Since each cograph is a comparability graph and since
Duc is solvable in O(D-\V\2) time for comparability graphs, this gives an
improvement eliminating the factor D. Cographs are generated by disjoint
union and product opérations on graphs (starting with single vertex graphs)
and they can be represented by a parse tree according to these opérations.
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For graphs Gi = (VJ, Ei) with V\ Pi V2 = 0, the union of G\ and G2,
U(G1, G2) is given by (Vi U V2, Ei U £2). The product of Gi and G2,
denoted by x(Gi, G2), is obtained by first taking the union of Gi and G2,
and then adding all the edges {v\. V2} with Vi G Vt.

To each cograph G, one can associate a rooted binary tree, called a cotree
of G. Each non-leaf node in the tree is labelled either by U (union) or by
x (product) and has two children. Each node in the cotree corresponds to a
cograph and a leaf corresponds to a single-vertex graph. An example of a
cograph and its corresponding cotree is given in Figure 6. Corneil, Perl and
Stewart [CPS] showed that it is linear time O(\V\ + \E\) decidable, whether
a graph is a cograph. Moreover, within the same time a corresponding cotree
can be constructed. We investigate here the recursion of the values
and the complexity of this problem restricted to cographs.

L E M M A 6 . 1 : Let G — (V, E) be a cograph and let d e N .

Figure 6. — A cograph and its corresponding cotree.

• If V = {v}, then ujd{G) = 1 for d > 1 and uo(G) = 0.

• If G = x(Gi, G2), then ud(G) = cjd(Gi) + wd(G2).

• /ƒ G = U(Gi, G2), then ud(G) - maxo<i<d[u>i(Gi) + u>d-i(G2)].

Proof: For V = {v}9 the size of d cliques can only be one (for d > 0). If
we have a product of two cographs, we can combine each pair of cliques Ci
and C2 where Ci is a clique in G?. Hence, the maximum size of d cliques
is given as the sum of both values for G\ and G2. If we have a union of
two cographs, a clique only lies in one of the graphs Gi or G2. Then, a
choice of d cliques in G equals a choice if i cliques in G\ and d — % cliques
in G2. Therefore, the maximum over all u)%{Gi) + cüci-i(G2), 0 < i < d
gives ujd{G). D
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THEOREM 6.2: Fora cograph G = (V, E), Duc can be solved inpolynomial
time O{\V\2).

Proof: For each node x of the cotree T which corresponds to a cograph
G.T = (Vx, Ex) we must only compute the values u>d(Gx) for d < \VX\.
Given a union of two cographs U(Gi, G2) with sets of vertices V\ and
F2 we get

wd(G) = maxfu/,(Gi) + U ^ _ , ( G 2 ) / 0 < i < d5 % < |Fi|, d - % < \V2\)

where d < \V\. Then, it foliows that one can compute these values
for a union and (also for a product) in at most O(|Vi|*|T^|) time. Let
t(n) dénote the maximum total time to compute ail values for cotrees
corresponding to cographs with n vertices. Then, we have for ail n > 1,
t(n) < maxi<j<w_i c4*{n — i) + t(i) + t(n — i), for some constant c. This
follows, because if G is the union or product of two disjoint cographs G\
and G2 with i and n — i vertices, then we get as computing time t(i) for
Gi, t(n — i) for G2 and at most c-i'(n — i) for the root of the cotree. From
this formula, it can be proved by induction, that there exists a constant e'
with t(n) < d-n2 for each n > 1. D

7. PARTIAL fc-TREES

In this section we present a polynomial time algorithm for Duc on partial
k-trees. For any integer k, partial k-trees are the subgraphs of k-trees. A k-
trees is a graph that can be reduced to a fc-clique (Le. a complete graph on k
vertices) by consecutively eliminating vertices of degree k with a completely
connécted neighbourhood. The &-trees are a natural generalization of trees.
We have k = 1 for trees. (A tree can be reduced to a single vertex by
eliminating leaves.) In Figure 7 we show an example of a 2-tree. Partial
fc-trees are well studied [Arn, Bo2, Go]. We give an alternative définition of
partial fc-trees as the graphs that have a tree-decomposition of width k below.

DÉFINITION 7.1: A tree-decomposition of width k for a graph G = (V7 E)
is a pair {T, X), where T is an oriented tree and X = {Xt<ZV, t G V(T)}
with:

« UteV(T) Xt = V(G), and \Xt\ < k + 1 for every t G V(t)9

(iï) for every {u, v} G E (G), there is a node t G V(T) such that
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Figure 7. - A 2-tree. The vertices are numbered in élimination order.

(iii) Xi H XiQXj for all {i, j , 1}CV(T) such that j is on the pathfrom
i to l in T.

Many intractable problems are solvable in linear time for partial &-trees.
CLIQUE and PARTITION INTO CLIQUES are two of them (cf. [Sch]). So it is natural
to investigate the complexity of the generalization of these problems. It turns
out, that there is a polynomial-time algorithm for Duc, too. The solution is
found step by step in larger and larger subgraphs of G that are determined
by the tree-decomposition. This idea was applied in [Sch] for many other
problems and here it proves to be useful once more. We use a special kind
of tree-decompositions to represent partial A;-trees.

DÉFINITION 7.2: A tree-decomposition (T, X) is called nice if

(i) T is an orientée binary tree,

(ii) Xj — Xjç — Xj if i G V(T) has two children j and k. If j is the only
child of i, then there is a vertex v G V(G) such that either X% = Xj U {v}
or Xi = X{ U {v}.

We give an example of a tree-decomposition in Figure 8. Nice tree-
decompositions are appropriate to handle partial A;-trees efficiently. In fact,
the given notion is no restriction compared with the original définition by
Robertson and Seymour in [RS], Indeed, the following fact is easy to prove,
see [Sch]:

LEMMA 7.3: If a tree-decomposition ofwidth k for a graph G = (F, E) is
given, then a nice tree-decomposition of the same width can be construted in
linear time. lts tree T has at most O(\V\) nodes.

It is known, that a tree-decomposition of constant width k can be
constructed in polynomial time for a graph if one exists. The best algorithm
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Forget
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Figure 8. - The graph Ce together with a nice tree-decomposition of width 2.

has complexity O(|V|), this is a recent resuit of Boldaender (see [Bol]).
Hence, given a partial &-tree, we can obtain a nice tree-decomposition with
width k in linear time.

A nice tree-decomposition gives a method to reconstruct the graph
consecutively by simple opérations, starting with small graphs of size at
most k + 1. Using these simple opérations we give an algorithm for the
problem Duc. Similarly to Bern, Lawler and Wong [BLW], we consider
fc + 1-terminal graphs that are pairs (G, X) consisting of a graph G together
with a set of at most k + 1 terminais XÇV(G). They are constructed by
the following four opérations:

Start: Take a (G, X) with X — V(G). This opération corresponds to the
leaves in a decomposition-tree: For a leaf t we have the subgraph of G
induced by the terminal set Xt-

Forget: Take a (G, X), where X = Y\{v} for a given terminal graph
(G, Y). This opération corresponds to an edge (s, t) in the décomposition
tree T, where 5. is the only child of t and Y = Xs = Xt U {v}. In this case,
we have the same graph as in the child, but one of its vertices is no longer
a terminal (and hence, it cannot be adjacent to any subséquent vertex of G).

Introducé: Take a (G, X), where X = YU{v} and V(G) = V(H) U {v}
and E(G) = E{H) U F, where F = {{vy y} G E : y G Y} for a given
terminal graph (if, Y). This opération corresponds to an edge (s, t) in the
décomposition tree T, where s is the only child of t and Y = Xs = Xt\{v}.
Hère a new vertex is added to the graph corresponding to the child s of t
and to its terminal set.

vol. 31, n° 1, 1997



62 K. JANSEN, P. SCHEFFLER, G. WOEGINGER

Join: Take a (G, X), where G = G\ U G2 for two given terminal graphs
(Gi, X) and (G25 X) with the same set of terminals X. This opération
corresponds to a node with two children in the décomposition tree, where
the two subgraphs corresponding to the children are joined by identifying
their terminals pairwise.

Let (T, X) be a tree-decomposition of a graph G. Then, we get a séquence
of terminal graphs (G*, Xt) constructed according to the four composition
opérations, starting with small graphs with at most k + 1 vertices and
proceeding in post-order.

Observe, that each set of terminals nodes Xt is a separator that séparâtes
the graph Gt from the rest of G. Most algorithms on partial &-trees are
based on this crucial property. Moreover, we use the f act that every clique
C must occur as subset CÇXt in at least one node t of the décomposition
tree. These basic properties of tree-décompositions are proved e.g. in [RS]
and [Sch].

In Figure 8, the décomposition-tree with the topmost node choosen as
is root is a parse tree reflecting the construction of the graph G = C§
according to the defined opérations. For example, the indicated join node
corresponds to the union of two induced subgraphs G[{2, 4, 5, 6}] and
G[{2, 3, 4, 6}] both with the terminal set X = {2, 4, 6}. The terminals
are pairwise identified by the join opération. The graph Gt is a path on
five vertices at this node t. In the indicated forget node, the graph remains
the same but the vertex 4 is not considered as a terminal any more. In the
introducé node, the new vertex 1 is added to the graph together with two
incident edges. Notice, that the new vertex is always a terminal and so are
its neighbors.

While solving the optimization version of Duc, we are looking for a disjoint
union of cliques C\, • • •, G® in a graph G given with a tree-decomposition.
We construct larger and larger partial solutions in the séquence of subgraphs
determined by the tree-decomposition in a dynamic programming manner.
Thus, we have to show that a Principle of Optimality holds. Clearly,
every solution for G induces at most D disjoint cliques in every subgraph
HÇG. But notice, that this union of cliques may not be maximal in an
arbitrary subgraph H. An example for this faet is shown in Figure 9. The
graph G has a disjoint union of two cliques that cover the eight vertices
G[{2, 4, 5, 6, 75 8, 9}]. Only four of them are contained in the subgraph
HcG. But a maximal union of two cliques in H is given by the two triangles
that cover the six vertices {1, 3, 4, 7, 8, 10}.
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G : H

Figure 9. - A graph G with a maximal disjoint union
of two cliques that is not maximal in its subgraph H.

Hence, it is not sufficient to solve Duc in the subgraphs corresponding
to nodes in the décomposition tree. Nevertheless, a dynamic programming
approach may be used for Duc on partial &-trees. The algorithm should
consider ail possibilities for a solution to cover the terminals Xt in a partial
graph. For the description of the method we need some more notation.

A partial solution of Duc in a node t of the décomposition tree is a
disjoint union of dt < D cliques {C^i, --,Cttdt} in the terminal graph
(Gt, Xt). Dénote the set of covered vertices by Kt = I J ^ i Gtj, and the set
of covered terminais by Yt(Kt) = Kt n Xt. Dénote the number of vertices
contained in Kt by bt(Kt) = \Kt\. Clearly, the set of covered vertices Kt

détermines the set of cliques in the partial solution completly. So, we will
identify the partial solution with this set Kt.

The Principle of Optimality holds in the following form:

LEMMA 7.4: A partial solution Kt in the terminal graph (Gt, Xt) is
contained in a solution for Duc in G, if and only ifthere is a solution L in
G such that for its restriction Lt = L fl V(Gt) the following holds:

(i) LnXt = Yt{Kt),
(ii) dt{Lt) - dt(Kt) and

(iii) bt(Lt) = bt(Kt).
This is obvious because of the separator property of Xt'- We may simply

replace the parts Kt and Lt in the solutions. This makes it possible to
examine ail partial solutions for the séquence of terminal graphs (G*, Xt)
given by a tree-decomposition of G. We consider two partial solutions as
equivalent, if they have the same head:
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DÉFINITION 7.5: Two disjoint unions of cliques Kt and L% in a terminal graph
(Gty Xt) are called equivalent if they fulfill the conditions dt(Lt) = dt(Kt)
and Yt(Lt) = Yt(Kt). An équivalence class of partial solutions is represented
by a pair (Yt, dt) that is called its head. Here we dénote dt := dt(Kt) (the
number of cliques) and Yt := Yt(Kt)ÇXt.

LEMMA 7.6: The number of équivalence classes (Yt, dt) for any fixed
number dt is bounded by 2^*1, i.e. it is a constant depending only on the
tree-width of G.

THEOREM 7.7: The optimization version of Duc can be solved in time
O(D2-\V\) for partial k-trees.

Proof: First, we find a tree-decomposition of width k for G. This needs
time 0(1^1) by the algorithm of Bodlaender [Bol]. Now, we describe the
dynamic programming algorithm that solves Duc in a partial fc-tree G. It
proceeds in post order all nodes t of the décomposition tree and computes
for all équivalence classes of partial solutions with at most D cliques the
foliowing fonctions:

bt(Yti dt) = msx{bt(Kt) : Kt is a partial solution in

(Gu Xt) with head (Yt, dt)}

The computation of the fonctions bt is done recursively, starting at the
leaves. We calculate the values for every pair (Yt, dt) that is appropriate as
head of a partial solution, Le. that satisfies dt < D and YtÇXt. Depending
on the local structure of the décomposition tree the following cases occur:

Start:

{ \Yt\ if there are dt disjoint cliques in Gt

that cover exactly Yt,
—oo otherwise.

Forget: Let 5 be the child of t in the décomposition tree and v E Xs\Xt

the unique vertex of G that we forget at this node. This vertex v may be
covered by a clique or not. Hence we get:

bt(Yu dt) - max{65(Yt, * ) , bs(Yt U M ,

Introducé: bt(Yt, dt) = maxI&^Y^C, dt - 1) + \C\ : CÇYt is a clique
with v G C} if v G Yt (otherwise bt(Yt, dt) = bs{Yu dt)). There s is the
child of t in the décomposition tree and v is the only vertex from Xt\Xs.
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The new vertex v can improve a partial solution for the child s. In this case,
one clique must be changed.

Join: Let the two children of t in the décomposition tree be 5 and s1. Every
clique of a partial solution must be contained in one of the two subgraphs
(Gs, Xs) and (Gy, XS') (where X$ — XS' = Xt holds). The cliques
that are in both are contained also in Xt. They are considered only once.
Hence, we get: bt(Yt, dt) = max{65(Ys, ds) + bs>(Ys<, ds<) :Yt = YSU Y3',
Ys c\Ys> = 0, dt - ds + dS'}.

This computation needs no more time than O{D-2k) at start and forget
nodes, O{D-22k) at introducé nodes and a most O(D2-22k) at join nodes.
Since the décomposition tree has at most |VXCr)| nodes and k is a constant,
we get at all O(D2-\V(G)\) time for these calculations.

The last step of the algorithm is to compare all partial solutions for the
root r of the décomposition tree. This needs constant time. The answer for
the given Duc is b(G) = max{6(Yr, D) : YrCXr}. •

With the same approach as in the case of cographs (see Section 6), we get
the time bound O(|F|2) for this algorithm. Furthermore, it is clear that the
construction problem can be solved easily by backtracking. Here we ask not
only for the maximal number of vertices that may be covered by D cliques
but also for the cliques realizing this value. For this we store one feasible
extension to the child (or children) maximizing function bt in all appropriate
cases during the original algorithm. Then we walk once more through the
décomposition tree, now starting at the root r, to get a disjoint union of
cliques in G that covers b(G) vertices.

8. CONCLUSION

We have proposed an approximation algorithm for a scheduling problem
with worst case ratio O (log | J\) for graph classes on which a graph theoretical
problem called Duc is polynomially solvable. Using the results in this paper,
the method can be applied to interval graphs, directed path graphs, cographs,
comparability graphs, co-comparability graphs and partial fc-trees.

Recent results on the intractibility of obtaining approximation results imply
that an algorithm with an asymptotically better guarantee is unlikely to exist
for the considered scheduling problem. Bellare, Goldwasser, Lund and Russel
[BGLR] proved that approximating set covering within any constant factor is
NP-complete. Moreover, Lund and Yannakakis [LY] showed that set covering
cannot be approximated with ratio c-log(n) for any constant c < \ unless
NP is contained in DTIME[npol^lo^(n)].
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