RAIRO. RECHERCHE OPÉRATIONNELLE

A. Benkouar

Y. Manoussakis
V. Th. Paschos
R. SAAD

Hamiltonian problems in edge-colored complete
graphs and eulerian cycles in edge-colored
graphs: some complexity results
RAIRO. Recherche opérationnelle, tome 30, no 4 (1996), p. 417-438
http://www.numdam.org/item?id=RO_1996__30_4_417_0
© AFCET, 1996, tous droits réservés.
L'accès aux archives de la revue « RAIRO. Recherche opérationnelle » implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

HAMILTONIAN PROBLEMS IN EDGE-COLORED COMPLETE GRAPHS AND EULERIAN CYCLES IN EDGE-COLORED GRAPHS: SOME COMPLEXITY RESULTS (*)

by A. Benkouar (${ }^{1}$), Y. Manoussakis (${ }^{2}$), V. Th. Paschos $\left({ }^{3}\right)$ and R. Saad $\left({ }^{4}\right)$
Communicated by Philippe Chretienne

Abstract

In an edge-colored, we say that a path (cycle) is alternating if it has length at least 2 (3) and if any 2 adjacent edges of this path (cycle) have different colors. We give efficient algorithms for finding alternating factors with a minimum number of cycles and then, by using this result, we obtain polynomial algorithms for finding alternating Hamiltonian cycles and paths in 2-edge-colored complete graphs. We then show that some extensions of these results to k-edge-colored complete graphs, $k \geq 3$, are NP-complete. related problems are proposed. Finally, we give a polynomial characterization of the existence of alternating Eulerian cycles in edge-colored graphs. Our proof is algorithmic and uses a procedure that finds a perfect matching in a complete k-partite graph.

Keywords: Complexity, NP-completeness, graph, Hamiltonicity.
Résumé. - Dans un graphe arêtes-coloré, on dit qu'un chemin (cycle) est alternant s'il est au moins de longueur 2 (3) et si toute paire d'arêtes adjacentes de ce chemin (cycle) sont de couleurs différentes.

Nous donnons des algorithmes efficaces trouvant des facteurs alternants comportant un nombre minimum de cycles et, en utilisant ce résultat, nous obtenons des algorithmes polynomiaux pour la recherche de cycles et chemins hamiltoniens alternants dans des graphes complets 2-arêtes-colorés. Nous montrons ensuite que certaines extensions de ces résultats aux graphes complets k-arêtescolorés, $k \geq 3$ sont $N P$-complets. D'autres problèmes similaires sont proposés. Enfin, nous donnons une caractérisation polynomiale de l'existence de cycles eulériens alternants dans des graphes arêtes-colorés. Nous donnons une preuve algorithmique (constructive) qui utilise une procédure trouvant un couplage parfait dans un graphe k-parties complet.

Mots clés : Complexité, NP-complétude, graphe, hamiltonicité.

[^0]
1. INTRODUCTION

We study in this paper the existence of alternating hamiltonian and Eulerian cycles and paths in edge-colored complete graphs.

Formally, in what follows, K_{n}^{c} denotes an edge-colored complete graph of order n, with vertex set $V\left(K_{n}^{c}\right)$ and edge set $E\left(K_{n}^{c}\right)$. The set of used colors is denoted by $\Psi=\left\{\chi_{1}, \chi_{2}, \ldots\right\}$. If A and B are subsets of $V\left(K_{n}^{c}\right)$, then $A B$ denotes the set of edges between A and B. An $A B$-edge is an edge between A and B, i.e., it has one extremity in A and the other one in B. Whenever the edges between A and B are monochromatic, then their color is denoted by $\chi(A B)$. If $A=\{x\}$ and $B=\{y\}$, then for simplicity we write $x y$ (resp. $\chi(x y)$) instead of $A B$ (resp. $\chi(A B)$). If x denotes a vertex of K_{n}^{c} and χ_{i} is a color of Ψ, then we define the χ_{i}-degree of x to be the number of vertices y such that $\chi(x y)=\chi_{i}$. The χ_{i}-degree of x is denoted by $\chi_{i}(x)$. Whenever, the edges of K_{n}^{c} are colored by precisely two colors, then, for simplicity, these colors are called red and blue and are denoted by r and b, respectively.

A path P is said to be alternating if it has length at least two and any two adjacent edges of P have different colors. Similarly, we define alternating cycles and alternating Hamiltonian (Eulerian) cycles and paths. An alternating factor F is a collection of pair-wise vertex-disjoint alternating cycles $C_{1}, C_{2}, \ldots, C_{m}, m \geq 1$, covering the vertices of the graph. All cycles and paths considered in this paper are elementary, i.e., they go through a vertex exactly once, unless otherwise specified.

The notion of alternating paths was originally raised by Bollobas and Erdös in [4], where they proved that if no set of k edges of K_{n}^{c} incident to a same vertex are monochromatic, then K_{n}^{c} contains an alternating Hamiltonian cycle provided that n is greater than a constant c_{k}. Results in almost the same vein are proved in [6]. Also, in [1], necessary and sufficient conditions are presented (see theorem 1 below). However, the problem of characterizing alternating Hamiltonian instances K_{n}^{c}, or at least establishing nontrivial sufficient conditions for the existence of such cycles, is still open, whenever the edges of K_{n}^{c} are colored by more than two colors. Some further results on alternating cycles and paths are proved in $[2,3,11,13,14,15]$.

This type of problems, except their proper theoretical interest, have many applications, for example in social sciences (a color represents a relation between two individuals) and in cryptography where a color represents a specified type of transmission. Also, it turns out that the notion of alternance
is implicitely used in some classical problems of graph theory. Let us think, for example, to a given instance of Edmond's well-known algorithm for finding a maximum matching. The edges of the current matching can be colored red, any other edge can be colored blue, and then the searched augmenting path is just an alternating path.

In section 2, we deal with Hamiltonian problems on 2-edge-colored complete graphs K_{n}^{c}. Namely, by using known results on matchings, we obtain $O\left(n^{3}\right)$ algorithms for finding an alternating factor, if any, with a minimum number of alternating cycles in K_{n}^{c}. As an immediate consequence, we obtain an $O\left(n^{3}\right)$ algorithm for finding alternating Hamiltonian cycles and paths, or else for proving that such cycles or paths do not exist. As a byproduct of this result, we obtain an $O\left(n^{3}\right)$ algorithm for finding Hamiltonian cycles in bipartite tournaments (another algorithm for finding Hamiltonian cycles in bipartite tournaments is proved in [16]). To see why alternating cycles can be used in order to obtain cycles in bipartite tournaments, let us consider a bipartite tournament $B(X, Y, E)$ with bipartition classes X, Y and arc set $E(B)$. Let now K_{n}^{c} denote a complete 2-edge-colored graph obtained from B as follows: we define

$$
V\left(K_{n}^{c}\right)=X \cup Y \quad \text { and } \quad E\left(K_{n}^{c}\right)=E_{b}\left(K_{n}^{c}\right) \cup E_{r}\left(K_{n}^{c}\right)
$$

where:

$$
E_{b}\left(K_{n}^{c}\right)=\{x y \mid x y \in E(B), x \in X \text { and } y \in Y\} \cup\{x y \mid x, y \in X\}
$$

and

$$
E_{r}\left(K_{n}^{c}\right)=\{x y \mid x y \in E(B), x \in Y \text { and } y \in X\} \cup\{x y \mid x, y \in Y\}
$$

Now, it is easy to see that B has a Hamiltonian cycle if and only if K_{n}^{c} has an alternating Hamiltonian cycle.

The following results are used in section 2 .
Theorem 1. M. Bánkfalvi and Z. Bánkfalvi [1]: Let $K_{2 p}^{c}$ be a 2-edgecolored complete graph with vertex-set $V\left(K_{2 p}^{c}\right)=\left\{x_{1}, x_{2}, \ldots, x_{2 p}\right\}$. Assume that $r\left(x_{1}\right) \leq r\left(x_{2}\right) \leq \cdots \leq r\left(x_{2 p}\right)$. The graph $K_{2 p}^{c}$ contains an alternating factor with a minimum number m of alternating cycles if and only if there are m numbers $k_{i}, 2 \leq k_{i} \leq p-2$, such that, for each i, $i=1,2, \ldots$, m, we have:

$$
\begin{aligned}
r\left(x_{1}\right) & +r\left(x_{2}\right)+\cdots+r\left(x_{k_{i}}\right)+b\left(x_{2 p}\right)+b\left(x_{2 p-1}\right) \\
& +b\left(x_{2 p-2}\right)+\cdots+b\left(x_{2 p-k_{i}+1}\right)=k_{i}^{2}
\end{aligned}
$$

Lemma 1. Manoussakis and Tuza [16]: Let B be a bipartite tournament. Assume that B contains two pairwise vertex-disjoint cycles W_{1} and W_{2}. If there is at least one arc oriented from W_{1} to W_{2} and another one oriented from W_{2} to W_{1}, then B contains a cycle W such that $V(W)=V\left(W_{1}\right) \cup V\left(W_{2}\right)$. Furthermore, findind W can be done in $O\left(\left|V\left(W_{1}\right) \| V\left(W_{2}\right)\right|\right)$ time.

In section 3, we give some NP-complete results for Hamiltonian problems on k-edge-colored complete graphs, $k \geq 3$, and we propose related problems.

Finally, in section 4, we present algorithmic results regarding the existence of alternating Eulerian cycles and paths in directed edge-colored graphs.

2. ALTERNATING HAMILTONIAN CYCLES AND PATHS IN 2-EDGE-COLORED COMPLETE GRAPHS

In this section, we suppose that K_{n}^{c} admits F, an alternating factor consisting of m alternating cycles $C_{1}, C_{2}, \ldots, C_{m}, m \geq 2$. It turns out to be convenient, for technical reasons, to divide the vertices of each alternating cycle C_{i} into two classes X_{i} and Y_{i}, where $X_{i}=\left\{x_{i 1}, x_{i 2}, \ldots, x_{i s}\right\}$ and $Y_{i}=\left\{y_{i 1}, y_{i 2}, \ldots, y_{i s}\right\}$ such that the edge $x_{i j} y_{i j}$ is red and the edge $y_{i j} x_{i(j+1)}$ is blue, for each $j=1,2, \ldots, s$ (where $2 s$ is the length of the cycle and j is considered modulo s). Furthermore, if C_{1} and C_{2} are two cycles of F (if any) with classes X_{1}, Y_{1} and X_{2}, Y_{2} respectively, then we say that C_{1} dominates C_{2} if either all $X_{1} C_{2}$ edges are red and all $Y_{1} C_{2}$ edges are blue or all $X_{1} C_{2}$ edges are blue and all $Y_{1} C_{2}$ edges are red.

In the first part of this section, we prove lemma 2 and we establish procedure 1 for complete graphs whose vertices are covered by two pairwise vertex-disjoint alternating cycles. These preliminary results are useful for algorithm 1 given later.

Lemma 2: Let K_{n}^{c} be a 2-edge-colored complete graph. Assume that there exist two pair-wise vertex-disjoint alternating cycles C_{1}, C_{2} in K_{n}^{c} covering all its vertices. Furthermore, assume that there are at least two $X_{1} X_{2}$ - (or $X_{1} Y_{2}$ - or $Y_{1} X_{2}$ - or $Y_{1} Y_{2}$-) edges with different colors. Then K_{n}^{c} contains an alternating Hamiltonian cycle, which can be obtained in time $O\left(\left|V\left(C_{1}\right)\right|\left|V\left(C_{2}\right)\right|\right)$.

Proof: Assume first that there exist at least two $X_{1} Y_{2}-$ or $Y_{1} X_{2}$-edges having different colors.

Let B be a bipartite tournament obtained from K_{n}^{c} as follows:

- its vertex set is defined as $V(B)=X^{\prime} \cup Y^{\prime}\left(X^{\prime}\right.$ and Y^{\prime} are the bipartition classes of B), where $X^{\prime}=X_{1} \cup X_{2}$ and $Y^{\prime}=Y_{1} \cup Y_{2}$;
- the arc-set of B is defined from $E\left(K_{n}^{c}\right)$ as follows: (i) delete each colored edge inside the classes X^{\prime} and Y^{\prime} of B; (ii) let now x, y be two vertices of $B, x \in X^{\prime}$ and $y \in Y^{\prime}$; if the edge $x y$ is a red one in K_{n}^{c}, then replace it by an arc oriented from x to y in B; otherwise, if $x y$ is blue, replace it by an arc oriented from y to x in B.

Now, if there exist two $X_{1} Y_{2}$ (or $Y_{1} X_{2}$)-edges with different colors in K_{n}^{c}, then, clearly, B satisfies the conditions of lemma 1 (given in the introduction) and therefore it admits a Hamiltonian cycle. This Hamiltonian cycle corresponds to an alternating Hamiltonian cycle of K_{n}^{c}.

Assume next that there are at least two $X_{1} X_{2}$ - or $Y_{1} Y_{2}$-edges with different colors in K_{n}^{c}. In this case, define a bipartite tournament with classes $X^{\prime}=X_{1} \cup X_{2}$ and $Y^{\prime}=Y_{1} \cup Y_{2}$ and edge-set as previously and complete the argument as above.

Let us now establish procedure 1 which, given a 2-edge-colored graph K_{n}^{c} and two alternating cycles C_{1}, C_{2} of orders t and s, respectively, such that C_{1} dominates C_{2}, it outputs either an alternating Hamiltonian cycle or else a statement that all $X_{1} X_{1}$ and $X_{1} C_{2}$ edges are monochromatic. It is easy to see that the complexity of procedure 1 is of $O\left(t^{2}\right)$.

Input: a 2-edge-colored graph K_{n}^{c} and two alternating cycles C_{1}, C_{2} such that C_{1} dominates C_{2}.
Output: Either an alternating Hamiltonian cycle or else that all $X_{1} X_{1}$ and $X_{1} C_{2}$ edges are monochromatic.
Assume w.l.ofg. that all $X_{1} C_{2}$ edges are red; we look now if there exists a blue edge $x_{i} x_{j}$, where $i \neq j$ and $x_{i}, x_{j} \in X_{1}$; if this is the case, then an alternating cycle of K_{n}^{c} is the cycle $y_{i-1} x_{i-1} \ldots x_{j} x_{i} y_{i} x_{i+1} \ldots y_{j-1} y_{h}^{\prime} x_{h}^{\prime} y_{h-1}^{\prime} \ldots y_{h+1}^{\prime} x_{h+1}^{\prime} y_{i-1}$, where y_{h}^{\prime} is an appropriate vertex of Y_{2}.
Similarly, if there exists a red edge $y_{i} y_{i}$, where $i \neq j$ and $y_{i}, y_{j} \in Y_{1}$, then by using the same arguments, one can find, once more, an alternating Hamiltonien cycle of K_{n}^{c}.

Procedure 1.

The following lemma 3 will be used in algorithm 1 given later.

Lemma 3: Let K_{n}^{c} be a 2-edge-colored complete graph containing an alternating factor F consisting of cycles $C_{1} C_{2}, \ldots, C_{m}, m \geq 2$. Assume that C_{i} dominates C_{i+1} for each $i=1,2, \ldots, m-1$. Assume, without loss of generality, that all $X_{1} C_{2}$ edges are red. Then, (i) there exists an alternating Hamiltonian path with begin in Y_{1} and terminus in C_{m} such that both first and last edges of this path are blue; (ii) if C_{1} dominates C_{m} and the edges $X_{1} C_{m}$ are blue, then K_{n}^{c} admits an alternating Hamiltonian cycle.

Proof: (i) Since C_{1} dominates C_{2} and all $X_{1} C_{2}$ edges are red, then all $Y_{1} C_{2}$ edges are blue. We first find a path P_{1} with vertex set $\left\{x_{11}\right\} \cup V\left(C_{2}\right)$ such that its first edge is red and its last one is blue as follows: if all $X_{2} C_{3}$ edges are red, then P_{1} has begin x_{11} and terminus $x_{2 i}$, where the vertex $x_{2 i}$ is appropriately chosen in X_{2}. On the other hand, if all $X_{2} C_{3}$ edges are blue, then P_{1} has begin x_{11} and terminus $y_{2 i}$, where in this case $y_{2 i} \in Y_{2}$. Assume w.l.olg. that P_{1} has begin x_{11} and terminus $y_{2 i}$, where in this case $y_{2 i} \in Y_{2}$. Assume w.l.ofg. that P_{1} has being x_{11} and terminus $x_{2 i}$. We next find a path P_{2} with vertex-set $\left\{x_{2 i}\right\} \cup V\left(C_{3}\right)$ such that its first edge is red and its last edge is blue as follows: if the $X_{3} C_{4}$ edges are blue, then P_{2} begins at $x_{2 i}$ and determinates at $y_{3 j}$, where $y_{3 j}$ is appropriately chosen in Y_{3}. On the other hand, if the $X_{3} C_{4}$ edges are red, then P_{2} begins at $x_{2 i}$ and determinates at $x_{3 j}$, where $x_{3 j} \in X_{3}$. Continuing in this way, that is trying to pass from a cycle C_{i} to a cycle $C_{i+1}, 1 \leq i \leq m-1$, through a red edge, we find paths P_{3}, P_{4} and so on, until the last path P_{m-1} is found. We complete the argument by setting $P=\left(V\left(C_{1}\right) \backslash\left\{x_{11}\right\}\right) \cup P_{1} \cup P_{2} \cup \ldots \cup P_{m-1}$.
(ii) The alternating path of (i) together with a red edge between Y_{1} and C_{m} define an alternating Hamiltonian cycle of K_{n}^{c}.

Definition 1: From a given factor $F=\left\{C_{1}, \ldots, C_{m}\right\}$ of K_{n}^{c}, one can define a new graph D as follows: replace each cycle C_{i} of F by a new vertex c_{i} and then add the $\operatorname{arc} c_{i} c_{j}, i \neq j, i, j=1,2, \ldots, m$, in D, if and only if C_{i} dominates C_{j} in K_{n}^{c}. Otherwise, one can add both arcs $c_{i} c_{j}$ and $c_{j} c_{i}$. Clearly, D is a semi-complete digraph. D is said to be the underlying graph of K_{n}^{c}, while C_{i} is called the underlying cycle of c_{i}.

The following lemma is crucial, since it mathematically justifies the first three steps of algorithm 1 .

Lemma 4: If D is strongly connected, then K_{n}^{c} admits an alternating Hamiltonian cycle.

Proof: By induction on the number m of vertices of D; the case $m=2$ has been proved in lemma 2 . Let D^{\prime} be a proper strongly connected subgraph, if any, of D, i.e., $\left|V\left(D^{\prime}\right)\right|<|V(D)|$. If D^{\prime} exists, then the underlying cycles of D^{\prime} can be contracted to one cycle in K_{n}^{c} by induction. Now, K_{n}^{c} admits a new factor with less than m cycles. Consequently, we complete the argument by applying again induction on the underlying graph of this new factor. Otherwise, if D^{\prime} does not exist, then D consists of a Hamiltonian path, say c_{1}, c_{2}, \ldots, c_{m}, with all arcs directed from c_{i} to $c_{j}, i<j$, expect for the arc between c_{1} and c_{m} which is directed from c_{m} to c_{1}. However, in this particular
case, we can easily find an alternating Hamiltonian cycle of K_{n}^{c} by using appropriate edges from C_{i} to C_{i+1} in K_{n}^{c}, where i is considered modulo m.
[1] Find a blue maximum matching M_{b} and a red one M_{r} in K_{n}^{c}; if either $\left|M_{b}\right|<n / 2$ or $\left|M_{r}\right|<n / 2$, then stop; K_{n}^{c} has no alternating factor; otherwise, form an alternating factor F by considering the union of M_{b} and M_{r}.
[2] Let $C_{1}, C_{2}, \ldots, C_{m}, m \geq 1$, be the alternating cycles of F (in what follows, we shall shortly write $F \rightarrow C_{1}, C_{2}, \ldots, C_{m}$), if $m=1$, then we stop by setting $\mu=1$ and $R_{1}=C_{1}$; assume that $m \geq 2$; if for some $i<j, i, j=1,2, \ldots, m$, neither C_{i} dominates C_{j} nor C_{j} dominates C_{i}, then by applying lemma 2 on the subgraph of K_{n}^{c} induced by $V\left(C_{i}\right) \cup V\left(C_{j}\right)$, we produce an alternating cycle, say C^{\prime}, with vertex set $V\left(C_{i}\right) \cup V\left(C_{j}\right)$; we set $C_{i} \leftarrow C^{\prime}, C_{h} \leftarrow C_{h+1}$ for all $h, j \leq h \leq m-1, m \leftarrow m-1, F \leftarrow C_{1}$, C_{2}, \ldots, C_{m} and then we go to the beginning of this step;
when this step terminates, if $m=1$, then we set $\mu=1, R_{1}=C_{1}$ and then stop the algorithm; if $m>3$, then we go to step 3 , else we go to step 5 .
[3] After step 2, the underlying graph D of K_{n}^{c} is clearly a tournament; now, we find the strongly connected components $D_{i}, i=1,2, \ldots, \ell$ of D by using the algorithm of [12]; set $\left|V\left(D_{i}\right)\right|=d_{i}$; if for each $i, d_{i}=1$, i.e., D is a transitive tournament, then go to step 4; otherwise, for each non trivial component D_{i} of D, the algorithm of [12] produces a Hamiltonian cycle denoted, say, by $c_{1}^{i}, c_{2}^{i}, \ldots, c_{d_{i}}^{i}$; by using appropriate colored edges between each pair of the underlying alternating cycles C_{j}^{i} and C_{j+1}^{i}, we define easily an alternating cycle C_{i} corresponding to each such component D_{i} of D; if $\ell=1$, then we terminate the algorithm by setting $\mu=1$ and $R_{1}=C_{1}$; on the other hand, if $\ell \geq 2$, then we set $m \leftarrow \ell, F \leftarrow C_{1}, C_{2}, \ldots, C_{m}$; now, if $\ell=2$ and neither C_{1} dominates C_{2} nor C_{2} dominates C_{1}, then we go back to the beginning of step 2 ; otherwise, we go to step 5.
[4] By the actual structure of K_{n}^{c}, C_{i} dominates C_{j} for each $1 \leq i<j \leq m$, i.e., by lemma 4 the underlying graph is a transitive tournament; let $C_{1}, C_{2}, \ldots, C_{m}$ be an ordering of the cycles such that C_{i} dominates C_{i+1} for each $i=1,2, \ldots, m-1$; assume, without loss of generality, that the $X_{1} C_{2}$ edges are red; if for some cycle $C_{i}, \geq 2$, the edges $X_{i} C_{i+1}$ are blue, then we may interchange the X_{i} class by the Y_{i} class in C_{i} without modifying the ordering of the cycles; therefore, in the sequel, we assume that the edges $X_{i} C_{i+1}$ are red for each $i=1,2, \ldots, m-1$;
we determine, if any, the smallest integer $h_{m}, 1 \leq h_{m} \leq m-2$, such that $X_{h_{m}} C_{m}$ and $X_{h_{m}} C_{h+1}$ (or, equivalently, $Y_{h_{m}} C_{m}$ and $Y_{h_{m}} C_{h_{m}+1}$) are not monochromatic; by using lemma 3, we find an alternating cycle C with vertex set

$$
V\left(C_{h_{m}}\right) \cup V\left(C_{h_{m}+1}\right) \cup \ldots \cup V\left(C_{m}\right)
$$

set $m \leftarrow m-h_{m}+1, C_{m} \leftarrow C, C_{m} \leftarrow C_{h_{m}+i-1}$ and go back to the beginning of this step; if h_{m} does not exist, then we try to find the minimum number h_{m-1} corresponding to the cycle C_{m-1} with the above property and then repeat this step, and so on.
[5] At the end of the previous step, clearly the edges $X_{1} C_{i}$ are red, for all $i=2, \ldots, m$; we look now if there is a blue edge e inside $X_{1} X_{1}$ (or a red edge inside $Y_{1} Y_{1}$); if e does not exist, then set $\mu \leftarrow \mu+1, R_{\mu} \leftarrow C_{1}$; next, set $m \leftarrow m-1, C_{i} \leftarrow C_{i+1}$, $i=2, \ldots, m-1$ and go back to the begining of this step;
if e exists, say in $X_{1} X_{1}$, set $e \leftarrow x_{i} x_{j}$; by using the arguments of lemma 3, find an alternating path in $\left\{y_{i-1}\right\} \cup V\left(C_{2}\right) \cup \ldots \cup V\left(C_{m}\right)$ with begin y_{i-1}, terminus in C_{m}, and such that its first and last edges are both blue; then, by using the segment $y_{i-1} x_{i-1} \ldots x_{j} x_{i} y_{i} x_{i+1} \ldots y_{j-1}$ of C_{1}, define an alternating cycle with vertex set $V\left(C_{1}\right) \cup V\left(C_{2}\right) \cup \ldots \cup V\left(C_{m}\right)$.

Algorithm 1.

Algorithm 1 finds an alternating factor with a minimum number of alternating cycles in 2-edge-colored complete graphs in $O\left(n^{3}\right)$ steps. Its input consists of a complete graph K_{n}^{c} on n vertices whose edges are colored red and blue and the output is either an alternating factor F_{μ} of K_{n}^{c} with a minimum number of alternating cycles $R_{1}, \ldots, R_{\mu}, \mu \geq 1$, or else an answer that K_{n}^{c} has no alternating factor at all. We suppose that K_{n}^{c} has an even number of vertices, since otherwise it has no alternating factor. Furthermore, in the beginning, we initialize μ to zero.

Algorithm 1 terminates within at most $O\left(n^{3}\right)$ operations. Namely, finding perfect matchings in step 1 needs no more than $O\left(n^{2.5}\right)$ operations [7]. Each call of step 2 terminates within $O\left(n^{2}\right)$ operations. In fact, we have to check the domination relation of each pair of cycles C_{i} and C_{j}. Since the cost for each pair is $O\left(\left|V\left(C_{i}\right)\right|\left|V\left(C_{j}\right)\right|\right)$, the whole cost is bounded by $O\left(\sum_{i \neq j}\left|V\left(C_{i}\right)\right|\left|V\left(C_{j}\right)\right|\right) \leq O\left(n^{2}\right)$. Also, step 3 costs $O\left(n^{2}\right)$ operations, i.e., the complexity for finding the minimum number of cycles covering the vertices of a tournament of order $m=O(n)$ [12]. Since steps 2 and 3 are called $O(n)$ times, it follows that the whole of executions of these steps requires a total amount of $O\left(n^{3}\right)$ operations. Finally, steps 4 and 5 terminate with at most $O\left(n^{2}\right)$, since the edges of K_{n}^{c} are examined a constant number of times. It follows that the complexity of the whole algorithm is $O\left(n^{3}\right)$. Moreover, we prove that when our algorithm terminates, then K_{n}^{c} has no alternating factor with less than μ alternating cycles. This can be proved by showing that conditions of theorem 1 are satisfied. Namely, we define $k_{i}=\sum_{j \leq i} c_{j}, i=1,2, \ldots, \mu-1$. It follows from the structure of K_{n}^{c} that the vertices with the k_{i} smallest blue degrees and the k_{i} smallest red degrees are these of $V\left(C_{1}\right) \cup V\left(C_{2}\right) \cup V\left(C_{3}\right) \cup \ldots \cup V\left(C_{i}\right)$. By considering the sum of these smallest degrees, we obtain

$$
\begin{aligned}
& \sum_{1 \leq j \leq i}\left|X_{i}\right|\left|Y_{j}\right|+\sum_{1 \leq h<j \leq i}\left|X_{i}\right|\left|Y_{h}\right|+\sum_{1 \leq h<j \leq i}\left|X_{j}\right|\left|X_{h}\right| \\
& \quad+\sum_{1 \leq h<j \leq i}\left|Y_{j}\right|\left|Y_{h}\right|+\sum_{1 \leq h<j \leq i}\left|Y_{j}\right|\left|X_{h}\right| \\
& \quad=\sum_{1 \leq j \leq i} c_{j}^{2}+2 \sum_{1 \leq j<h \leq i} c_{j} c_{h}=\left(c_{1}+c_{2}+\cdots+c_{i}\right)^{2}=k_{i}^{2}
\end{aligned}
$$

which is our assertion.

From algorithm 1, we obtain the following concluding theorem 2.
Theorem 2: There exists an $O\left(n^{3}\right)$ algorithm for finding Hamiltonian cycles in a 2-edge-colored complete graph K_{n}^{c}.

We conclude this section by giving a characterization of 2-edge-colored complete graphs admitting alternating Hamiltonian paths.

Theorem 3: Any 2-edge-colored complete graph K_{n}^{c} has a Hamiltonian path if an only if the graph K_{n}^{c} has: (i) an alternating factor or, (ii) an "almost alternating factor", that is a spanning subgraph which differs from a factor by the color of exactly one edge e or, finally, (iii) an odd number of vertices and, furthermore, K_{n}^{c} has a red matching $\left({ }^{5}\right) M_{r}$ and a blue one $\left({ }^{6}\right)$ M_{b}, each one having cardinality $\frac{n-1}{2}$.

Proof: The necessity is obvious. Let now G be a 2-edge-colored complete graph obtained from K_{n}^{c} depending upon the case (i), (ii) or (iii) as follows:
(i) define $G \equiv K_{n}^{c}$;
(ii) define $G \equiv K_{n}^{c}$, but change the color of the edge e, that is color e blue in G, if its color was red in K_{n}^{c} and vice versa;
(iii) let x be the vertex of K_{n}^{c} which is not saturated by M_{b}; in this case, define $V(G)=V\left(K_{n}^{c}\right) \cup\{z\}$, where z is a new vertex and $E(G)=E\left(K_{n}^{c}\right) \cup\left\{z w \mid w \in V\left(K_{n}^{c}\right)\right\}$; the edge $z x$ is colored blue and any other edge $z w,\left(w \in V\left(K_{n}^{c}\right) \backslash\{x\}\right)$, is colored red in G.

Let now F be an alternating factor of G consisting of alternating cycles $C_{1}, \ldots, C_{m}, m \geq 1$. If $m=1$, then G has an alternating Hamiltonian cycle, and therefore, in an obvious way, we can find an alternating Hamiltonian path in K_{n}^{c}. In what follows, assume that $m \geq 2$. Furthermore, by using the arguments of algorithm 1 , we can suppose that C_{i} dominates C_{j} for i, $j=1,2, \ldots, m$ and $i<j$. Now, if G is obtained as described in (i) (resp., in (ii)), then by using the arguments of lemma 3 , we may find an alternating Hamiltonian path (resp., an alternating Hamiltonian path avoiding e) in K_{n}^{c}. On the other hand, if G is obtained as described in (iii), then we can see that z belongs to C_{1} since $b(z)=1$. Consequently, once more, we may complete the proof by using the arguments of lemma 3.

[^1]Relying on lemmas 2, 3 and 3, theorem 3, we deduce an $O\left(n^{3}\right)$ algorithm for finding alternating Hamiltonian paths. The techniques used for this algorithm are pretty much similar than the ones of algorithm 1 and thus it (the algorithm) is omitted.

3. SOME NP-COMPLETENESS RESULTS

In this section, we consider the problem of finding Hamiltonian configurations with specified edge-colorings in k-edge-colored graphs, $k \geq 3$. We prove that some of these problems are NP-complete.

Notation: Let p be an inter and $\Psi=\left\{\chi_{1} \chi_{2}, \ldots, \chi_{k}\right\}$ be the set of used colors. $\mathrm{A}\left(\chi_{1} \chi_{2} \ldots \chi_{k}\right)$ cycle (path) is a cycle (path) of length $p k$ such that the sequence of colors $\left\langle\chi_{1} \chi_{2} \ldots \chi_{k}\right\rangle$ is a repeated p times.

Theorem 4: The problem Π : "given a 3-edge colored complete graph K_{n}^{c}, does there exist a Hamiltonian $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ cycle in K_{n}^{c} ?" is NP-complete?

Proof: Π is trivially in NP.
The reduction is from the directed Hamiltonian cycle problem (DHC, [10]).
Let us consider an instance $D=(V, A)$ of DHC. We first split each vertex $v_{i}, i=1, \ldots, n$, of D into three vertices $v_{i_{1}}, v_{i_{2}}, v_{i_{3}}$. We color the edge $v_{i_{1}} v_{i_{2}}$ by χ_{1}, the edge $v_{i_{2}} v_{i_{3}}$ by χ_{2} and the edge $v_{i_{3}} v_{j_{1}}$ by χ_{3}, only if $v_{i} v_{j} \in D$ (of course, v_{j} is also splitted into $v_{j_{1}}, v_{j_{2}}, v_{j_{3}}$). We complete the graph by adding edges of color χ_{1}. Let us denote by K_{n}^{c} the so-obtained complete edge-colored graph.

If a Hamiltonian cycle H is given for D, then it is easy to construct a Hamiltonian ($\chi_{1} \chi_{2} \chi_{3}$) cycle for K_{n}^{c} as follows: first, we order, arbitrary, the vertices of H in such a way that v_{i} precedes v_{j} in the ordering, if and only if v_{i} is the predecessor of v_{j} in H; next, we consider the cycle H^{c} of K_{n}^{c} where we have replaced every vertex v_{i} of H by the path $v_{i_{1}} v_{i_{2}} v_{i_{3}}$.

Let us now suppose that a Hamiltonian $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ cycle H^{c} is given for K_{n}^{c}.

If the sequence of vertices in H^{c} is $v_{i_{1}} v_{i_{2}} v_{i_{3}}, \ldots, i=1, \ldots, n$, then it is easy to construct a Hamiltonian cycle H for D by simply replacing the sequence $v_{i_{1}} v_{i_{2}} v_{i_{3}}$ by v_{i}.

Let us now suppose that the sequence of vertices of H^{c} has not the form just described. Then, it is easy to see that, for every i, the segment of H^{c} colored by χ_{2} and χ_{3} is of the form $v_{i_{2}} v_{i_{3}} v_{j_{1}}$, since, for every i and j such that v_{i} is predecessor of v_{j} in $D, v_{i_{2}} v_{i_{3}}$ and $v_{i_{3}} v_{j_{1}}$ are the only edges
colored by χ_{2} and χ_{3}, respectively. Let us now see which can be the vertex x "sending" an edge of color χ_{1} to $v_{i_{2}}$ (we have already examined the case where this vertex is $v_{i_{1}}$);
(i) if $x=v_{k_{2}}, k \neq i$, then there must be an edge of H^{c} colored by χ_{3} incident to $v_{k_{2}}$, and this is impossible by the construction of K_{n}^{c};
(ii) if $x=v_{k_{3}}, k \neq i$, then we must suppose that, in H^{c}, there exists an edge, colored by χ_{3}, incident to $v_{k_{3}}$; by the construction of K_{n}^{c}, this edge has to be of the form $v_{l_{1}} v_{k_{3}}$; consequently, there must be an edge of H^{c}, colored by χ_{2}, incident to $v_{l_{1}}$, impossible by the way the edges of K_{n}^{c} are colored.

So, the only possibility, in view of the hypothesis on the feasibility of H^{c}, is that $x=v_{m_{1}}, m \neq i$.

On the other hand, let us suppose that there exists an edge of H^{c}, colored by χ_{1}, of the form $v_{i_{3}} v_{j_{1}}\left({ }^{7}\right)$; then, by the way the coloring of the edges of K_{n}^{c} has been performed, $v_{i_{3}}$ has to be adjacent, in H^{c}, to the edge $v_{i_{2}} v_{i_{3}}$ colored by χ_{2}; but then, $v_{i_{2}}$ has to be adjacent, in H^{c}, to an edge colored by χ_{3}, impossible given the way the coloring of the edges of K_{n}^{c} has been constructed.

The above remarks indicate that once a Hamiltonian $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ cycle H^{c} has been found in K_{n}^{c}, one can, in any case, reconstitute a sequence, H, of all of the vertices of D such that every two consecutive vertices are in relation predecessor-successor, every vertex appearing once and only once in H; this can be done by simply examining every segment $v_{i_{2}} v_{i_{3}} v_{j_{1}}$ of H^{c} and putting v_{i} and v_{j} aside in H; then, H constitutes a Hamiltonian cycle for D.

Theorem 5: The problem: "given positive integers p and $k, k \geq 4$, and a k-edge-colored complete graph K_{n}^{c} such that $n=k p$, does K_{n}^{c} contain a ($\chi_{1} \chi_{2} \ldots \chi_{k}$) Hamiltonian cycle C ? is NP-complete.

Proof: Our problem is in NP, since for a given cycle, we may deduce in polynomial time if it has the required properties.

For the proof of the completeness, we transform DHC to our problem.
Consider any arbitrary instance of DHC by taking a directed graph $D(V, A)$ with vertex set $V(D)$ and arc set $A(D)$. We have to construct a k-edge-colored complete graph K_{n}^{c} such that D has a Hamiltonian cycle C^{\prime}

[^2]if and only if K_{n}^{c} has a $\left(\chi_{1} \chi_{2} \ldots \chi_{k}\right)$ Hamiltonian cycle C such that the sequence of colors $\left\langle\chi_{1} \chi_{2} \ldots \chi_{k}\right\rangle$ appears n / k times on C.

Set $|V(D)|=n^{\prime}, V(D)=\left\{v_{1}, v_{2}, \ldots, v_{n^{\prime}}\right\}$ and $n=k n^{\prime}$. The graph K_{n}^{c} has vertex-set $V\left(K_{n}^{c}\right)=\bigcup_{1 \leq i \leq n^{\prime}}\left\{v_{i, j} \mid 1 \leq j \leq k\right\}$, where the k vertices $\left\{v_{i, j} \mid 1 \leq j \leq k\right\}$ of K_{n}^{c} are associated to each vertex v_{i} of D; $E\left(K_{n}^{c}\right)=\left\{x y \mid x, y \in V\left(K_{n}^{c}\right)\right\}$.

Every edge $v_{i, k} v_{j, 1}, i \neq j, 1 \leq j, i \leq n^{\prime}$, is colored by χ_{k} if and only if $v_{i} v_{j}$ is an arc of D; otherwise, $v_{i, k} v_{j, 1}$ is. colored χ_{1}. In addition, the edges $v_{i, 1} v_{j, 2}, i \neq j$, are colored χ_{k}, each edge $v_{i, j} v_{i, j+1}, j=1,2, \ldots, k-1$, is colored χ_{j}, and any other edge of K_{n}^{c} is colored χ_{1}. So, we have constructed a complete graph K_{n}^{c} on $n^{\prime} k$ vertices, its edges being colored by k colors. Clearly, this construction is obtained in polynomial time.

Let us suppose now that a Hamiltonian cycle C^{\prime} is found in D. A cycle C is easily constructed in K_{n}^{c} by replacing each vertex v_{i} (resp., each arc $v_{i} v_{i+1}$) of C^{\prime} by the corresponding path $v_{i, 1} v_{i, 2} \ldots v_{i, k-1} v_{i, k}$ (resp. by the corresponding edge $v_{i, k} v_{i+1,1}$) of K_{n}^{c}. Clearly, C satisfies all requirements.

Conversely, assume that K_{n}^{c} contains a Hamiltonian cycle C such that the sequence of colors $\left\langle\chi_{1} \chi_{2} \ldots \chi_{k}\right\rangle$ appears n^{\prime} times on C. We claim that we may replace any ordered sequence of edges $\left\langle\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{k}\right\rangle$ on C with colors $\left\langle\chi_{1}, \chi_{2}, \ldots, \chi_{k}\right\rangle$, respectively, by an $\operatorname{arc} v_{i} v_{j}, i \neq j$, of D and obtain thereby a Hamiltonian cycle in D.

To prove this, we have to show by contradiction that the sequence $\left\langle\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{k}\right\rangle$ of edges is identified by the path $v_{i, 1} v_{i, 2} \ldots v_{i, k-1} v_{i, k} v_{j, 1}$ of vertices of K_{n}^{c}. By the way K_{n}^{c} is colored, if this identity breaks off somewhere, this must arise either on ε_{1} or on ε_{k}.

Suppose that ε_{1} is not the edge $v_{i, 1} v_{i, 2}$. We then distinguish five subcases depending upon ε_{1}.
(a) $\varepsilon_{1}=v_{j, p} v_{i, 2}, i \neq j, 1 \leq i, j \leq n^{\prime}, 3 \leq p \leq k-1$; since the vertex $v_{j, p}$ is non-adjacent to an edge colored by χ_{k} in K_{n}^{c}, we obtain a contradiction;
(b) $\varepsilon_{1}=v_{j, k} v_{i, 2}, i \neq j, 1 \leq i, j \leq n^{\prime}$; since ε_{1} precedes an edge, say ε_{k}^{\prime}, with color χ_{k} on C, by our construction we have $\varepsilon_{k}^{\prime}=v_{j, k} v_{p, 1}, 1 \leq p \leq n^{\prime}$; however, $v_{p, 1}$ is non-adjacent to an edge with color χ_{k-1}, a contradiction;
(c) $\varepsilon_{1}=v_{j, 2} v_{i, 2}, i \neq j, 1 \leq i, j \leq n^{\prime}$; since ε_{1} precedes an edge ε_{k}^{\prime}, with color χ_{k} on C, we have $\varepsilon_{k}^{\prime}=v_{j, 2} v_{p, 1}, j \neq p, 1 \leq p \leq n^{\prime}$; however, as in case (b), we can see that $v_{p, 1}$ is non adjacent to an edge with color χ_{k-1}, once more a contradiction;
(d) $\varepsilon_{1}=x v_{i, 3}, 1 \leq i \leq n^{\prime}$, where $x \in\left\{v_{j, p} \mid i \neq j, 1 \leq j \leq n^{\prime}\right.$, $1 \leq p \leq k-1\}$; in this case, we have a contradiction, since in order to complete our colored cycle, we have to go through the edge $v_{i, 3} v_{i, 2}$, while $v_{i, 2}$ is non-adjacent to an edge with color χ_{3};
(e) $\varepsilon_{1}=v_{i, 2} v_{i, p}, 3 \leq p \leq k$; then, necessarily, $v_{i, p} v_{i, 2} \ldots v_{i, p-1} \in C$; then, the other edge of C adjacent to $v_{i, p-1}$ has to be colored by χ_{p-1}, and such an edge must not be edge $v_{i, p-1} v_{i, p}$ (otherwise, the Hamiltonicity of C collapses); on the other hand, by the construction K_{n}^{c}, there is no edge, other than $v_{i, p-1} v_{i, p}$, incident to $v_{i, p-1}$ and colored by χ_{p-1}, a contradiction.

Let us now suppose that the identity breaks off on ε_{k}; so, the edge ε_{k} is an edge $v_{i, 1} v_{j, 2}, i \neq j$; then, it is easy to see that, since $v_{j, 2}$ is not adjacent to an edge colored by χ_{k-1}, this case can never occur on the hypothesis that C is $\left(\chi_{1} \chi_{2} \ldots \chi_{k}\right)$ Hamiltonian.

From theorems 4 and 5, we get the following concluding theorem.

Theorem 6: Deciding if an edge-colored complete graph K_{n}^{c} admits a $\left(\chi_{1} \chi_{2} \ldots \chi_{k}\right)$ Hamiltonian cycle is NP-complete for $k>2$ (and n a multiple of k).

Also, an immediate consequence of theorem 5 is the following corollary.

Corollary 1: The problem of finding a longest alternating cycle or path with prescribed order in an edge-colored complete graph is NP-hard.

By using arguments similar to those of the proof of theorem 5, we may prove the following result on Hamiltonian paths.

Theorem 7: The problem: "given two positive integers p and $k, k \geq 4$ and a k-edge colored complete graph K_{n}^{c} such that $n=k p+1$, does K_{n}^{c} contain a Hamiltonian $\left(\chi_{1} \chi_{2} \ldots \chi_{k}\right)$ path P (resp. a Hamiltonian $\left(\chi_{1} \chi_{2} \ldots \chi_{k}\right)$ path P^{\prime} with specified extremities)?" is NP-complete.

In fact, even if the ordering prerequisite is relaxed, the Hamiltonicity problem remains NP-hard, provided that a frequency on the occurrence of the colors is maintained.

Theorem 8: The problem PF: "given two positive integers p and $k, k \geq 3$ and a k-edge colored complete graph K_{n}^{c} such that $n=k p$, does K_{n}^{c} contain an alternating Hamiltonian cycle C such that each color appears at least p times on C?" is NP-hard.

Proof: Let us suppose that a polynomial algorithm \mathcal{A} solves PF. We can deduce that DHP (where P stands for path), restricted to assymetric digraphs, can be solved in polynomial time (we note DHP, even restricted to assymmetric digraphs, is NP-complete).

Consider an instance $G=(V, E)$ of DHP and label its vertices by $1,2, \ldots, n$. If $i j$ is an arc of G, then color the edge $i j$ of the complete graph under construction by j. For each color $k \in\{1,2, \ldots, n\}$, color the edges of $\bar{G}=(V,(V \times V \backslash E))$ by k and apply \mathcal{A} on the so produced instance $G \cup \bar{G}$ (the complete graph on $|V|$ vertices), of PF (denoted by K_{n}^{c}) with $p=1$.

Suppose that an alternating Hamiltonian cycle C is found by \mathcal{A} on K_{n}^{k}. Then, since C uses at most one edge of \bar{G}, C corresponds exactly to a Hamiltonian path of G.

Conversely, assume that G contains a Hamiltonian path H and let k be the first vertex of H. Then, by coloring \bar{G} by k, \mathcal{A} yields a alternating Hamiltonian cycle for K_{n}^{k} such that each color appears exactly once.

Lemma 5: Consider the problem Π_{1} : "given a 3-edge-colored complete graph K_{n}^{c} and $e=x y$ an edge of color χ_{1} in K_{n}^{c}, does there exist a Hamiltonian $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ cycle C in K_{n}^{c}, such that e appears in C with x adjacent to an edge of color χ_{3} in C ?"; Π_{1} reduces to Π.

Proof: We show that starting from an instance K_{n}^{c} of Π_{1}, we can construct an instance \hat{K}_{n}^{c} of Π such that, if \hat{K}_{n}^{c} admits a Hamiltonian $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ cycle \hat{C}, then K_{n}^{c} admits a Hamiltonian $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ cycle C such that $e=x y$ (colored by χ_{1}) appears in C with x adjacent (in C) to an edge of color χ_{3}.

Given the graph K_{n}^{c}, we replace the edge $e=x y$ by five new vertices x, x_{1}, x_{2}, x_{3} and y, then, complete the graph by adding all the missing edges.

We color the new edges as follows:

$$
\begin{gathered}
\chi\left(x_{1} z\right)=\chi_{2}, \quad \forall z \in V\left(K_{n}^{c}\right) \backslash\left\{x, y, x_{1}, x_{2}, x_{3}\right\}, \\
\chi\left(x_{2} z\right)=\chi_{1}, \quad \forall z \in V\left(K_{n}^{c}\right) \backslash\left\{x, y, x_{1}, x_{2}, x_{3}\right\}, \\
\chi\left(x_{3} z\right)=\chi_{3}, \quad \forall z \in V\left(K_{n}^{c}\right) \backslash\left\{x, y, x_{1}, x_{2}, x_{3}\right\}, \\
\chi\left(x x_{1}\right)=\chi_{1}, \quad \chi\left(x x_{2}\right)=\chi_{1}, \quad \chi\left(x x_{3}\right)=\chi_{2}, \quad \chi(x y)=\chi_{3}, \\
\chi\left(x_{1} x_{2}\right)=\chi_{2}, \quad \chi\left(x_{1} x_{3}\right)=\chi_{1}, \quad \chi\left(x_{1} y\right)=\chi_{2}, \\
\chi\left(x_{2} x_{3}\right)=\chi_{3}, \quad \chi\left(x_{2} y\right)=\chi_{1}, \quad \chi\left(x_{3} y\right)=\chi_{1} .
\end{gathered}
$$

In the so constructed graph \hat{K}_{n}^{c}, it suffices to show that any $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ Hamiltonian cycle \hat{C} contains the vertex-sequence $x x_{1} x_{2} x_{3} y$; this property means that, starting from \hat{C}, we can obtain a ($\chi_{1} \chi_{2} \chi_{3}$) Hamiltonian cycle C in K_{n}^{c} by just replacing the vertex-sequence $x x_{1} x_{2} x_{3} y$ of \hat{C} by the edge $e=x y$ (colored by χ_{1}).

Let us suppose that $x x_{1} \notin \hat{C}$. Then, given that x_{1} has only two adjacent colors χ_{1} and χ_{2} and, moreover, the only edge colored by χ_{1} adjacent to x_{1}, is the edge $x_{1} x_{3}$ (the edge $x x_{1}$ being excluded), one can conclude that $x_{1} x_{3} \in \hat{C}$. So, let us suppose that $z x_{1} x_{3} z^{\prime} \in \hat{C}$, where $\chi\left(z x_{1}\right)=\chi_{2}$, $\chi\left(x_{1} x_{3}\right)=\chi_{1}$ and $\chi\left(x_{3} z^{\prime}\right)=\chi_{3}$, and $\left\{z, z^{\prime}\right\} \subseteq V\left(\hat{K}_{n}^{c}\right) \backslash\left\{x, x_{2}\right\}$. If this is the case, then all of the edges adjacent to x_{2} are colored by χ_{1} and, consequently, vertex x_{2} cannot make part of any alternating Hamiltonian cycle of \hat{K}_{n}^{c}; consequently, since $\chi\left(x_{1} x_{2}\right)=\chi_{2}$ and $\chi\left(x_{2} x_{3}\right)=\chi_{3}$, one of the z, z^{\prime} must be x_{2}; (a) suppose that $z^{\prime}=x_{2}$, so, $z x_{1} x_{3} x_{2} \in \hat{C}$; then, the other edge of \hat{C} incident to x_{2} has to be colored by χ_{2}, and the only edge so colored is $x_{2} x_{1}$; but, in this case, $z x_{1} x_{3} x_{2} x_{1} \in \hat{C}$, a contradiction since \hat{C} is supposed Hamiltonian; (b) on the other hand, if we suppose that $z=x_{2}$, then with arguments exactly similar to the ones of case (a), we can conclude that $x_{3} x_{2} x_{1} x_{3} z^{\prime} \in \hat{C}$, another contradiction. So, $x x_{1} \in \hat{C}$.

Let us now suppose that $x_{1} x_{2} \notin \hat{C}$. Then, since the remaining (except $x_{1} x_{2}$) edges adjacent to x_{2} are colored either by χ_{1} or by χ_{3}, and, moreover, the only edge colored by χ_{3} is the edge $x_{2} x_{3}$, we can suppose that $z x_{2} x_{3} \in \hat{C}$, where $\chi\left(z x_{2}\right)=\chi_{1}, \chi\left(x_{2} x_{3}\right)=\chi_{3}$, and $z \in V\left(\hat{K}_{n}^{c}\right)$; then, the only edge adjacent to x_{3} and colored by χ_{2} is edge $x_{3} x$; so, $z x_{2} x_{3} x \in \hat{C}$ and, by the previous discussion, $z x_{2} x_{3} x x_{1} \in \hat{C}$; consequently, in \hat{C}, the other edge adjacent to x_{1} has to be colored by χ_{3} and such an edge does not exist; we conclude then that $x_{1} x_{2} \in \hat{C}$.

Now, it is easy to see that, since $x x_{1} x_{2} \in \hat{C}$, the edge of \hat{C} adjacent to x_{2} has to be colored by χ_{3} and the only feasible (from Hamiltonicity point of view) edge adjacent to x_{2} in \hat{K}_{n}^{c} and colored by χ_{3} is the edge $x_{2} x_{3}$; so, $x x_{1} x_{2} x_{3} \in \hat{C}$.

With the same arguments, the edge $x_{3} y \in \hat{C}$.
So, $x x_{1} x_{2} x_{3} y \in \hat{C}$ and this concludes the proof of lemma 5 .
The above lemma 5 shows that we can force the ($\chi_{1} \chi_{2} \chi_{3}$) Hamiltonian cycle to go through a given set A of edges of an edge-colored complete graph in a certain order.

Theorem 9: Consider the problem Π^{\prime} : "given a 3-edge-colored complete graph K_{n}^{c} and a subset $S \subset V\left(K_{n}^{c}\right)$ of six vertices of K_{n}^{c}, does there exist a $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ cycle in K_{n}^{c} containing the vertices of $S ?$ '"; Π^{\prime} is NP-hard.

Proof: Consider first the following local cycle problem (LC, [9]) where, given a directed graph G and two specified vertices a and b of G, we search if there exists a cycle through the vertives a and b in G.

We know that LC is NP-complete. Moreover, it is easy to see that LC is NP-complete even if G is bipartite (it suffices to add an intermediate vertex on each arc of G).

We consider now the following decision problem LC^{\prime} :
Instance: A directed bipartite graph G, two vertices a and b of G, and an arc $a u$ of G.

Question: Does there exist a cycle of G through a and b using arc $a u$?
Clearly, LC ${ }^{\prime}$ is NP-hard because if we have a polynomial algorithm \mathcal{A} for LC^{\prime}, then applying \mathcal{A} on every instance $(G, a, b, a u)$ (for every arc $a u$ of G), we can solve LC for every instance (G, a, b) where G is bipartite.

We are going now to reduce LC^{\prime} to Π^{\prime}. Let $G=((X, Y, A), a, b, a u)$ be an instance of LC^{\prime} (X and Y are the color classes and A is the arc-set of G). We can suppose without loss of generality that $a \in X$.

Construct a 3-edge-colored complete graph K_{n}^{c} in the following way:

1) $V K_{n}^{c}=X \cup Y \cup Y^{\prime}$, where $\left|Y^{\prime}\right|=|Y|$;
2) all edges in X, Y, Y^{\prime} are colored by χ_{3}, χ_{1} and χ_{2}, respectively;
3) for every arc $x y$ in $A(G)$ (where $x \in X$ and $y \in Y$), color the corresponding edge $x y$ of K_{n}^{c} by χ_{1};
4) for every pair (x, y) of vertices of G, such that $x \in X, y \in Y$ and $x y \notin A(G)$, color the edge $x y$ of K_{n}^{c} by χ_{3};
5) add a perfect matching M in $\left(Y, Y^{\prime}\right)$ and color its edges by χ_{2}; color all the other edges between $\left(Y, Y^{\prime}\right)$ by χ_{1}; for every vertex y of Y, we denote by y^{\prime} its mate $\left({ }^{8}\right)$ with respect to the matching M;
6) for every vertex $y \in Y$, if arc $y x \in A(G)(x \in X)$, then color the edge $y^{\prime} x$ by χ_{3}; the rest of the (non-colored) edges incident to y^{\prime} are colored by χ_{2};

[^3]7) replace the particular arc $a u$ of G by the component D of 5 vertices designed in the proof of lemma 5 and set $S=V(D) \cup\{b\}$. More precisely, we add three vertices x_{1}, x_{2}, x_{3} on the edge $a u$ with the colors indicated in lemma 5, namely: for every $z \in V\left(K_{n}^{c}\right) \backslash\left\{a, u, x_{1}, x_{2}, x_{3}\right\}$, $\chi\left(x_{1} z\right)=\chi_{2}, \chi\left(x_{2} z\right)=\chi_{1}, \chi\left(x_{3} z\right)=\chi_{3}$ and $\chi\left(a x_{1}\right)=\chi\left(a x_{2}\right)=\chi_{1}$, $\chi\left(a x_{3}\right)=\chi_{2}, \chi(a u)=\chi_{3}, \chi\left(x_{1} x_{2}\right)=\chi\left(x_{1} u\right)=\chi_{2}, \chi\left(x_{1} x_{3}\right)=\chi_{1}$, $\chi\left(x_{2} x_{3}\right)=\chi_{3}$ and $\chi\left(x_{2} u\right)=\chi\left(x_{3} u\right)=\chi_{1}$ and we set $S=$ $\left\{a, x_{1}, x_{2}, x_{3}, u, b\right\}$. This completes the description of the instance of Π^{\prime}.

Now, we claim that G admits a cycle containing a and b and passing through the arc $a u$ if and only if K_{n}^{c} admits a $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ cycle containing S.

In fact, let C be a cycle of G containing a and b and passing through the $\operatorname{arc} a u$. Then, replacing every sequence $x y x^{\prime}$ of C (where $x, x^{\prime} \in X$ and $y \in Y$) by the sequence $x y y^{\prime} x^{\prime}$ (where y^{\prime} is the mate of y with respect to M), and replacing the particular edge $a u$ of C by the sequence $a x_{1} x_{2} x_{3} u$, we obtain a $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ cycle of K_{n}^{c} containing S.

Conversely, let C^{\prime} be a $\left(\chi_{1} \chi_{2} \chi_{3}\right)$ cycle of K_{n}^{c} containing S. From the proof of lemma 5 , we know that C^{\prime} contains necessarily the sequence $a x_{1} x_{2} x_{3} u$ (because the only property used in the proof of lemma 5 , is that the involved cycle passes through all of the vertices of the component of the lemma, here denoted by a, x_{1}, x_{2}, x_{3} and u). Let us write $C^{\prime}=\left(a x_{1} x_{2} x_{3} u\right) z_{1} z_{2} \ldots z_{m}$; then $\chi\left(u z_{1}\right)=\chi_{2}$ and $z_{1}=u^{\prime}\left(u^{\prime} \in Y^{\prime}\right)$ because $u u^{\prime}$ is the only edge of color χ_{2} incident to u; therefore, $u z_{2} \in A(G)$ because $\chi\left(z_{1} z_{2}\right)=\chi_{3}$. Now, repeating this argument m times, we find that C^{\prime} has the form $C^{\prime}=\left(a x_{1} x_{2} x_{3} u\right) u^{\prime} a_{1} b_{1} b_{1}^{\prime} \ldots a_{k} b_{k} b_{k}^{\prime}$, where $a_{i} \in X$, $b_{i} \in Y$ and b_{i}^{\prime} is the counterpart of b_{i} in Y^{\prime}). Hence, by definition of the colors in K_{n}^{c}, the cycle $C=a u a_{1} b_{1} \ldots a_{k} b_{k}$ is a cycle of G containing a and b and passing through the arc $a u$ as claimed.

We shall conclude this section with the two following open problems.

Problem 1: What is the complexity of finding an alternating Hamiltonian cycle in a k-edge-colored complete graph, $k \geq 3$?

Problem 2: Let x and y be two specified vertices in a k-edge-colored complete graph, $k \geq 2$. What is the complexity of finding an alternating Hamiltonian path between x, y in such a graph?

Input: a complete k-partite graph $G=(V, E)$ with an even number of vertices and with vertex classes $G_{1}, G_{2}, \ldots, G_{k}$ satisfying condition (a): $\left|G_{i}\right| \leq \sum_{j \neq i}\left|G_{j}\right|, 1 \leq i, j \leq k$.
Output: a perfect matching M of G.

1. order the classes $G_{1}, G_{2}, \ldots, G_{k}$ in decreasing order;
2. $M \leftarrow \emptyset$;
3. while M does not saturate all vertices of G do put $M \leftarrow M \cup e$ where $e=x y$ is an edge between the two first classes; delete the vertices x and y, as well as all of their incident edges; define appropriately a new decreasing ordering of the classes of the obtained graph endwhile

Procedure 2. Matching procedure.

4. EULERIAN ALTERNATING CYCLES AND PATHS

In this section, we study the existence of alternating Eulerian cycles in edge-colored graphs. In what follows, a cycle (resp., a path) is not necessarily elementary, i.e., it goes through an edge once, but it can go through a vertex many times.

In view of theorem 10 and algorithm 2, we establish procedure 2 that finds a perfect matching in a specified family of complete k-partite graphs.

Concerning the completeness of procedure 2, we first notice that G admits a perfect matching since condition (a) guarantees that G satisfies Tutte's well known condition ([5] page 76, theorem 5.4). Now, in order to prove the correctness of the procedure, it suffices to show that after each step the new obtained graph has always a perfect matching, i.e., it satisfies (a).

The proof is by induction on n. It is clear that, for $n=k$, the procedure is correct.

Suppose that it is correct for $n-2$; we shall prove its correctness for n.
Assume that when we delete an edge $x y$, we find a new graph which admits a class G_{r}^{\prime} satisfying $\left|G_{r}^{\prime}\right|>\sum_{i \neq r}\left|G_{i}^{\prime}\right|$. Then, we had either $\left|G_{r}\right|=\sum_{i \neq r}\left|G_{i}\right|$, or $\left|G_{r}\right|=\sum_{i \neq r}\left|G_{i}\right|-1$. Now, if $\left|G_{r}\right|=\sum_{i \neq r}\left|G_{i}\right|$, then x belongs to $\left|G_{r}\right|$ and y belongs to another class, a contradiction to our assumption that $\left|G_{r}^{\prime}\right|>\sum_{i \neq r}\left|G_{i}^{\prime}\right|$. On the other hand, if $\left|G_{r}\right|=\sum_{i \neq r}\left|G_{i}\right|-1$, we have a contradiction since n is even.

The sorting in step 1 can be performed in $O(|V| \log |V|)$. In step 3, the deletion of an edge entails the decrease of the cardinalities of only two classes by one. The new sorting can be performed within $O(\log |V|)$ by using a heap (in fact we have, eventually, to change the place of the two classes, the cardinalities of which have been changed), and this reordering will be performed at most $\frac{|V|}{2}$ times, so the complexity of this operation for the total of the executions of the while loop calls will be of $O(|V| \log |V|)$. On the other hand, the deletion of the edges incident to the selected one, takes time $O(|E|)$, once more time, for the whole of the iterations of the while loop. Thus, the total time is of $O(\max \{|E|,|V| \log |V|\})$.

```
Input: an edge colored graph \(G^{c}\) satisfying the hypotheses of theorem 10.
Output: an alternating Eulerian cycle.
    1. for every vertex \(v\) of \(G^{c}\) do apply procedure 2 to \(G_{v}\) endfor
        \(i \leftarrow 1\);
        \(m \leftarrow 1\);
    2. \(P \leftarrow y_{0} y_{1}\)
        while there exists \(M_{y_{m}}\left(y_{m-1} y_{m}\right) \notin E(P)\) do
        \(P \leftarrow P \cup\left\{M_{y_{m}}\left(y_{m-1} y_{m}\right)\right\}\);
        \(m \leftarrow m+1\);
        mark that \(y_{m}\) belongs to \(P\)
        endwhile
        \(C_{i} \leftarrow P\);
        \(G^{c} \leftarrow G^{c} \backslash E\left(C_{i}\right)\) (i.e., we delete the edges but not their extremities)
    3. if \(E\left(G^{c}\right)\) is not empty, then find an edge \(w z\) in \(E\left(G^{c}\right)\) endif
        \(i \leftarrow i+1\);
        \(y_{0} \leftarrow w\);
        \(y_{1} \leftarrow z\);
        go to step 2 ;
4. we stack a cycle and we start walking around it until a vertex that is an intersection point with another cycle is found;
        we stack the new cycle and we start walking now around it by preserving the
        alternance of colors on the point we have changed the cycle we are walking (we
        notice here that this preservation is always possible);
        we continue this procedure until a cycle is entirely walked out in which case is
        unstacked;
        we continue in this way until the stack becomes empty;
        The above walk determines an Eulerian cycle.
```


Algorithm 2.

Theorem 10: Let G^{c} be an edge colored graph of order n. Then, there exists an alternating Eulerian cycle in G^{c} if and only if it is connected, for each vertex x and for each color i, the total degree of x is even,
and, $\chi_{i}(x) \leq \sum_{j \neq i} \chi_{j}(x)$. Moreover, algorithm 2 finds such a cycle in $O\left(\max \left\{n|E|, n^{2} \log n\right\}\right)$.

Proof: Let us notice that the necessary condition is obvious.
Let us prove the sufficient one.
For every vertex v and every edge e incident to v, we will associate an edge denoted by $M_{v}(e)$ incident to v such that $\chi(e) \neq \chi\left(M_{v}(e)\right)$. This association guarantees that each time we visit v through the edge e, we can leave v through $M_{v}(e)$. In order to determine such an association, for each vertex v, we define a new graph G_{v} such that the vertices of G_{v} are the edges adjacent to v. Furthermore, two vertices are connected in G_{v} if their corresponding edges in G^{c} have different colors. It is clear that associating e to $M_{v}(e)$ is the same as finding a perfect matching in G_{v}. We remark that G_{v} verifies condition (a) and that G_{v} is a complete k-partite graph. Consequently, procedure 2 produces always a perfect matching in G_{v}.

It is easy to see that algorithm 2 is correct for small values of $\left|E\left(G^{c}\right)\right|$. Let us now prove, by induction on $\left|E\left(G^{c}\right)\right|$, that the algorithm comes up with an Eulerian cycle. Applying steps 1 and 2 (in step 2, we suppose that $y_{0} y_{1}$ is an edge of G^{c}) of the algorithm, we obtain an alternating cycle C. If $E(C)=E\left(G^{c}\right)$, we have the desired walk. If not, then it can easily be seen that the induction hypothesis is preserved in each connected component of $G=\left(V,(E \backslash E(C))\right.$. So, each connected connected component of G^{c} admits an alternating Eulerian cycle. Consequently, after step 3, the cycles $C_{1}, C_{2}, \ldots, C_{i}$ represent an edge-decomposition of G^{c}. In step 4, we clearly visit all cycles $C_{1}, C_{2}, \ldots, C_{i}$, since G^{c} is connected. Finally, at the end of step 4, we find an Eulerian cycle, since by stacking-unstacking a cycle, we preserve that its edges are visited only once.

Concerning the complexity of the algorithm, step 1 uses $n=|V|$ times procedure 2 , requiring thus a total time of $O\left(\max \left\{n|E|, n^{2} \log n\right\}\right)$. Steps 2 and 3 are both performed in $O(|E|)$ steps, since each edge is visited once. In step 4, since the walk of a cycle is performed following its edges, the total time for all of the walks will take $O(|E|)$; on the other hand, each cycle will be treated at most 2 times by the stacking-unstacking operation; so, the total time complexity of step 4 will be of $O(|E|)$. It follows that the whole time complexity of algorithm is of $O\left(\max \left\{n|E|, n^{2} \log n\right\}\right)$.

A similar algorithm can be used to obtain the following theorem in the case of directed edge-colored graphs.

Theorem 11: Let D^{c} be an edge-colored digraph. Then there exists an alternating Eulerian walk in D^{c} if and only if (i) D^{c} is strongly connected, (ii) for each vertex x and for each color $i, d^{+}(x)=d^{-}(x)$ and $d_{i}^{+}(x) \leq \sum_{j \neq i} d_{j}^{-}(x)$, where for every vertex x of $D^{c}, d^{+}(x)$ (resp., $\left.d^{-}(x)\right)$ denotes the external (resp., internal) degree of x and $d_{i}^{+}(x)$ (resp., $\left.d^{-}(x)\right)$ denotes the external (resp., internal) degree of color i of x.

5. CONCLUSIONS

The starting point of our work was Bánkfalvis' theorem [1] mentioned in the introduction. In fact, in [1] the given characterization is not algorithmic. In this paper, we have shown how to exploit their results to obtain polynomial algorithms for finding alternating Hamiltonian cycles and paths in 2-edgecolored complete graphs. As a byproduct, we obtain an efficient algorithm for the Hamiltonian circuit problem in bipartite tournaments. Moreover, we have studied the case of k-edge-colored complete graphs ($k \geq 3$) and we have established a number of NP-completeness results when additional conditions on the frequency of occurrence of the colors in the Hamiltonian cycles and paths are imposed. The general problem (when no frequency constraints are imposed) remains open. However, our feeling is that this latter problem is computationally "easy".

Finally, in the last section of the paper, we have studied the problem of the existence of alternating Eulerian cycles in edge-colored graphs. We have given a polynomial characterization of the existence of such cycles and, moreover, a constructive proof for this characterization.

ACKNOWLEDGEMENT

Many thanks to an anonymous referee for pertinent suggestions and remarks contributing to improve the legibility of this paper.

REFERENCES

1. M. Bánkfalvi and Z. Bánkfalvi, Alternating Hamiltonian Circuit in Two-Colored Complete Graphs, Theory of Graphs, Proc. Colloq. Tihany, Academic Press, New York, 1968, pp. 11-18.
2. A. Benkouar, Y. Manoussakis and R. Saad, Alternating Cycles through Given Vertices in Edge-Colored Complete Graphs, to appear in J. of Comb. Comput. and Comb. Maths.
3. A. Benkouar, Y. Manoussakis and R. Saad, Edge-Colored Complete Graphs Containing Alternating Hamiltonian Cycles, submitted.
4. B. Bollobas and P. Erdos, Alternating Hamiltonian Cycles, Israël Journal of Mathematics, 1976, 23, pp. 126-131.
5. A. Bondy and U. S. R. Murty, Graph Theory with Applications, McMillan Press, 1976.
6. C. C. Chen and D. E. Daykin, Graphs with Hamiltonian Cycles having Adjacent Lines Different Colors, J. Combinatorial Theory (B), 1976, 21, pp. 135-139.
7. S. Even and O. Kariv, An $O\left(n^{2.5}\right)$ algorithm for Maximum Matching in General Graphs, Proc. 16th FOCS, 1975, pp. 100-112.
8. H. Fleishner, Eulerian Graphs and Related Topics, Series Book of the Annals of Discrete Mathematics, North-Holland, 1990.
9. S. Fortune, J. Hopcroft and J. Wylle, The Directed Subgraph Homeomorphism Problem, Theoretical Computer Science, 1980, 10, pp. 111-121.
10. M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
11. P. Hell, Y. Manoussakis and Zs. Tuza, Packing Problems in Edge Colored Complete Graphs, to appear in Discrete Applied Mathematics, 1994.
12. Y. Manoussakis, A Linear Algorithm for Finding Hamiltonian Cycles in Tournaments, Discrete Applied Mathematics, 1992, 36(2), pp. 199-201.
13. Y. Manoussaris, Alternating Paths in Edge-Colored Complete Graphs, to appear in Discrete Applied Mathematics, 1994.
14. Y. Manoussakis, O. Megalakaki, M. Spyratos, Wun-Seng Chou and Z. Tuza, Alternating Paths Through Given Vertices in Edge-Colored Graphs, submitted.
15. Y. Manoussakis, M. Spyratos and Z. Tuza, Cycles and Paths with Given Color Patterns, submitted.
16. Y. Manoussakis and Z. Tuza, Polynomial Algorithms for Finding Cycles and Paths in Bipartite Tournaments, SIAM J. on Discrete Mathematics, 1990, 3, pp. 537-543.

[^0]: (*) Received November 1994.
 ${ }^{(1)}$ Université Val de Marne, avenue du Général-de-Gaule, 94000 Créteil, France.
 $\left({ }^{2}\right)$ LRI, Université d’Orsay, Bât. 490, 91405 Orsay Cedex, France, e_mail:yannis@lri.lri.fr.
 (${ }^{3}$) LAMSADE, Université Paris-Dauphine, place du Maréchal-de-Lattre-de-Tassigny, 75775 Paris Cedex 16, France, e_mail:paschos@lamsade.dauphine.fr.
 (${ }^{4}$) 21, rue Ziane Said la Scala El-Biar, Alger, Algeria.

[^1]: $\left(^{5}\right)$ A matching all of edges of which are red.
 $\left(^{6}\right)$ A matching all of edges of which are blue.

[^2]: $\left(^{7}\right)$ We recall that such an edge indicates that v_{j} is not successor of v_{i} in D.

[^3]: $\left({ }^{8}\right.$) Given a matching M and an edge $x y \in M$, we consider that x (resp., y) is the mate of y (resp., x).

