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THE RANDOM LINEAR BOTTLENECK
ASSIGNMENT PROBLEM f ) (*)

by U. PFERSCHY (l)

Communicated by Rainer E. BURKARD

Abstract. - It is shown that the expected value of the optimal solution ofannxn linear bottleneck
assignment problem with independently and identically distributed costs tends towards the infimum
of the cost range as n tends to infinity. For fixed n and the uniform distribution explicit upper
and lower bounds are given.

Moreover, an algorithm with O (n2 ) expected running time is présentée.

Keywords: Random bottleneck assignment, average case analysis, random graphs.

Résumé. — Nous montrons que la moyenne de la solution optimale d*un problème d'affectation
lineaire avec goulet d'étranglement, dans le cas de coûts indépendants identiquement distribués,
tend vers l'infimum de l'intervalle des coûts lorsque n tend vers l!infini. Nous donnons explicitement
les bornes supérieures et inférieures lorsque n est fixé et la distribution uniforme.

En outre, nous présentons un algorithme en temps moyen O (n2).

Mots clés : Affectation aléatoire avec goulet d'étranglement, analyse du cas moyen, graphes
aléatoires.

1. INTRODUCTION

The well-known Linear Bottleneck Assignment Problem (LBAP) is defined
as:

(LBAP) min max CÎJ x%j (1)

Xij = 1, 1 < j < n,
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128 U. PFERSCHY

Xij e {O, 1}, 1 < i, j < n,

with cost-coefficients ê - € R+.
It can be formulated in a graph theoretical setup as finding a perfect

matching in a bipartite weighted graph Hr = (S UT, E) which minimizes
the maximum weight of all matching edges.

This problem is closely related to the classical Linear Sum Assignment
Problem (LSAP) where (1) is replaced by

(LSAP) min ^ dj xij.

Both problems have been studied extensively in the past. For practical
large-size problems many implementations are available, The LBAP can
be solved by a modified threshold algorithm due to Gabow and Tarjan
[9] in O (n5/2 %/log n) time. For the LSAP, various O (n3) augmentation
algorithms were developed, see e.g. Burkard, Derigs [4] or Derigs [6] and
the références therein.

Moreover, various results are known about the probabilistic properties and
the asymptotic behaviour of the LSAP as n tends to infinity.

In 1979 Walkup [17] showed that the expected optimal value of an LSAP
with cost coefficients uniformly distributed between 0 and 1 is less than
3, for large n. Five years later, Karp [12] improved this bound to 2. The
more gênerai situation where the distribution function is not uniform but
arbitrary has been studied by Frenk, van Houweninge and Rinnooy Kan
[8] and recently more extensively by Olin [15]. The expected value of the
random LSAP in the asymptotic case (n —» oo) has been bounded from
below for the uniform (0, 1) distribution by Lazarus [14] by approximately
1.37. An improved lower bound of 1.51 and limits for gênerai distributions
are found again in the work of Olin [15].

For the LBAP no explicit asymptotic investigations are known to the
author. Some results from random graph theory can be applied readily to the
LBAP by choosing the edges of an evolutionary graph process in increasing
order. (See e.g. Bollobâs [2], Ch. VIL)

In this paper we show that the expected value of the optimal solution of
the LBAP tends towards the lower end of the range of cost coefficients
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RANDOM BOTTLENECK ASSIGNMENT 129

for any distribution fonction (as long as the upper end of the cost range
is bounded). Moreover, we can dérive functions in n as explicit upper and
lower bounds for the expected solution value in the case of data distributed
uniformly between 0 and 1.

Therefore, for practical problems we can expect that the gap between the
optimal solution and the maximum of the row- and column-minima which is
a natural lower bound computed by the usually applied heuristics» gets rather
small for larger problems. Hence, the most widely used solution method of
augmenting paths (see e.g. Derigs [5]) will most likely terminate after only a
small number of augmentations, as the heuristically determined initial partial
matching consisting only of edges with weights smaller or equal to the lower
bound mentioned above, will be close to a perfect matching in most cases.
Moreover, algorithms which reduce the given complete graph to a sparse
subgraph consisting of a number of the smallest edges emanating from each
vertex can be expected to yield a solution on the sparse graph which is also
close to optimal for the complete graph.

Following these considérations we give an algorithm for the LBAP based
on the construction of a sparse subgraph with expected running time O (n2),
The LSAP for comparison can be solved in expected time O (n2 log n) by
an algorithm due to Karp [1].

2. ASYMPTOTIC BEHAVIOUR

To achieve the claimed convergence we first describe the probabilistic
setup and then show the resulting asymptotic properties.

2.1. The probabilistic model

Let each edge cost be independently and identically distributed wih an
arbitrary distribution function F, To show that the expected value of the
optimal Z/J3ÂF-solution tends towards the infimum of the possible range of
the F-distributed cost coefficients we apply a constractive approach using
sparse subraphs of the original graph.

Although the structure of the optimal solution of an LBAP dépends
only on the ordering of the n2 random eost-eoefficients and only the actual
solution value dépends on the spécifie distribution function, we perform the
proof for arbitrary cost distributions.

Let G (n, d) be the class of bipartite digraphs with n nodes in each class S
and T and outdegree d at each node. As indicated in Walkup [18] this class
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of graphs behaves different from the family G0 (n, N) of undirected bipartite
graphs with exactly N edges defined by Erdös and Rényi [7]. The existence
of a perfect matching in a graph chosen uniformly from the latter family
dépends mainly on the existence of isolated vertices. This phenomenon is
excluded in the former model of G(n, d),

The canonical uniform sélection of a random graph G from G (n^ d) can
be interpreted in the following way: Starting from a graph consisting only of
5 and T without arcs for each node in 5 (and in T in turn) exactly d arcs are
added by choosing as endpoints d nodes from T (resp. S) which are selected
by sampling uniformly among the n possible endpoints without replacement.
Thereby, each graph in G (n, d) is generated with equal probability.

A perfect matching in a digraph is a subset of n arcs such that each
node is either head or tail of exactly one arc. We use the following lemma
established by Walkup in [18]:

LEMMA 1: Let Pr (n, d) be the probability of the existence of a perfect
matching in a graph selected uniformly from the class G (n, d). Then the
following inequalities hold:

P r ( n , 2 ) > l - ~
on

Pr(n, d) > 1 - —- ( - J for d>3. D

We now proceed in the same way as Olin [15] and Walkup [17] and define
the optimal value of the LBAP as Zn, a random variable depending on
the edge costs which are independently and identically distributed random
variables Cij with a common distribution function F(x).

Our objective is to show that

lim E [Zn] = inf {x\F (x) > 0},
n—»oo

which gives a lower bound for the possible values of the edge costs.

To use Lemma 1 we have to select special subgraphs uniformly from
G(n, d). In order to construct a random graph in G (n} d) such that the
choice of the arcs adjacent to each node is independent for every node
we change our model of the graph H into a directed graph following the
construction of Walkup [17].
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RANDOM BOTTLENECK ASSIGNMENT 131

Let Yij and Zij, i, j = 1 , . . . , n be independent random variables with
the common distribution fonction

G (x) = Pr {Yij < x) = 1 - y/l-F(x).

We set dj = min {Yij, Zij] and get

Pr (dj <x) = l-Pr (dj > x)

= 1 - Pr [YlJ >x)-Pr {Zij > x)

= l_(l_F(x)) = F0O,

as defined above.

For each d G { l , . . . , n } we select an element Gd G G(n , d) in the
following way: For each node Si G S choose a set Ai of d éléments
arbitrarily from { 1 , . . . , n} such that y^ < y ^ , Vj G A^ \fk $ Ai (Le. d
of the smallest éléments of 7 ^ , fc= l , . . M n ) . Add an arc in Gd from s%
to £j, V j G Ai. In the same way the n • d arcs from T to 5 are generated
according to the values of Zij. In this way G^ is selected uniformly from
G (n, d) and £?i C G<i c . . . C Gn — if^ n , where if^ n is the complete
directed bipartite graph on 5 and T,

For each Gd we dénote the value of its maximum weighted are by a1^ and
the number of included perfect matchings by N^.

Each Gd induces an undirected subgraph of H by including an edge
(si, tj)9 if the are (SJ, tj), the are (tjy sz) or both of them are in G^. As
edge cost dj m the induced subgraph we choose the minimum of Yij and
Zij, which has the distribution function F as shown above.

Hence, Gn induces the complete undirected graph H and the optimal value
of the LBAP on Gn is equal to Zn. Obviously, Zn is less than or equal to
«2, if a perfect matching exists in G2. Otherwise, the same inequality holds
for a™ provided that a perfect matching exists in G3. If no perfect matchings
exist in these two sparse subgraphs, then ar™, the maximum weight are of
Gn, is a trivial upper bound for Zn.

The resulting elementary inequality

E [Zn] < E [a%\N2 >1}-Pr (N2 > 1)

+ E [a%\N3 >l,N2 = 0}- Pr (N3 >1,N2= 0)

•+E[a%\N3 = 0]-Pr(N3 = 0) (2)
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will be used as a basis for the proof of our statement. In contrary to the
LSAP analysis, the conditioning has no effect on the expected value of a j ,
because the are weights are independent from the structure of a graph G4.

2.2. The main resuit

We are mainly interested in the analysis of E [aj ] as the probabilities in
the second and third term of inequality (2) are rather small. To compute the
distribution function of 0$ we define a^ (x) := Pr (a^ < x) and state

Observation 2

an
2{x) = [1 - (1 - G ( i ) ) " - n G ( i ) ( l - G(i)) '1-1]2".

Proof: For each node Si resp. U, 1 < i < n, we choose according to the
construction of G% the two smallest emanating arcs and dénote their weights
by Yi{y) and Yi(2) (respectively Z, (1), Zi(2)).

To détermine Pr iXi (2) > x) w e conclude that the second largest out of
n items is greater x9 if either all n items are greater than x or only one
out of n possible items is smaller or equal x and ail n — 1 other items
greater than x. This yields

= 1 - (1 - G(x))n -nG(x) (1 - G (a?))" " 1

G2 consists only of arcs with weights l^(i), ^(2) ' ^«(1) an(^ %i(2)- Hence,
the largest arc weight of G2 is less or equal to max {YJ (2) ? %i (2) |1 ^ ^ n } -
The distribution function of this maximum over 2 n independent and identical
distributions is derived by raising Pr (1^(2) < a?) to the 2n-th power. D

In order to gain transparency of the proof of our main theorem we first
show that the values of a2 ar likely to be found very near the lower end of
the distribution interval with high probability.

LEMMA 3;

lim Oo (x) = 1 pointwise Vx s. t. G{x) G (0, 1).
n—*oo
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Proof: Using the sum représentation of In (1 — z) for \z\ < 1 and applying
basic estimations we get

lim a% (x) = expf Hm 2nln[l - (1 - G(x))n - nG(x) (1 - G(a?))n"1]]
n—*oo n—+oo

r °°
= exp — lim 2n V^ l/k

L fc=i

> exp
oo

- Km̂  2n J ^ (1 - G (x))k^"^ [1 + (n - 1) G

fc=l

>exp[-2 lim O (n2 (1 - G
n—>oo

= exp (0) = 1

because lim nfc zn — 0 for bl < 1 and tenus of higher order are
n—^oo

dominated. D

After these préparations we finally state our main result:

THEOREM 4: If sup {2r]F (x) < 1} < +oo then the optimal solution Zn of a
random LBAP with cost coefficients distributed according to a distribution
function F satisfies

lim E [Zn] = inf {x\F(x) > 0}.
n5oo

Proof: To simplify the notation we deflne a := inf {x\F (x) > 0} and
b := sup{x\F(x) < 1} as bounds of the cost coefficients. We first show
that lim E fa? 1 = a. Note that a is also a lower bound for the cost in

n—>oo

G{n, d). With Observation 2 we get

fb

= b- / o$
Ja
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With Lemma 3 we apply the dominated convergence principle and conclude

lim E [a?l = b - / lim a ï (x) dx

— b — / ax
Ja

= a.
Taking into account that all edge weights are smaller than b and hence finite
constants, also E [a%] and E [a™] are bounded by the constant b for any
n. Hence, the asumptotic behaviour of inequality (2) dépends only on the
probabilities which can be bounded by Lemma 1. We get

Pr (N2 >l) = Pr (n, 2) > 1 - - ^ ,

on

Pr (JV3 > 1, N2 = 0) < Pr(N2 = 0) < ^ -

81 _,and Pr(A?3 =o) = l - P r ( n , 3) < n .

Obviously, the first probability tends to 1, the second as well as the
third probability tends towards 0. We conclude that lim E [Zn] < a

and that E [Zn] is the cost of an edge distributed according to F
and therefore cannot be smaller than a. These arguments also hold, if
ini{x\F(x) > 0} = -oo. D

Remark: A well known fact from random graph theory can be seen as a
conséquence of Theorem 4, Let Gn^p be the class of random graphs G with
n vertices such that every edge is contained in G with probability p. We
then have for every po € (0, 1]

lim Pr (Gn^Pö contains a perfect matching) = 1.

An interprétation can be given by setting F (x) = x, x E [0, 1]. According
to Theorem 4 there exists an no such that E [Zn] < po ft>r all n > UQ. If
we construct a subgraph of H containing all edges with weights less than
E [Zno], this subgraph has a smaller expected number of edges than Gn^PQ

and still contains a perfect matching with high probability.

3. UPPER AND LOWER BOUNDS

To illustrate the behaviour of the expected optimal solution value, we
state upper and lower bounds of E [Zn] as fonctions of ra. They can give
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a clearer picture about the actual situation in a given application than the
asymptotic result. As we mentioned above, the optimal assignment of an
LBAP dépends only on the ordering of the cost-coefficients. In this section
we restrict ourselves to costs distributed uniformly between 0 and 1, ie. we
set the distribution function F (x) = x for x G [0, 1] as any other distribution
can be transformed into a uniform distribution without changing the order
of the random costs.

LEMMA 5: For n > 78

" n 123

n + 2 610n

Proof: In (2) we replace Pr (AT2 > 1) by 1 and get by bounding E [a%]
and E[o%] by 1

E [Zn] < E [c#] + Pr {N2 = 0) + Pr (JV3 = 0).

With Lemma 1 the two probabilities can be bounded by

1 81 _4 123
Pr (N2 = 0) + Pr ( JV3 = 0) < — + —- n~4 <

5n 122 - 610n
Observation 2 yields

E K ] = 1 - / [l - (1 - x)
nl2 - n (1 - (1 - x)1'2) (1 - x)(^

Jo
Applying the Bernoulli inequality and taking t G (0, 1) we get

/ [ l /
i-t

n + 2 v ' v

l

i-t

4n W/„_L9.W9. . 4n 2

t-i (1 - n)t
n + 2 v ;

n + 2 n
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The last factor is smaller than 1 if

+ 3 r a - 2

If this condition holds we have

/ 2 \ 2 / n

To minimize this expression we set t = —; — ) . Thereby conditionP \n(n + 2)J y

(3) is fulfilled for n > 78. Substituting this choice of t (which is always less

than 1) in the last bound of E[d^\ complètes the proof. •

THEOREM 6: Let B (x, y) be the Bèta function. Then

mr? i o ( t 1 ^ l n ^ + 0.5749-
E[Zn]>l-nB[n>l + -) = -

Proof: We use a natural lower bound of E \Zn\ namely the maximum of
the minimal edge weights of each matrix row Ie.

Ln — max {min (c2j|l < j < n}}.
l<i<n

As each row minimum is distributed with 1 — (1 — x)n for x G [0, 1],
the distribution function of Ln is [1 — (1 — x)n]n, x € [0, Ij. Hence a
lower bound is

E[Zn]>l- f [l-(l-x)n}ndx.
Jo

Writing the intégral as a binomial sum we get

k=0

( n \ ( i ) k(-i)k
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Using an identity from complex analysis which can be verified by Computing
the residues (c/ e.g. [13], Ch. VI) we further have

fc=O

with

J v J' (nz + l)z(z-l)--(z-n) •

and integrating along a path C enclosing the poles 0, l , ' " , n . Extending

the path around the singularity z = — l / n to C we have to subtract the

residue at the added pole to retain the equality.

f (z) dz - Res [ƒ (z),z = - l / n ] (5)

By extending C further to a circle with radius R the intégral in (5) tends to
0 as R tends to infinity, because no other singularities exist and ƒ (z) can
be bounded on the circle by | ƒ (z)\ < c/Rn+2 with a constant c. Evaluation
of the residue at z = - l / n yields

= n\ nn

and expressing the finite product by the Gamma function

r

• + 1 + -

T(x)T(y)
Applying B (x, y) — —~^—^~ the Gamma function can be replaced by

1 [x -f- y)
the Bèta function which proves the first bound.

For an exact estimation of the behaviour of this bound we use formula
6.1.35 in [1]

1 + L\ = i - 0.5749... - + O (4r
n} n \nl
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and apply formula 6.1.47 from [1]:

_1/nf 1 , n f l

= 1
lnn

n

„

0
In2

n

Putting things together the claimed bound follows. D
Table 1 illustrâtes the bounds and their différences for special values of

n. It can be seen by the différences that a reasonable interval for E [Zn] is
given even for smaller values of n.

TABLE 1

Upper and lower bounds for the expected value of the optimal solution of a random LBAP
ofsize n, an estimation of the lower bound and the gap between upper and lower bound.

n

80
100
150
200
300
400
500
600
800
1000
1500
2000

Upper bound

0.2057
0.1755
0.1301
0.1044
0.0758
0.0601
0.0501
0.0431
0.0339
0.0281
0.0198
0.0155

Lower bound

0.0601
0.0505
0.0366
0.0289
0.0207
0.0163
0.0135
0.0117
0.0090
0.0075
0.0052
0.0041

(lnn + 0.5...)/n

0.0620
0.0518
0.0372
0.0294
0.0209
0.0164
0.0136
0.0116
0.0091
0.0075
0.0052
0.0041

Upper - Lower

0.1456
0.1250
0.0935
0.0755
0.0551
0.0438
0.0366
0.0314
0.0249
0.0206
0.0146
0.0114

4. SOLVING THE LBAP IN LINEAR EXPECTED TIME

We give a straight forward algorithm using a simple sparse subgraph H of
H which contains a matching with high probability. Therefore, we assume
that all éléments of the cost matrix are drawn independently from the same
arbitrary distribution. (In f act it is sufficient, if the ordering of any subset of
cost coefficients générâtes a random permutation of their original indices.)
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The expected running time of this algorithm is linear in the number of
edges.

Algorithm

1. Choose the 2nlogn cheapest edges of H and dénote them by E{i.e.
max{c^|(z, j) E É} < min{cîj|(i, j) G E\Ê}).
Let H = (S U T, Ê).

2. Solve an LBAP on the sparse subgraph H.
If a perfect matching in É is thereby detected then stop.
Otherwise goto 3.

3. {Executed only with low probability}.
Solve the LBAP on the complete graph H.
stop.

Analysis

Step 1 can be performed in ö(n 2 ) time using a version of the linear
médian algorithm to find the 2n log n-smallest edge.

To solve the LBAP on a graph with 2n log n edges in Step 2 we
employ the method proposed by Gabow and Tarjan [9]. This algorithm starts
like the classical threshold algorithm but stops before reaching a perfect
matching which is then constructed by computing augmenting paths. It takes
O (m yjn log n) time, where m dénotes the number of edges in the graph.
This yields an O((n logn)3/2) time bound for Step 2.

To analyze the expected running time of Step 3 we distinguish two cases:

Case I: H contains isolated vertices

As the 2n log n edges of E1 are a random sélection of the total edge set,
we have an evolutionary random graph process, which is the consécutive
insertion of random edges into a graph consisting only of the vertex set
at the beginning.

It is known that after randomly inserting n log n edges in a gênerai graph
the expected value of the number of isolated vertices is E [X] ~ l/n (see
Palmer [16], (3.1.5) and Theorern 3.1.1). Slightly modifying the arguments
and bounding techniques used in [16] the same result can be attained for
bipartite graphs. (Note that our bipartite graph bas 2n vertices. Hence, to be
précise we have to take 2n log n edges.)

vol. 30» n° 2, 1996
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Markov's inequality

which holds for every random variable X > 0 and every t > 0, guarantees
that the probability of the occurrence of an isolated node in H is less than
or equal l /n. (Let X be the number of isolated vertices and t — 1).

Hence the probability of the occurrence of Case I is less than l /n.
Obviously, we will not have a matching of size n in this case and therefore
always have to perform Step 3 which takes O (n5/2 (log n)1/2) time (see [9]).

The expected running time of Case I is O (n3/2 (logn)1/2).

Case II: H contains no isolated vertices

In this case we have a bipartite graph generated by a random graph process
which has no isolated vertices. The probability that such a graph does not
contain a complete matching is bounded in Bollobâs and Thomason [3],
Theorem 5, by

k=2

where n\ — [_(n + 1)/2J. Lemma 7 below bounds this sum with
O (1/y/n logn).

Therefore, the probability of the exécution of Step 3 is less than
O (1/y/n logn). Using the Gabow and Tarjan algorithm Step 3 takes again
O (n5/2 (logn)1/2) time. Hence the expected running time of Case II is
O(n2).

The total expected running time of the algorithm is dominated by O (n2)
which is linear in the number of edges of the complete graph. Unless the
underlying graph has some known special structure every edge cost may
influence the optimal solution and thus has to be inspected, which makes
O(n2) steps necessary in every algorithm.

Remark: The algorithm provides not only a good bound in terms of
complexity, but is also very efficient and easy to use. For practical application
we would suggest to use a specialized algorithm for sparse graphs in Step 2.
Possibilities to use the effort spent on Step 2 in the solution of Step 3 should
be exploited.
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LEMMA 7: Let ak := (e lognfk n1"fc

ni

Proof: S can be written as 0*2 4- / J o-fc. We observe that for every n
h— *\n,—o

In at = • &2 + [3 In (e log n) — In n]fc + In n

is a convex function in k for 3 < k < n\. Hence its maxima are
attained at the boundary of the interval and we get a rough estimation
by dk < max{a3, ani} < as + aWl.For simplicity we consider the case of
n even. Thereby we have the inequality

E < 0,2 Jrn{az + ani)

= (e logn)6 n"1+4/n + (e logn)9 n" 1 + 9 ^ + (e logn)3n/2 n 2 "^ 4

Each of these three terms is bounded by

O(l/y/n logn) as lim n 1 ^ = L ü
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