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METHODS FOR SOLVING STOCHASTIC
BILINEAR FRACTIONAL MAX-MIN PROBLEMS (*)

by Stephan TIGAN (*) and I. M. STANCU-MINASIAN (2)

Communicated by Jean-Yves JAFFRAY

Abstract. - In this paper we consider a stochastic bilinear fractional max-min problem with
separate linear constraints. In the case when all the coefficients of the objective function are simple
randomized, two ways for solving this problem will be employed: the minimum-risk approach and
Kataoka's model.

We prove thaï, under some positivity conditions, these stochastic problems are equivalent
with certain deterministic bilinear-fractional min-max (or max-min) problems. For solving these
deterministic optimization problems a parametrical procedure will be presented.

Keywords: Stochastic programming, Bilinear fractional programming, Minimum risk approach,
Min-max problems.

Résumé. - Dans cet article nous considérons une classe de problèmes stochastiques bilinéaires-
fractionnaires avec contraintes linéaires séparées. Si les coefficients de la fonction objective sont
simplement randomisés nous présentons deux voies pour la résolution de ces problèmes : la méthode
du risque minimal et le modèle de Kataoka. Nous démontrons, sous certaines conditions depositivité
sur la fonction objective, que ces problèmes stochastiques sont équivalents avec certains problèmes
déterministes de min-max (ou max-min) avec une fonction objective bilinéaire-fractionnaire. Pour
ces problèmes déterministes nous proposons une procédure paramétrique de résolution.

Mots clés : Programmation stochastique, Programmation bilinéaire-fractionnaire, Problème du
risque minimal, Problèmes de min-max.

1. INTRODUCTION

In this paper, a stochastic bilinear fractional max-min problem with
separate linear constraints is considered. In the case when all the coefficients
of the objective function are simple randomized, two ways for solving this
problem will be employed: the minimum-risk approach (see, e.g. [2, 15, 16,
19, 20]) and Kataoka's model [11].
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8 2 S. TIGAN, I. M. STANCU-MINASIAN

We show that, under some positivity conditions, these stochastic problems
are equivalent with certain deterministic bilinear-fractional min-max (or max-
min) problems, for which a parametrical procedure will be presented. Some
remarks concerning the convergence of this procedure will be made.

Likewise assuming that only the denominator of the objective function
is random, a particular case will be studied by combining the variable
transformation of Charnes-Cooper type [4] with the minimum-risk approach.

We consider also the case when only part of the coefficients of the objective
function are random with a normal distribution. In this case, for the minimum-
risk problem and Kataoka' s model we obtain some deterministic equivalent
fractional max-min problems.

2. PROBLEM FORMULATION

Consider the following bilinear-fractional max-min problem:

P. Find

. x Ay + ax + by + c
max mm —— (2.1)

ex Y xBy + dx + ey + ƒ
where

X = {x G Rn : Cx < g, x > 0}5 (2.2)

Y = {y G Rm : Dy<h}y> 0 } , (2.3)

and x and y are variable vectors, whereas A, B G Rnxm, C G Rpxn,
D G Rqxn\ a, d G i?n , 6, e G Rm

9 g G Rp, h G Rq, c, ƒ G R are given
matrices, vectors and real numbers respectively.

As can be seen, the constraints in problem (2.1)-(2.3) are separate. Such
max-min programs have applications, for instance, in the fields of polyhedral
games (Wolfe [31], Schroeder [13]), of multiobjective programming (Soyster
[14], Tigan and Stancu-Minasian [22], [30]), and of scheduling problems
(Belenkii [1]).

Other extensions of problems P refer to pseudofractional max-min
programming [26] and generalized fractional max-min problems [21] with
generalized activity coefficients in Dantzig's sensé [7].

We make the remark that certain max-min problems with linked linear
constraints and quasimonotonic objective fonctions were studied in [6], [25],
[28] and some stochastic max-min problems with linked linear constraints
and linear or linear-fractional objectives were considered in [20] and [29].

Recherche opérationnelle/Opérations Research



METHODS FOR SOLVING STOCHASTIC BILINEAR FRACTIONAL MAX-MIN PROBLEMS 8 3

An example of the bilinear-fractional max-min problem (P) which has a
theoretical importance is given by Golstein [10]. Golstein proves that the
following generalized fractional problem:

GFP. Find

. Si (x)max mm —7-—,
xeX l<i<m Qi (x)

can be reduced to a bilinear max-min problem with separate linear constraints.
In the formulation of problem GFP, the set X is deflned by (2.2) and fi
and gi are affine fonctions of the form:

fi(x) =xa*-ba0*, gi(x) =xbi + b°\ i = 1,2,.. . , m,

where a^ and bl are given column vectors in Rn and aQl and bOt are given
real numbers. Under the assumption of strict positivity of fonctions gi on
the feasible set X, Golstein [10] shows that problem GFP is equivalent with
the following bilinear max-min problem with separate feasible sets:

MMP. Find

xex yçy gi{x)yi + ... + gm (x) ym

where

Y = {y E Rm/Vl + . . . + ym = 1, y > 0}.

But the problem MMP is a particular case of the bilinear max-min problem
P.

Next we adopt the following usual assumptions for fractional max-min
problem P:

xBy + dx + ey + ƒ > 0, for all (x, y) G X x Y". (Hl)

DÉFINITION 1: Given a fonction F : S x Q -+ R, (S subset of Rn' and
Q subset of Rm>), we say that (xf, y1) E 5 x Q is an optimal solution for
the max-min problem:

max min F (x. y)
xeS yeQ

vol. 30, n° 1, 1996



84 S. TIGAN, I. M. STANCU-MINASIAN

if (#', y') vérifies the following conditions:

F {x\ yf) = min {F (a/, y) : y G Q}, (2.4)

F(x', yf) > min {F (a;, y) : y G Q}, for ail x e S. (2.5)

In [17], we proposed a parametrical method for solving problem P (see
also [24], [27]).

3. THE MINIMUM-RISK APPROACH. THE SIMPLE RANDOMIZATION CASE

In what follows, we shall assume that the matrices A ,B and the vectors
a, 6, d, e are random with simple randomization, ie. of the form:

A (w) = A7 + t (w) A", 5 (w) = 5 ' + i («;) S", (3.1)

a (w) = a! + t (w) a", b(w) = bf + t (w) b\ (3.2)

d (w) — df -\-t (w) d", e (iw) = e' + t (w) e", (3.3)

where A', A", 5 ' , B" G i 2 n x m are given matrices, a', a", d', d" G Rn,
6', 6", e', en G i?m are given constant vectors, whereas t(w) is a random
variable on a probability space (fi, K, P) with a continuous and strictly
increasing distribution function T.

The minimum-risk problem corresponding to level z, associated to problem
P, consists in finding the optimal solution of the following problem:

PR. Find

v (z) = max P {w : Z (x, w) > z}, (3.4)

where

Z (#, w) = min {H (x, yy w) : y G Y},

and

rjf x zA^y + a ^ z + fc^y + c

Recherche opérationnelle/Opérations Research



METHODS FOR SOLVING STOCHASTIC BILINEAR FRACTIONAL MAX-MIN PROBLEMS 8 5

Concerning problem PR, we make an assumption similar to Hl:

xB(w)y + d(w)x + e(w)y + f>0, \
V(ar, y)eXxY a n d Vw; G O . ƒ K }

DÉFINITION 2: Â pair (x', y') G I x 7 is called minimum-risk solution for
problem PR, if the following conditions hold:

P{w: H(xf,yf,w)>z}

= P{w : min {H(x\ y,w):yeY}> z}, (3.6)

P{w: H(x\y/,w)>z}
> P{w : min{H(x, y, t ü ) : y e 7 } > z}, for all x £ X. (3.7)

We note that the minimum-risk approach was introduced in stochastic
linear programming by Bereanu [2, 3] and Charnes and Cooper [5] (the
P-model). This approach is extended by Stancu-Minasian [15] to the
stochastic programming with linear-fractional objective and a product of two
linear functions and by Stancu-Minasian and Tigan [16, 19] to Tchebyshev
linear-fractional stochastic problems. Dénote:

U (s, y) = x (zB' -Af)y + {zd! -a')x + (ze' -b')y + zf-c

and

W (x, y) = x (A" - zB") y + (a" - zdn) x + {b" - ze") y,
for all (x, y) G X xY.

Further, we shall suppose that:

W (ar, y) > 0, for all (x, y) G X x Y, (3.8)

X and Y are bounded and nonempty sets. (3.9)

vol. 30, n° 1, 1996



8 6 S. TIGAN, I. M. STANCU-MINASIAN

The next theorem shows how under the assumptions (3.8) and (3.9),
the minimum-risk problem PR, can be solved by a deterministic problem,
which does not depend on the distribution function of the random variable
t(w). This property généralises a similar resuit obtained in [17] for bilinear
programming.

THEOREM 1: If conditions (3.8) and (3.9) hold and if the distribution function
T is continuous and strictly increasing, then the minimum-risk solution of
problem PR does not depend on T and it can be obtained by solving the
following min-max bilinear problem:

. U(x,y)
FA, mm max —— -.

xex yev W (x, y)

Proof: From (3.1)-(3.5), we get:

G (x, z) = P{w : min {H (x, y, w) : y G Y} > z}

= P{w : H(x, y, w) > z, for ail y G y } .

Hence, according to (3.8), it results that

G(x, z) = P{w : t(w) > U{x, y)/W(x, y), for ail y G Y}

= P{w: t(w)> max {U (a, y)/W (x, y) : y G Y}}

= 1 - P {w : t(w) < max {U (a;, y)/W (z, y) : y G y}} .

Then the PR problem is equivalent to:

max {G (a:, w) : x G X}

= max {1 - T (max {U (x, y)/W (x, y) : y G Y}) : x G X}.

Therefore, by the assumption that T is continuous and strictly increasing,
we get:

v (z) = m a x { G ( x , z) : x E X } = 1 - T ( m i n m a x j ^ / f ' y \ ) ,

which implies that a minimum-risk solution for problem PR can be obtained
by solving problem PA.

Recherche opérationnelle/Opérations Research
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4. KATAOKA'S MODEL. THE SIMPLE RANDOMIZATION CASE

Related to minimum-risk problem PR is the following generalized

Kataoka's problem [11], which can be associated to problem P:

PK. Find

max z

subject to

P{w : min H (x, y\ w) > z) > ar (4.1)

XGX, zeR, (4.2)

where a G [0, 1] is a given lower level for the probability in (4.1).

Next, let assume that in the fractional objective function H (see (3.5))
only the numerator is random, that is, in (3.1), (3.2) and (3.3), one has:

B" = 0, d" = 0, e" = 0, B = B\ d = d!\ e = e'. (4.3)

Moreover, we suppose that

D"{x, y) = xA"y + a"x + b"y > 0, V(x,y)eX xY, (4.4)

and, for any (x, y) G X x Y, we dénote

D' (x, y) = xA'y + a' x + bfy + c, (4.5)

N (x, y) = xBy + dx + ey + ƒ. (4.6)

THEOREM 2; /ƒ assumptions Hl, (3.9), (43) and (4.4) hold and if the
distribution function T is continuons and strictly increasing, then any optimal
solution of problem PK can be obtained by solving the following bilinear
fractional max-min problem:

PKA. Find

m a x m i n

X
m i n

yeY N(x, y)

vol. 30, n° 1, 1996



88 S. TIGAN, I. M. STANCU-MINASIAN

Proof: Indeed, by Hl and (4.4), we have

P {w : rnin H [x, y; w) > z} = P {w : H [x, y, w) > z,Vy G Y}

= P {w : xA [w) y + a [w) x + b [w) y + c > z N (x, y), Vy €Y}

= P < w : t (w) > max r-̂  >

= 1 — 1 < max —-7 >.
\ yev D" [x, y) ƒ

But, then the inequality (4.1), may be rewritten as:

^(Xy)D'(X,y)<T_1 _
D"{x,y)

which by Hl and (4.4) is equivalent to

, < m i n A ; -
y€Y N (x, y)

The last inequality implies obviously that any optimal solution of problem
PK may be obtained by solving max-min bilinear fractional problem PKA.

5. A PARTICULAR CASE

In this section, we consider a particular case of problem PR, when only
the objective denominator is random, while the objective nominator has a
deterministic special form. In this max-min problem, denoted by PRF, the
objective function H is expressed as

xA [w)y + a[w)x + b(w)y + c
H [x, y, w) — j-i——— •—r , (5.1)

[dx + f)[ey + r)

for ail [x, y) e X x Y and w e il.
In (5.1), d G Rn, e £ Rm, ƒ, r G R are given real vectors and numbers

respectively, and the other notations have the same meaning as in the
statement of problem PR.

Recherche opérationnelle/Opérations Research
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From problem PRF, performing the variable transformations (see
[4, 12, 23])

u = öx, v — sy

we get the following minimum risk problem
PRL. Find

(5.2)

V'(z) = max P{w : Zf(u, 0, w) > z} (5.3)

where:

X1 = {(u, 6) e = l,uje> 0}, (5.4)

'(u, 0, tü) = min {#' (u, Ô, v, 5, K'}, (5.5)

iï ' (u, #, v, s, IÜ) = + a (w) 9v + c0 s, (5.6)

Suppose that:

- fc5 < 0, ev

0, for all x e

s > 0}. (5.7)

(5.8)

ey + r > 0, for all y (5.9)

THEOREM 3: Assume that (3.9), (5.8) and (5.9) hold. Then we have:
(i) if (ii, 0) E X' anrf (v, 5) G Y', then 6 and s are strictly positive

numbers;

(ii) if(uf, 6'', f', s') is a minimum-risk solution for PRL, then (uf/9'', v'^/s'
/5 a minimum-risk solution for PRF.

Proof: Assertion (i) can be easily proven by using assumption (3.9) (see,
e.g.f Charnes-Cooper [4]). Part (ii) of the theorem follows by performing the
variable transformation (5.2) in problem PRF.

vol. 30, n° 1, 1996



9 0 S. TIGAN, I. M. STANCU-MINASIAN

Theorem 3 provides an approach to transform the fractional max-min
problem PRF into a bilinear stochastic max-min problem [17] (problem PRL),
which, by Theorem 1 (see, also [17]), is equivalent with a deterministic
bilinear-fractional max-min problem.

6. THE CASE OF NORMAL DISTRIBUTION

In this section we suppose that in problem P (see (2.1)-(2.3)), only the
vector a is an n-dimensionl random vector defined on a probability space

(n, K, p).
We adopt particularly the following assumptions:

H3) The costs a% (i G {1, 2 . . . . , n}) are normal random variables.

H4) The feasible set X does not contain zero vector.
If the vector a has the mean value a* and the covariance matrix V,

then, under the assumption H3, ax is a normal random variable of type
N (a* x; xV x).

In this case, the minimum-risk problem corresponding to level z, associated
to problem (2.1)-(23), consists in finding the optimal solution of the
following problem:

P R Find

/// \ D / • xAy + a(w)x + by + c 1
v (z) = max P < w : mm ~- ^ — > z >. (6.1)

} xex \ yeY xBy + dx + ey + f ~ J
Dénote

H (x, y; w) = , t I
K 'yi J xBy + dx + ey + f l {62)

for any x E X^ y G Y and w £ O J

The minimum-risk solution of problem PN is defined as for problem PR

(see, Définition 2).

THEOREM 4: If assumptions Hl, H3 and H4 holdt then any minimum-risk
solution of problem PN is given by the solution of the following fractional
max-min problem:

PNF. Find

. (a* - zd) x + x (A - zB) y -h (b - ze)y + c- zf
max mm -1 x —.

X y€Y

Recherche opérationnelle/Opérations Research
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Proof: Indeed, by assumption Hl , for any x € X , we have:

Z(x;z)

— P {w : min H (x, y, w) > z}

= P{w: H(x,y,w) >z,\/yeY}

= P {w : a (IÜ) x > zcb + x (zB — A)y

But, since a (ZÜ) X is a normal random variable of the type N (a* x; x V x),
we get:

Z(x;z)
' zdx + x (zB — A)y 1

= p ) »» . ** ̂ ^ * w ^ ^ ^ + ^ e - b) y + zf -c — a* x )
f (
I a (w) x - a* x \
< w : ï > —

VyEY

= P

+ x (zB - A) y

a (w) x - a* x \ + (ze - b) y -h zf — c — a* x
w : 7— > max

{xVxY

, { 2;drr + x (zB — A)y +(ze — b)y + zf — c
= 1 — q> < m a x =

where

2 Ü 2 J -O(2H)

is the Laplace function.

vol. 30, n° 1, 1996



92 S. TIGAN, I. M. STANCU-MINASIAN

Since # is a non-decreasing and eontinuous function, it results that

vff (z) = max Z (x\ z)

max mm

zdx + x (zB — A) y

+ (ze — b)y + zf — c — a*x

(xV x)*
. (6.3)

But (6.3) implies that PN is equivalent with fractional max-min problem
PNR

Related to the minimum-risk problem PN, we can consider the following
Kataoka's problem:

PKN. Maximize z subject to

P {w : min H (x, yy w) > z} > a, x E X} z E R, (6.4)

where H is defined by (6.2) and a is a given number in the interval [O, 1].

THEOREM 5: If assumption Hl, H3 and H4 hold, then any optimal solution
ofproblem PKN is given by the solution of the following fractional max-min
program:

KNA. Find

. D1 (x, y) + $~1 (1 -a)(xVx)^
max mm -—-—-—— —,
xex yeY N (x, y)

where

Dl (x, y) — x Ay + a* x + by + c.

Proof: Following the same reasoning as in the proof of theorem 4, we have

P {w : min H (#, y, w) > z}
y€Y

Recherche opérationnelle/Opérations Research
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But, then (6.4), is equivalent to

which, by the assumptions Hl and H4, is equivalent to

. D1 (x, y) + $-1 (1 - a) (xVx)2
z < min —

N (ar, y)

But the last inequality implies that any optimal solution of problem PKN
may be obtained by solving fractional max-min problem PKNA.

The fractional max-min problems PNF and PKNA, under some additional
hypotheses, may be solved by the pseudo-quadratic programming technique
developed in [8, 9].

7. THE ITERATIVE NUMERICAL PROCEDURE

In this section, we will present a numerical method for solving the
deterministic bilinear fractional min-max problem PA, and, by Theorems 1
and 2, the stochastic problems PR (or PRF). A similar method can be used
for solving the bilinear fractional max-min problem PKA.

With this aim in view, we employ a parametrical procedure which
represents a spécifie particularization to problem PA of a gênerai itérative
method given in [24] and [27] (see, also [17, 18]).

The foUowing theorem gives a necessary and sufficient condition for a
pair (a/, yf) E X x y, to be an optimal solution for min-max problem PM.

THEOREM 6: Let x' e X and tf G R be such thaï:

U(x',y') U(x',y)
W{x',y') fivWix^y)'

Then (V, yf) is an optimal solution for PA if and only if /3(tf) = 0, where
for any t in R:

(3 (t) = min max (U (x, y) ~ tW (x, y)),
xex yçy

Proof: The proof is similar to that of Theorem 1 from réf. [17].
The parametrical procedure for solving problem PA consists in the

foUowing steps.

vol. 30, n° 1, 1996
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Parametrical algorithm

Step 1. Choose XQ G X and take k = 0.

Step 2. Solve the linear-fractional program:

and let yk G Y be an optimal solution for (7.1).

Step 3. Solve the min-max bilinear problem:

p (tk) = min max (U (or, y) - tk W (x, y)), (7.2)

and let (xfc+i,y^_(_1) be an optimal solution of this problem.
Step 4. i) If P(tk) = 0, then by Theorem 6, (xk, yk) is an optimal solution

for problem PA, and the procedure stops 2.

ii) If p (tk) < 0, take k := fc + 1 and go to Step 2.

An optimal solution obtained by the parametrical procedure (for min-max
problem PA) is also, by Theorem 1, a minimum-risk solution for problem PR.

The optimal value /? (tk) of the min-max problem (7.2) in Step 3, may be
obtained by solving a classical linear program (see, e.g. [19]):

PM**). Find

P (tk) = min (Mfc x + hfi + zf -c)

subject to:

Nky (7.3)

M > 0, x G X, (7.4)

where fj, E Rq is the vector of dual variables and

Mk = (zd' - a') - tfc (a/; - zd")

Nk = (ze'-b')-tk{ti'-ze")

Lk = (zB'-Af)-tk(A"-zB").

Recherche opérationnelle/Opérations Research
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We mention that problem PL(tk) is obtained from problem (7.2), by
applying, for every x G X, the linear programming duality to the linear
program:

max {[/(#, y) -tkW(x, y) : Dy < h, y > 0}.
y

Then Step 3, can be replaced by the following step: Step 3'. Solve the
linear program PL (£*). Let 0 (tk) be the optimal value and let (xfc+i, Mfc+i)
be an optimal solution of program PL(tk).

8. ALGORITHMIC REMARKS

Since the parametrical procedure generally needs an infinité number of
itérations, in order to obtain a finite itérative method, an approximate stop
criterion may be used in Step 4:

Step 4'. i) If |/3(tfe)| < r', then the algorithm stops and (x^, y^) is an
approximate solution for problem PA (or problem PR).

ii) If \(3(tk)\ > r', then go to Step 2 with fc replaced by k + 1.
Here, V is a positive number which represents a measure of the desired

approximation.

The algorithm convergence, as well as the finiteness of the approximate
variant is based on

THEOREM 7: Let r' > 0 be a given real number, Under hypotheses (3,8)
and (3.9), if - r ' < 0(tk) < 0 and if W(x, y) > s1 > 0, for every
(x, y) e X xY, then, for every optimal solution of problem PA, the following
inequalities hold:

0 <
[/(*',

<\P{tk)\ls<rf/sf.

Proof: The proof of the theorem is similar to that of Theorem 3, from
Ref. [24].

This algorithmic approach needs to solve at each itération, by simplex
techniques, only two programming problems: a linear-fractional program in
Step 2, and an ordinary linear programming problem in Step 3.

At itération k, the solving of the linear-fractional program (7.1) in Step 2
may begin, except the first itération, with yk~\ as initial solution (the optimal
solution of (7.1) obtained in the previous itération).

vol. 30, n° 1, 1996
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In Step 3, for solving the linear program PL (**.), a primal-dual simplex
algorithm may be suitably used, in order to employ as initial solution,
at itération k, the optimal solution obtained in the previous itération.
This approach seems to be especially efficient when the number of
constraints which define the set X is great with respect to the number q
of constraints (7.3).

9. CONCLUSIONS

Two ways for solving stochastic bilinear fractional max-min problems
with separate linear constraints are discussed: the minimum-risk approach
and Kataoka's model. In the case when the objective function is simple
randomized some deterministic equivalent bilinear fractional min-max (or
max-min) problems are obtained, and a parametrical procedure involving
only linear and linear fractional programming techniques for solving such
problems are presented.

When the objective function has certain random coefficients with a
normal distribution, we show that, under some regularity conditions, for
the corresponding minimum-risk and Kataoka's problems can be also
obtained equivalent deterministic fractional max-min problems, which are not
generally bilinear (e.g., problems PNF and PKNA). Under some additional
assumtions, the pseudo-quadratic programming techniques can be used for
solving these problems.

Similar results to the Theorem 1.2 can be obtained for the case when the
domains of x and y are nonseparated, but in this case we can not use the
proposée algorithm for solving the equivalent deterministic problems.
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