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Recherche opérationnelle/Opérations Research

(vol. 29, n° 2, 1995, p. 131 à 154)

ON A CONVOLUTION OPERATION OBTAINED BY ADDING
LEVEL SETS: CLASSICAL AND NEW RESULTS (*)

by A. SEEGER (*) and M. VOLLE (*)

Communicated by Jean-Pierre CROUZEIX

Abstract. - The purpose of this paper is studying the convolution x € X \-* Inf { ƒ (x—v)Vg (v) :
v G X } of two functions ƒ and g. Researcher s working in different branches of mathematics have
already encountered this opération, but a systematic study ofit has not been yet undertaken. We will
review most of the known properties of this opération, and establish several new results.

Keywords: Level sum, Lipschitzian approximation, Fenchel conjugate, subdifferential.

Résumé. - On étudie la convolution x € X *-* Inf { ƒ (x — v) V g (v) : v e X} de deux
fonctions f et g. Cette opération se rencontre dans diverses branches des mathématiques, mais son
étude systématique n 'a pas été entreprise. On rappelle ici la plupart des propriétés connues de cette
opération et nous établissons plusieurs nouveaux résultats.

Mots clés : Somme en niveaux, approximation lipchitzienne, conjugaison de Fenchel, sous-
différentiel.

1. INTRODUCTION

Let ƒ and g be two real valued functions defined over a (real)
linear space X. Convoluting ƒ and g amounts to splitting the variable
x G X in the form x — (x - v) + v, and then mixing the pairs
{ (ƒ (x — v), g (v)) : v G X }. Various ways of performing this mixture
gives rise to different concepts of convolution. For instance, integrating ail
the products {f(x — v)g(y) : v € X} yields the usual convolution
appearing in functional analysis, and taking the infimum of all the sums
{ ƒ (x — v) + g (v) : v G X } yields the inf-convolution opération appearing
in convex analysis. Besides these two well known examples, one can also
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1 3 2 A. SEEGER, M. VOLLE

consider the convolution

x G X h- [fAg] (x) := Inf { f (x - v) V g (v)} (1.1)

and its symmetrie version

x G X ^ [/V5] (x) :=Sup {f(x-v)Ag(v) }. (1.2)

Hère the ^ymbols V and A have their usual meaning, Le.,

a V b := maximum of a G R and b G F
d 3)a A 6J := minimum of a G R and 6 E ° r

If the functions ƒ and g have values on the extended real line M :=
R U { +oo } U { — oo }, définitions (1.1)-(1.2) remain valid with the obvious
rule

a V (+oo) = (+oo) V a = +oo for ail a G R, 1
a A (—oo) = ( —oo) A a = —oo for ail a G R. ƒ

Several important applications justify the study of the opérations (1.1) and
(1.2). This point is illustrated with the help of the following examples.

Example 1.1 (on the algebra of fuzzy sets): Let the universe of discourse
X be a linear space, and let /MA '• X —> [0, 1] dénote the membership
function of a fuzzy set A in X. Thus, \IA (#) = 0 means that x does not
belong to A, JIA 0*0 = 1 means that x belongs to A, while 0 < \XA (X) < 1
means that x partially belongs to A. In other words, \XA (%) measures the
grade of membership of x in A. The définitions of the basic opérations of the
algebra of fuzzy sets are usually given in terms of the respective membership
functions. For instance, the sum A(&B of the fuzzy sets A and B is given by

MAeB (x) —Sup { fjbA (% ~ v) A ttB (v) } for all x G X.
vex

This corresponds, of course, to the opération introduced in (1.2). The
opération (1.1) appears if one passes to the compléments. The complement
C of a fuzzy set C in X is defined by

fj,ç (x) := 1 — /ie (x) for all x G X.

Thus, \XQ (X) measures the grade of nonmembership of x with respect to
C. A straightforward calculus shows that

B O) } for a11 x e x-
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LEVEL SET ADDITION 133

For more material on this example, the reader may consult Dubois and Prade
[8] or Fedrizzi [10].

Example 1.2 (on the distance fimetion): On a normed linear space
(X, ||. ||), the distance of a point x E X to a nonempty subset C C X
is defined as the number

d c ( x ) = I n f | | x - V | | .
vZC

The distance fonction de : X —» R is just a particular case of a fonction
obtained by performing a convolution like in (1.1). Indeed, if one introduces
the indicator fonction

lTf f x ƒ^ v lTf f x ƒ o if x e c
[ +oo otherwise

of the set C, then one can write

dc(x) = [||.||Atfc](s) for all x E X.

Example 13 (on cost minimization): Suppose two factories have to join
their effort in order to produce a given vector x E R!J_ of commodities.
If the first factory produces x\ G R+, then its corresponding cost is
Ci (xi). Similarly, C2 (^2) represents the cost for the second factory when its
production level is X2 G R+. Which is the best way of splitting x — x\ + X2
if one désires to render the maximum cost C\ (xi) V C2 (^2) as small as
possible? Answering to this question amounts to solving the minimization
problem

Minimize { C\ (x\) V C<i (0:2) : x\ + X2 = x }. (L5)

Up to a minor modification, this corresponds to the convolution opération
mentioned in (1.1). Indeed, the optimal value of problem (1.5) is precisely
[C1AC2](x)J where

C . ( rp - \ i-P /¥> . Cl IR?^

^ . + for 1 — 1, 2.
+00 otherwise

Example IA (on utility maximization): Suppose two consumer s wish to
share a given vector x G R+ of commodities. Let U\ {x\) represents the
utility of the first consumer derived from the consumption of x\ G R". The
term U2 (#2) is interpreted in a similar way. Which is the best way of splitting
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x = x\ + X2 if one desires to render the minimum utility U\ (x\) A U2 (X2)
as large as possible? This time one has to solve

Maximize { U\ (x\) A U2 (#2) '• xi + ^2 = # }. (1-6)

The optimal value of problem (1.6) is just \U\VU2\ {x), where

iM*Xi.€«l for , = 1,2.
00 otnerwise

We thank J.-P. Crouzeix (Clermont-Ferrand) for providing us with this
example.

Example 2.5 (a reliability problem): The present example is taken from
a recent paper by M. Kolonko [14]. Consider a replacement scheme for
a system of two components. Let Ui (xi) dénote the lifetime of the i-th
component under the "load" Xi E R+. E.g., consider an air filter that is
worn out after time U% (XÎ) if the dust concentration is x%. Replacement of
components may be either sequential or "parallel". In the later case both
components are put into work at the same time, the load x E R+ is shared
as x — x\ + X2 between the partners, and the joint lifetime is given by
U\ (xi) A U2 (#2)- Note that hère the system fails as soon as one of its
components fails. E.g. a pair of filters adjusted to cope with concentration
xi and X2 respectively can no longer clear the full amount x if one of the
filters fails. The question hère is how to split the load x in order to render
the lifetime of the System as large as possible.

There are cases in which the opération V plays a more natural rôle than
its symmetrie version A. For passing from the former opération to the latter,
it suffices to apply the identity

So, for the sake of simplicity in our exposition, we will focuss our attention
only toward the opération A.

Besides having the spécifie interprétations pointed out in the previous
examples, the opération A serves as gênerai tool of analysis for handling
various types of theoretical questions. For instance, under the name of "quasi-
inf-convolution", it has been used by Volle [28, 29, 30] in connection with
the approximation, regularization, and variational convergence of functions.
Additional results concerning the opération A appear in Rockafellar [21,
p. 40], Hassouni [11, p. 12], Penot and Voile [20, p. 215], Abdulfattah and
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Soueycatt [1, Section 1.4], Seeger [24], and Elqortobi [9] among others. A
special mention is deserved by the important contribution of Kusraev and
Kutateladze [15].

2. GENERAL PROPERTIES OF THE CONVOLUTION A

2.1. The opération A interpreted as level set addition
From now on, the function fAg will be referred to as the level sum of

ƒ and g. This terminology has the disadvantage of hidding the convolutive
nature of ƒ A#, but it underlines the fact that this new function can be
obtained by adding the level sets of ƒ and g. A more précise statement is
recorded next. In what follows, the notation

[h < a} : - {x G X : h(x) < a}

stands for the strict (lower) level set of h : X —> R at the level a G R.
Addition of sets in X is always understood in the sense of Minkowski,
that is to say,

A + B := {a + b : a G A, b G J3},

with the convention A + 0 = 0 + A = 0.

PROPOSITION 2.1 (Rockafellar [21, p. 40]): Let ƒ and g be in RX. Then,
for all a G R, one has

{fAg<a} = {f<a} + {g<a}. (2.1)

The proof of Proposition 2.1 is straightforward. What this result says
is that the function fAg is entirely defined by the sum of the level sets
{ ƒ < a} and {g < a}. Indeed, it says that

[fAg] (x) = Inf { a G R : x G { ƒ < a } + { g < a }} for ail x G X.

As an immédiate conséquence of Proposition 2.1, one gets

dom (fAg) = dom ƒ + dom g)

where
dom h :— { x G X : h (x) < +oo }

vol. 29, n° 2, 1995
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v

stands for the effective domain of h G R . An equality like (2.1) does not
hold in gênerai for level sets of the form

{ h < a } := { x G X : h(x) <a}.

However, if fAg is exact (in the sensé that, for each x G X, the infimum
in (1.1) is attained), then one can write

{fAg<a} = {f <a} + {g<a}

for ail a G R.

2.2. The rôle of epigraphs
As mentioned before, level sets play an important rôle in the analysis of

the opération A. We point out, however, that epigraphs have also their word
to say. Recall that the strict epigraph of a function h G R is defined by

is h := {(x, a) G X x R : h (x) < a }.

Since this set lies in the product space X x R, it can be viewed as the graph
of a multivalued mapping from X into R. Indeed, one has

epis h = Graph Ek := { (x, a) G X x R : a G Eh (x) },

where Eh '• X =£ R is the mapping given by

dom Eh = {x G X : h(x) < +00 },

Eh (x) :=] /&(#), +oo[ for all x G dom E^

Notice that strict level sets of h correspond to the values of the inverse
mapping Ej^1 : R =3 X. More precisely,

E'1 (a) := {x e X : a e Eh(x)} = {h < a} for all a G R.

To fully appreciate next result, recall that two mappings, say E f : X =4 R
and £3 : X =$ R, can be added either in series

(Ef + Eg) (x) := £ƒ (x) + ^ (x) for all x G X,

or in parallel

( £ / II £fl) (a:) := (EJ1 + i?^"1)"1 (x) for all x G X.

Recherche opérationnelle/Opérations Research
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A detailed discussion on these opérations can be found in Passty [19].
Without further ado we state:

—X.
PROPOSITION 2.2: Let ƒ and g be in R . Then, the strict epigraph mapping

Ef&g : X nfc R associated to ƒ Ag, coïncides with the parallel sum of the
strict epigraph mappings E f : X =t R ond Eg : X =$ R. In short,

EfAg = Ef\\Eg. (2.2)

Proof: Equality (2.2) amounts to saying that

Ejlg (a) = EJ1 (a) + Eg1 (a) for ail « G R.

But this is just another way to express formula (2.1) stated in
Proposition 2.1. •

2.3. On the minimization of fAg

Next we state a couple of results relating the minimization of the level
sum fAg and the separate minimization of the component functions ƒ and
g: As customary, the notation

e-argmin h := { x G X : h (x) < e + Inf h }

refers to the set of points which minimize the function h' E R within a
tolérance e G R+ or, in short, the set of e-minima of h. The above notation
will be used only in the case in which h is minorized from below. When
e — 0, we write simply

argmin h = {x G X : h(x) < Inf h }.

The infimal value

Inîh :=Inf h(x)

is, of course, understood as an extended real number.

•y

PROPOSITION 23 : Let ƒ and g be in R . Then,

(2.3)

Proof: Formula (2.3) is a conséquence of the following chain of equalities:

Inf ( ƒ AP) (x) = Inf Inf { ƒ (u) V g (v) }

= Inf

vol. 29, n° 2, 1995
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The last equality is a particular case of the gênerai identity

Inf { ai Vbj} = [Inf oA V [Inf &,•],
%ei,j€J l J J tel J ljeJ J

where the ai 's and bj fs are extended real numbers, and the set of indices
/ and J are possibly infinité. •

It has been observed by Abdulfattah and Soueycatt [1] that if u and v are
e-minima of ƒ and g, respectively, then u 4- v is an ̂ -minimum of ƒ Ag.
In other words,

e-argmin ƒ + e-argmin <? C e-argmin ( ƒ Ag) for all e G R+.

It is not difficult to construct an example which shows that the above inclusion
may be strict. An exact estimate of the set e-argmin (fAg) is given in next
proposition. The notation 74 refers to the positive part of the number 7 G R,
i.e., 7 + = Max {0, 7 }. Recall that a function h : I - > R U { +00 } is said
to be proper if dom h is nonempty.

PROPOSITION 2.4: Let f, g : X —> R U {+00} be two proper functions
which are minorized from below, that is to say, assume that the numbers
a = Inf ƒ and fi = Inf g are finite. Then, for all e G R+, one has

e-argmin (fAg) = f)[(S + (fi- a)+)-argmin ƒ
S>E

+ (6 +(a- /?)+)-argmin g]. (2.4)

Proof: According to Proposition 2.3 one has

e-argmin (fAg) = { ƒ Ag < 7 + e }, (2.5)

with 7 = a V fi, A gênerai resuit concerning level sets allows us to write

{fAg<1 + e}= Ç]{fAg<1 + 8}. (2.6)

By combining (2.5), (2.6) and Proposition 2.1, one obtains

e-argmin (fAg) = f)[{f <-y+ 6} + {g <-y + 8}].
ô>£
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A simple calculus shows that the above equality can also be written in
the forai

e-argmin (fAg) = f | [{ ƒ < 7 + S} + {g < 7 + S}].
â>€

Since 7 = a + (ƒ? - a)+ = /? + (a - /3)+, one gets finally

e-argmin (fAg) = f| [{ ƒ < a
Ô>£

This is precisely what we wanted to demonstrate. •
We end this section by mentioning two important cases in which the

expression for £-argmin (fAg) reduces to a very simple form.

COROLLARY 2.1: Let ƒ, g : J - ^ R u { +00 } be two proper functions such
that Inf ƒ = Inf g £ R. Thenf for all e e R+, one has

e-argmin (fAg) = O [<5-argmin ƒ + 6-argmin g],
6>e

COROLLARY 2.2: Let f^ g : X —* R U { +00 } èe /wo proper functions
such that the numbers a = Inf ƒ a«d 0 = Inf $ are finit e, Suppose that for
each x G X, the infimum

(s) = Inf { ƒ ( z - V )

/s attained, Then, for all e £ R+,

e-argmin ( ƒ A#) = (e + (/3 - a)+)-argmin ƒ + (e + (a - /?)+)-argmin 5.

3. LIPSCHÏTZIAN APPROXIMATION VIA LEVEL ADDITION

In this section the linear space X is supposed to be equipped with a norm
denoted by || . ||. Recall that a fonction g : X —• R is said to be Lipschitzian
with Lipschitz constant L E R+ if

19 (x) - 9 (y) I < L II x - y II for ail x, y in X.

vol. 29, n° 2, 1995
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In many areas, including optimization theory and nonlinear analysis, it is
important to construct a Lipschitzian approximation of a given function.
In this respect, the opération of le vel addition has a fruitful rôle to play.
To convince the reader of this fact, we start by establishing the following
basic resuit.

PROPOSITION 3.1: Let ƒ : X —> R U {+00} be a proper function. If
g : X —> R is minorized from below and Lipschitzian with Lipschitz constant
L G R+, then so is the level sum fAg : X —> R.

Proof: First of ail, write fAg in the form

(fAg)(x) = In£{hv(x) : v E dom/},

with

hv(x) = f(v) V g(x -v).

For each v G dom ƒ, the function hv : X —> R is Lipschitzian with
Lipschitz constant L. Indeed, for all x and y in X, one can write

| hv (x) - hv (y) | = | ƒ (u) V g (x - v) - ƒ (v) V p (y - v) \

< \g(x - v) -g(y- v)

<L\\x-y\\.

To prove that fAg : X —> R is Lipschitzian with Lipschitz constant L,
we write first

h v ( y ) - L \ \ x - y \ \ < h v (x) < h v ( y ) + L \ \ x - y ||,

and then we take the infimum with respect to v G dom ƒ. One gets in
this way

(fAg) (y) - L || x - y || < (fAg) (x) < (fAg) (y) + L\\x-y ||,

Le.,

\(fAg)(x)-(fAg)(y)\<L\\x-y\\. •

Roughly speaking, what Proposition 3.1 says is that the level sum fAg
inherits the Lipschitzian property of g, no matter how bad is the function ƒ.

Recherche opérationnelle/Opérations Research
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Example 3.1: Take, for instance, g — | | . ||. Then, for any proper function
ƒ : X —» R U { +00 }, the level sum

x G X» [ / A | | . | | ] ( a ! ) = I n f {f(v)v\\x-v\\}

is Lipschitzian with Lipschitz constant L — 1.
In the above example, there is no reason to believe that ƒ A|| . || is a "good"

approximation of ƒ. In fact, ƒA||. || contains only a very rough information
on the function ƒ itself. To take care of the quality of the approximation, we
incorporate a parameter r > 0, and choose a function g of the form

g (x) = r II x II for all x G X.

PROPOSITION 3.2: Let ƒ : X —> R U {+00} be a proper function. Then,
for each r > 0, the level sum

x G X^ /M(ar)=Inf { ƒ (v) V r \\x - v || } (3.1)
vÇ:X

is Lipschitzian with Lipschitz constant r. Moreover, if ƒ is nonnegative,
then the upper envelope of the family { ƒ M : r > 0} coincides with the
lower-semicontinuous huil cl ƒ o/ ƒ, i.e.,

(cl ƒ) (x) =Sup / [ r ] (x) for all x e X. (3.2)

Proof: The first part follows directly from Proposition 3.1, and the fact
that r II. II is Lipschitzian with Lipschitz constant r. Suppose now that ƒ is
nonnegative. For all x e X and r > 0, one has

/ M ( z ) = I n f {f(v)\/r\\x-v\\}< ƒ (*) V 0 = ƒ (x),

and therefore ƒ M (ar) < (cl ƒ) (x). This implies that

g (ar) :=Sup fW(x) < (cl ƒ ) (ar) for all a; G X.
r>0

To prove the reverse inequality, we proceed as follows. For a given
x G X, take any A G R such that A < (cl ƒ) (x). We need to show that
9 (#) ^ A. From the very définition of

(c l / ) (x)=Sup Inf / H ,
0 | | | | <

vol. 29, n° 2, 1995
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we know there exists a real number a > 0 satisfying

and, a fortiori,

J n f ^ { / ( v ) V r | | v - x | | } > A . (3.3)

One has also

Inf {f{v)Vr\\v-x\\}> ra. (3.4)
\\v-x\\>a

By combinining (3.3) and (3.4), one gets

f[r] (x) = Inf { ƒ (v) V r || v - x || } > Min { A, va }.

If one takes r sufficiently large, namely r > a" 1 A, then the above inequality
reduces to /M (x) > A. To complete the proof it suffices to observe that
g(x) > f[r](x). M

It is important to observe that /M (x) is nondecreasing as a function
of the parameter r > 0. What Proposition 3.2 says then is that /M (x)
converges monotonically upwards to the level (cl ƒ) (x), as the parameter
r tends to +oo. A similar type of resuit is known for the Moreau-Yosida
approximation (cf Attouch [2])

x G X^fr(x) :=Jnî. {ƒ (v) + \ \\ v - x ||2}

and for the Baire-Wijsman approximation (cf. Martinez-Legaz [17], Corollary
3.6)

iC t A I—> J [X) I— l n t \ J [Vj i T \\ V — X r.

The function ƒ M not only serves as Lipschitzian approximation of ƒ, but
also preserves the infimal value and the local minima of ƒ. This f act is
recorded in next proposition, where we use the symbol

B(xo, 6) = {x G X : \\x-xo || < 6}

for denoting the open bail centered at XQ G X and with radius S > 0.

Recherche opérationnelle/Opérations Research
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PROPOSITION 3.3: Let f be a nonnegative function over X and let r > 0.
Then,

= I n f / (3.5)

Moreover, for f (#o) G ] 0, +oo[, one has the équivalence

/M (XQ) = f(xo) & XQ minimizes ƒ over B (xo, r~l ƒ (xo)). (3.6)

Proof: Equality (3.5) is a particular case of (2.3). To prove the équivalence
(3.6), recall that one has always the inequality / ^ (zo) < f (xo), The
opposite inequality amounts to saying that

< ƒ (v) V r || v — xo || for all v e X,

or, what is equivalent,

ƒ (xo) < ƒ (v) whenever r \\ v - xo \\ < f (xo).

In other words, /M (xo) = ƒ (xo) if and only if f (v) > f (xo) for all
v € 5(xO ï r" 1 / (xo)). •

4. FENCHEL CONJUGATE, SUBDIFFERENTIAL, AND APPROXIMATE SUBDIF-
FERENTIAL OF THE LEVEL SUM OF TWO CONVEX FUNCTIONS

The aim of this section is deriving formulas for Computing the Fenchel
conjugate, the subdifferential, and the approximate subdifferential of the level
sum ƒ Ag of two convex functions ƒ and g. An appropriate mathematical
setting for dealing with this issue is that of a couple (X, X*) of locally
convex topological linear spaces in duality by means of a bilinear form
(., . ) : X* x X h-> R (see [5], p. 48). So, X and X* are supplied with
topologies compatible with this duality [5], p. 67, so that each one can be
identified with the space of continuous linear functionals on the other.

4.1. Fenchel conjugate of a level sum
The Fourier transformate of the classical convolution of two functions

is the product of their corresponding Fourier transformates. This result is
a conséquence of Fubini's theorem allowing to exchange the order of two
iterated intégrais. Similarly, in the context of convex analysis, the Fenchel
conjugate of the inf-convolution of two functions coincides with the sum
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of their corresponding Fenchel conjugates. The later resuit is obtained by
exchanging the order of two iterated maximizations. The situation is more
involved when it comes to evaluate the Fenchel conjugate of a level sum.

Recall that the Fenchel conjugate of tp : X —• R U { +00 } is the fonction
<p* given by

tp* (y) : = S u p {(y,x)-tp(x)} for all y e Y.
xex

In the next proposition we give a formula for Computing the Fenchel
conjugate of the level sum of two proper convex functions on X. In what
follows, the symbol À stands for the elementary simplex

A — {(Ai, A2) G R2 : Ai +A2 = 1, Ai > 0, A2 > 0 } ,

and (p* A dénotes the right multiplication of (p* by the finite scalar A > 0,
that is to say,

I Sup { ( y, x ) : x G dom ip } if A = 0.

PROPOSITION 4.1: Let f, g : X —» U U {-foo} be two proper convex
functions, Then, the Fenchel conjugate of fAg is given by

(fAgy (y) = Inf (ƒ* Ai + g* A2) (y) for ail y G X*. (4.1)
(A1;A2)GA

Proof: First of ail, observe that fAg can be expressed in the form

(fAg) (x) = ^ Inf ̂  Sup (Ai ƒ (u) + A2 g (v) },

where

M :— { (u, v) E dom ƒ x dom g : u + u = x }.

By plugging this expression into the définition of (fAg)* (y), one gets

(ƒ A<?)* (y) =Sup {{y, x ) - Inf Sup { Ai ƒ (u) + A2 p (v)}} .
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LEVEL SET ADDITION 145

A simple calculus yields

( ƒ A5)* (y) = Sup Sup f Inf { ( y, x ) - Ai ƒ (u) - X2 g (v) }

= Sup Inf
uedomf (Ai,A2)€A

We apply now a minimax theorem stated in Sion [26], Theorem 4.2. After
exchanging the order of the supremum and the infimum in the above line,
one obtains

(fAg)*(y) = Inf [ S u p { (y, u) - Ai ƒ (u) }
(Ai, A2)eA d /

+ Sup

To complete the proof it suffices to observe that

Sup {(y, « > - Ai ƒ(«)} = (ƒ* Ai)(y),

and similarly

Sup {(y, v) - A2p(^)} = (g* A2)(y). I

We point out that formula (4.1) appears already in Attouch [3] and
Zalinescu [31]. Notice that formula (4.1) can also be written in the form

(ƒ Ag)* (y) = Inf { (Ai ƒ)* (y) + (A2 g)* (y) }, (4.2)
( A A ) € A

provided the left multiplication of tp G Fo (X) by the scalar 0 is understood
in the sensé

( 0 if x G dom <z>,
v ; v ; \ + oo if x ^ dom y?.

Of course, no confusion arises in the interprétation of (4.2) if both functions
ƒ and g are finite everywhere.

We close this paragraph by mentioning an interesting application of
Proposition 4.1. In what follows we use the notation

Fo (X) := { if : I ^ R U { +oo } :

cp is proper convex lower-semicontinuous }.
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COROLLARY 4.1: Let (X, \\.\\) be a normed space, and let ƒ and g be
two nonnegative functions in T${X). Then, the following statements are
equivalent:

(a) there exists r > 0 such that /M = 5M;

(b)for ail r > 0, one has /M = pW;

(c) f = 9-

Proof: It suffices to prove that (a) => (c). Suppose

/ A r | | . | | = 5 A r | | . | |

for some r > 0. The norm ||. || can be written as support function of the
dual unit bail B* = {y e X* : ||y||* < 1}, Le,,

Thus, r II . Il is the support function of rB*. According to Proposition 4.1,
the Fenchel conjugate of the level sum

ƒ A r H . H =

is given by

( /Ar | | . | | r (y)= Ini {(r\1)(y) + ̂ X2rBr(y)} for ail y e X*,
(Ai,A2)eA

where

J0 if y e \2rB*,
{ + 00 if y ^ A2 r5* .

By taking into account that ƒ is nonnegative, after a short calculus one gets

(/Ariuiro/)
- 1

Sup { < y, x) : x G dom ƒ } if || y ||+ = r
+ 0 0 if IJ y jj* > r .
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A similar formula holds of course for the Fenchel conjugate of gAr || . ||.
Since

(f Ar | |. |D* (y) = (gAr ||. ||)* (</) for all y G X*,

one can write in particular

ƒ*

But any element z in X* can be written in the form

= ( 1 - ~ II V II* with < r.

To see this, just take

* •

Hence, ƒ* (z) = #* (z) for all 2: G X*. This yields finally the desired
equality ƒ = #. •

It is worth mentioning that a resuit like Corollary 4.1 does not apply
to the case of the Baire-Wijsman approximation. Indeed, it is possible to
construct two functions ƒ, g G Fo (X) which are different, but such that
their corresponding Baire-Wijsman approximates fr and gr coincide for
some parameter r > 0.

4.2. The subdifferential of a level sum
Given a convex function (p : X —>RU{+oo}, the subdifferential of ip

at the point XQ € dom tp is defined by

d<p(xo) = {y e X* : <p.(x) > V(XQ) + (y, x - XQ) for all x G X}.

This set reflects the first-order behaviour of the function <p around 0:0 • A
detailed discussion on the properties of this set can be found in any standard
text on convex analysis.

Next proposition provides a formula which serves to compute the
subdifferential d(fAg)(xo) of the level sum of the convex functions ƒ
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and g. For the sake of simplicity, we suppose that there exists an element
vo G X at which the infimum

(fAg) (x0) = Inf { ƒ (xo -v)Vg(v)}
vex

is attained. For convenience, we use the symbol

A#B := \J {AiAnA 2 B} (4.3)
( A i , A 2 ) € A

for denoting the inverse sum of the compact sets A C X* and B C X*;
cf. [21], p. 21.

PROPOSITION 4.2: Le? ƒ and # te twofunctions in TQ (X), Let fAg befinite
at XQ G X, and let vo G X be a point satisfying

(fAg) (x0) = ƒ (x0 - VQ) V g (v0).

Suppose ƒ and g are continuons at xo — vo and VQ, respectively. Then,

^ ^ w x ~J v~u ~ w , / ~ * v ~ o ) l f ƒ (^0 - V o ) = p ( ü o ) , 1

{0} if ƒ (zo - vo)#5(vo). J

Proof: We write fAg in the form

(/A^)(x)=Jnf (H1WH2)(x,v),

with

^"l (#) v) = f (x — v) and iÏ2 (ar, v) = g (v).

By applying Rockafellar's rule [22], Theorem 2.4 on the subdifferential of
a marginal fonction, one obtains

d(fAg)(xo) = {y E X* : (y, 0) G 0 ( # ! V fT2) (x0,

Evaluating ô (H\ V H2) (xo, ^0) requires to distinguish between two cases.
Consider first the case in which ƒ (xo - VQ) = g (vo). According to Valadier
[27], it is possible to write

d (Hi V H2) (xo, vo) = cl conv [dHi (x0, vo) U &H2 (^0, ̂ o)]> (4.5)
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where "cl" and "conv" refer to the closure and convex huil opération,
respectively. The continuity hypothesis on ƒ and g makes the closure
opération in (4.5) unnecessary, and allows us to write

8H\ Oo, vo) = {(yi, - y i ) : y\ G df(x0 -vo)},

dH2(x0, vo) = {(O,y2) : y2 e dg(v0)}.

Thus, (y, 0) G d(Hi\/H2)(xQ}vo) if and only if, there exists (Ai, A2) G A
such that

(y, 0) = Ai (yu -yi) + A2 (0, 2/2), (4.6)

with yi G df (XQ - VQ) and j/2 € óp (UQ). By writing (4.6) in the form

y = Ai 2/1 = A2 2/2,

one sees that (y, 0) G ô (Jïi V H2) (xo, ^0) if and only if

y € 0 / (zo - vo)#dg (vo) := ( J {Ai df (XQ - v0) H A2 dg (vö) }.
(Ax,A2)eA

Consider now the case ƒ (xo — vo) 7̂  9 (vo) • Take, for instance,
ƒ (a;o — vo) > g (vo). At the point (#0, ^0) ? the functions ffi V H2 and #1
have the same subdifferential. Thus,

d(Hi V H2)(x0, vo) = {(yi, -yi) : yi € o / (x0 -VQ)}.

Hence, (y, 0) G d(HiV H2)(XQ, VO) if and only if y = 0. The case
ƒ (xo — vo) < g(vo) is treated in the same way. •

Remark 4.1: Under the same assumptions of Proposition 4.2, it can be
shown that the condition Inf ƒ = Inf g implies that ƒ (xo — vo) = g (vo).
This can be shown by combining Propositions 4.2 and 2.3.

4.3. Approximate subdifferential of a level sum
This paragraph is more technical than the previous one, and is addressed

to the reader which is familiar with the following variant

d£<p (x0) = {y € X* : (p(x)><p(xo)

+ {y, x - xo ) - e for all x G X } (4.7)
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of the subdifferential dip(xo). The set d€tp(xo) is referred to as the
approximate subdifferential of (p at xo. There are several reasons which justify
introducing the parameter e > 0 in the définition (4.7). In Hiriart-Urruty and
Seeger [13], and Seeger [23, 25], it is explained how the set d£(p(xo) can
be used to obtain higher-order information on the behaviour of tp around XQ .
Approximate subdifferentials have many other uses in convex optimization:
design of algorithms [8, 16, 32], characterization of approximate optimal
solutions [12, 18], and formulation of variational principles [4, 6], are just
a few examples.

In next proposition we dérive a formula for Computing the approximate
subdifferential d£ (fAg) (xo) of the level sum of two convex functions ƒ
and g.

PROPOSITION 4.3: Let ƒ and g be two functions in Fo (X). Let fAg befinite

at xo G X, and let vo £ X be a point satisfying

(fAg) (xo) = ƒ (xo - vo) V g

Then, for all e > 0, one can write

Ô£ (fAg) (xo) = U U
(Ai, A2) e A (a i ,a 2 )

{ dai (Aa ƒ) (xo - vo) n da2 (À2 g) (vo) }, (4.8)

where the inner union is taken with respect to ail pairs (ai , 0:2) G R+
such that

a i + a2 = e + Ai ƒ (xo - vo) + A2 p (r*>) - ( ƒ A#) (x0). (4.9)

Proof: The approximate subdifferential of the function fAg can be
characterized in terms of its Fenchel-conjugate (fAg)*, namely

d£(fAg)(xo) = {y G X* : (fAg)* {y)

+ (fAg)(xo)-(y,xo)<e}. (4.10)

Now we take advantage of Proposition 4.1, that is to say, we use the formula
(4.2).
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The infimum in (4.2) is attained because A is a compact set and
(Ai, À2) G A H ( A I / ) * (3/) + (A2flO* (y) is a lower-semicontinuous function.
Plugging (4.2) into (4.10), one gets

d£(fAg)(xo)=
(A1;A2)GA

where

: = {y € X* : (Ai ƒ)* (y) + (A2 g)* (y)

+ (fAg)(xo)-(y,xo)<£}.

After a short calculus one sees that y e -AAI,A2 *

[ ( A i ƒ ) * (y) + ( A i ƒ ) ( s 0 - VQ) - { y , x o - v o >].

+ [ (A2 ^ ) * (2/) + ( A 2 9) (vo) - ( y , v o ) ] < £ +

where

5 = Ai ƒ (xo - vo) + A2

Now observe that both expressions between brackets are nonnegative. Thus,
y G A\Xi\2 if and only if there are two coefficients a i > 0 and a2 > 0,
with ai + a2 = s + S, such that

(Ai ƒ)* (y) + (Ai ƒ) (zo - vo) ~ (y, ^0 - vo) < au 1

(A2 gf (y) + (A2
 4 H )

The inequalities in (4.11) are equivalent to the conditions

y € ô a i (Ai ƒ) (#0 - vo) and y G <9a2 (A2 g) (vo),

respectively. This means that

A\ux2 = IJ attl (Ai ƒ) (rro ~ vo) H 9a2 (A2

(«1,0:2)
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where the union is taken with respect to the pairs (ai , a2) £ R+ satisfying
(4.9). This complètes the proof of the proposition. •

Usually the infimum in the définition

(fAg) (x0) = Inf { ƒ (XQ -v)Vg(v)}

is attained at some point vo G X such that

(fAg) (XQ) = ƒ (xo - VQ) = g (VQ).

In such a case, formula (4.8) reduces to the expression

d€(fAg)(x0) = IJ IJ
(Ai,A2)€A J ^ " ^

{ dai (Al f) (XQ - VQ) H da2 (A2 g) (VQ) }.

Observe that the particular choice e = 0 yields an alternative expression for
the set d (fAg) (XQ), namely

(fAg) (XQ) = ( J { d (Ai ƒ) (xo - ^o) n 0 (À2 5) N ) }. (4.12)

In constrast with the expression (4.4) given in Proposition 4.2, the
formula (4.12) applies even without the continuity assumption made on
the functions ƒ and g.
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