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APPLICATION OF NEUTS' METHOD TO BULK
QUEUEING MODELS WITH VACATIONS (*)

by S. K. MATENDO (*)

Communicated by Bernard LEMAIRE

Abstract. - We study a single server infinité capacity queueing System in which customers, arriving
in groups according to a Poisson process, are served in batches under the usual bulk service rule.
The server applies a gênerai exhaustive service vacation policy. Computational resultsfor the queue
length aï a post-departure or inactive phase termination epoch, at a post-departure epoch and at an
arbitrary epoch are given. In particular, we consider a vacation model where the décision ofwhether
to take a vacation or not, in a given inactive phase, is allowed to depend on the number of vacations
already taken in this inactive phase and the number of customers waiting, compared to a specified
number N. As special cases, it includes the (X(5V); N)-policy and the (T {MV)\ N)-policy. We
discuss two applications in the analysis of production, computer and communication Systems. A
simple numerical example is also considered.

Keywords: Queueing Systems, vacation models, matrix analytic methods.

Résumé. - Nous considérons un modèle d'attente à un guichet et à capacité infinie. Les arrivées
successives se font par groupes d'effectif aléatoire suivant un processus de Poisson. Les clients sont
servis en groupes d'effectif maximum donné. Le serveur applique une politique générale de vacances
du serveur avec service exhaustif Nous nous intéressons au calcul de la distribution stationnaire
de la longueur de la file aux instants de fin de service ou de fin de période d'inactivité, aux
instants de départ des clients et à un instant quelconque. Nous considérons enfin un cas particulier
important où Von permet à la décision de prendre ou non une nouvelle vacance, dans une période
d'inactivité donnée, de dépendre du nombre de vacances déjà prises (dans cette période d'inactivité)
et du nombre de clients qui attendent d'être servis, comparé à un nombre fixé N (N ^ 1). Deux cas
particuliers importants sont la (T {SV)\ N)-politique et la (T (MV); N)-politique. Nous discutons
de l'application du modèle à l'étude de systèmes de production, de systèmes informatiques et de
systèmes de communication. Un exemple numérique est également présenté.

Mots clés : Systèmes d'attente, files d'attente avec vacances du serveur, méthodes analytiques
matricielles.

1. INTRODUCTION

A "vacation model" (vacation System) is a queueing system where the
server alternâtes between active and inactive states. In the active state, the
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94 S. K. MATENDO

server pro vides service to customers, so that in an "active phase", the System
is never empty. An active phase is followed by an "inactive phase" during
which the server is unavailable to the customers.

Vacation models have been analyzed by many authors. We refer to the
surveys by Doshi [3] and Teghem Jr. [18], and to Takagi's book [17]. This
type of queueing Systems has been useful for computer, communication
and manufacturing modelling. In these Systems, the time periods during
which secondary jobs or maintenances are performed can be considered as
inactive phases. Another possible application can be found in the study of
the performance of polling Systems in which the server visits a given number
of queues in a cyclic order. Hère, the time periods during which the server
is visiting (polling) the other queues can be regarded as inactive phases.

Several service disciplines (services policies) have been studied in the
literature: exhaustive service, gated service, limited service, etc. In this paper,
we consider a rather large class of exhaustive service vacation policies L e.
policies according to which each time the server becomes active, he works
in a continuous manner until the System becomes empty. Special cases are
the iV-policy and the T-policy [L e. the single vacation J-policy, T(SV),
or the multiple vacation T-policy, T (MV)]. For the iV-policy, when the
System becomes empty, the server remains inactive, inspecting the queue,
until N (N ^ 1) customers are present. In this model, the inactive phases
are "inspection phases". For the T-policy, upon becoming idle, the server
leaves the System for some interval of time (of random length) called a
"vacation". If he finds at least one customer waiting when he cornes back to
the System, the server becomes active immediately. Otherwise, in the single
vacation model, he waits for the first arrivai to start service, while in the
multiple vacation model, the vacations are repeated until the server finds at
least one customer waiting upon return from a vacation. We note that for
the T(5V)-policy, an inactive phase consists of a vacation followed by a
possible inspection period, while for the T(MV)-policy, an inactive phase
consists of a random number of vacations.

2. THE MODEL

We consider an infinité capacity queueing System with the following
assumptions:

Hi: groups of customers arrive according to a Poisson process of parameter
À. The sizes of the groups are i.i.d. random variables, with probability
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distribution {<4}fc>i, generating function D (z) = ^ d^ zk (\z\ ^ 1) , finite

expectation E [D] and second order moment E [D2].

H2: the server applies a gênerai exhaustive service vacation policy (see for
instance Loris-Teghem [9]) in which, as mentioned above, an active phase
terminâtes when the System gets empty. Let Vn (n ^ 1) dénote the duration
of the n-th inactive phase. We assume that the random variables, Vn, n ^ 1,
are i.i.d., with generic variable V, finite expectation E [V] and second order
moment E [V2]. Let Yn (n > 1) be the total number of customers arriving
in the n-th inactive phase; {Yn}n>i is a séquence of i.i.d. random variables
with Yn ^ 1 a.s. We dénote by Y a random variable distributed as the
Yn, n > 1, with finite expectation E [Y] and second order moment E [Y2].

H3: customers are served by a single server in batches of maximum size
m(m>l) under the usual bulk service rule. If the queue length at the
beginning of a service exceeds m, then a group of m customers is served.
If the queue is not empty, but does not exceed m, then ail customers enter
service. Customers are served in the order of their arrivais (customers within
a batch are preordered for service or served in random order). The successive
service times are conditionally independent, given the group sizes, but may
depend on the number of customers in the groups. The distribution function
of the service time of a group of size j , 1 < j < m, is denoted by Sj (.),
with Laplace-Stieltjes transform (L.S.T.) Sj (.), finite expectation E [Sj] and
second order moment E [S?]. The service times are independent of the
interarrivai times and the durations of the inactive phases.

H4: The traffic intensity (offered load) p = m" 1 A E [D] E [Sm] is less than
one.

For the bulk arrivai M/G/l queue with a gênerai exhaustive service
vacation policy, a computational method has been recently applied (see
Matendo [11]) to obtain the steady-state distributions of the queue length
at a post-departure or inactive phase termination epoch, at a post-departure
epoch and at an arbitrary epoch. The main purpose of the present paper is
to extend to the bulk service case the computational results obtained there,
using the same basic arguments.

In section 3, we use Neuts' method to obtain the steady-state distribution of
the queue length at service completion or inactive phase termination epochs.
We then relate the steady-state distribution of the queue length at service
completion epochs (section 4) and at an arbitrary epoch (section 5) to the
former distribution. In section 6, we particularize the results to the case of a
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96 S. K. MATENDO

spécifie vacation policy which extends the policy considered in Kella [4], In
that paper, Kella considers an M/G/l queue with server vacations where
the décision of whether to take a new vacation or not, when the System
is empty, dépends on the number of vacations already taken in the current
inactive phase. Using standard renewal arguments, Kella obtained the L.S.T.
and the first two moments of the steady-state distribution of the waiting time.
He also discussed optimization results for the vacation policy. Note that the
exhaustive service discipline considered by Kella includes the T (SV)-policy
and the T (MV)-policy. We generalize Kella's scheme to the case where
the décision of whether to take a vacation or not is allowed to depend on
the number of vacations already taken in the current inactive phase and
the number of customers waiting, compared to a specified number (say N).
This includes the (T (SV)\ iV)-policy [combination of the iV-policy and the
T(SV)-policy] and the (T (MV); iV)-policy [combination of the N-policy
and the T (MV)-policy] introduced in Loris-Teghem [8], In section 7, we
present two potential applications in production processes and in computer
and communications Systems. We also discuss a simple numerical example.
Concluding remarks follow in section 8.

Notations

For t^.0 and n > 0, let P (n, t) dénote the probability that n customers
arrive during the interval ]0, £], an (t) and h^n (t) (1 ^ l ^ m - 1) the
probability that the end of a service of a batch of size m and Z, respectively,
starting at time 0, occurs no later than time t, and during the service there
were n arrivais. Let cn (t) dénote the probability that the end of an inactive
phase, starting at time 0, occurs no later than time t, and during the inactive
phase there were n arrivais.

Then

dn(k), (1)

where {dn (&)}n>o is the &-fold convolution of the probability distribution
{dn}n>\ [with dn (0) — 6on the Kronecker delta],

on(t)= f P(n,x)dSm(x)>
J \ t > (2)

hLn(t)= / P(n,x)dSi(x),
Jo

Recherche opérationnelle/Opérations Research
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and

c n ( t ) = P r [ y < t , y = n]. (3)

We note that an (£), h^n (t) and cn (t) (CQ (£) = 0) are probability mass-
functions on [0, +oo[ (/. e. non-decreasing fonctions, which lie between 0
and 1 but do not necessary tend to 1 at +oo). For Re (s) ^ 0, let an (s),
ht7n (s) and Sn (s) dénote the Laplace-Stieltjes transform (L.S.T.) of an (£),
hiin (t) and cn (£), respectively. From (1) and (2), it can be seen that the
joint transforms a(#, s) = Y j an(s)zn and h\{z, s) = / J h^n (s) zn

(Re (5) > 0, \z\ < 1) of the number of customers arrived and the total
service time used, during the service of a batch of size m and £, respectively,
are explicitely given by

a(z, s) = Sm[s + \-\D(z)] )
and > (4)

hi (z,s) = Si[s + \ - \ D (z)]} for 1 < l < m - 1 J

The joint transform c(z, s) = Y^ cn (s) zn of the number of customers

arrived during an inactive phase and of the duration of that inactive phase
does not have an explicit closed form since, as mentioned in Matendo [11],
cn (t) (n ^ 1) [which has the same meaning as Cn (t) (n > 1) define there],
dépends on the spécifie type of vacation policy considered.

In the following, an, h^n and cn refer to

an (+00) (= an (0)), hi9n (+00) (= \ n (0)) and cn (+00) (= cn (0)),

respectively [/. e. the probability that n customers arrive during the service
of a batch of size m, the service of a batch of size Z ( l £ / ^ m ~ l ) , and
an inactive phase, respectively].

Their corresponding generating functions will be denoted by a (z), h\ (z)
and c(z), respectively.

Observe that for n ^ 0,

(5)and

vol. 29, n° 1, 1995
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where, for j > 0,

S. K. MATENDO

and
/*O

= /

1/ U

for 1 <ï / ^ m - 1,

(6)

/o r-
[\&j and ^ j; (1 ^ Z < m - 1) represent the probability of j arrivai batches
during the service of a batch of size m and Z, respectively].

From (4) it is easy to see that

a (z) = â(z, 0) = Sm[\- \D(z)],
and

Further, for j 't O, let

and

[1 - Sm (t)} dt,

= / e"
'J Jo

[1 - 5; (t)] dt,

From (1) and (8) we have for n > 0,

(7)

<Z < m - l

(8)

a* = P (n, *) [1 - Sm (t)] dt =
j=o

and

J=C

for 1 < l < m - 1

(9)

Remark 1: When the service time distributons S& (.), 1 ^ fc ^ m, are of
phase type (see for instance Latouche [5] and Neuts [12]), explicit expressions
can be obtained for the séquences {i/jj}j>o, {i>j}j>Oi {iJij}j^o,i<l<m-i
and {^* j}j>o.i<^<m-i- For more details, werefer to th. 5.1.5 in Neuts [12].
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3. THE QUEUE LENGTH AT SERVICE COMPLETION OR INACTIVE PHASE
TERMINATION EPOCHS

In this section, we dérive the stationary probability distribution of the
queue length at service completion or inactive phase termination epochs. As
in Matendo [11], N (t) represents the number of customers in the System at
time t, 0n (n > 0) is the epoch of the n-th transition (L e. service completion
or inactive phase termination), (n the number of customers arrived in the
time interval ]0n, 0n+i], Tn = 9n+ï - 0n and Nn = N (0„+).

It can be easily seen that for n ^ 0,

Nn+l = (Nn - m ) +

(x"*~ = m.dbx(xJ 0))

and

Pr [Nn+1 =jJTn<x\ No, To? Nu Tu ..., Tn„u Nn = i]
- Pr [iVn+i = j , Tw < x | Nn = i] (= Qo- (ar), z ^ 0)

Therefore, the séquence {(Nnj Tn)}n>Q is a Markov renewal process
(M.R.P.) on the state space {i ^ 0} x [0, +oo[, lts transition probability
matrix Q(x), x ^ 0, is given by

Q(x) =

f CO (*)

0

0
0
0

oo (x)

0
0
0

cm_i(x)

öm-2 (x)

a0 (x)
0
0

O0(x)
0

cm+i(x)

am(x)

a2 (x)

c2m_i (

a2ro_2(

am (x)

«m-2 0

oo (x)

(10)
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100 S. K. MATENDO

where a,j (x), hij (x) (1 ^ l £ m — 1) and Cj (se), jf > O, are the probability
mass-functions defined in (2) and (3). This M.R.P. is of M/G/1 type (see
Neuts [12]). To see it, we partition the matrix Q (x) into m x m blocks
to obtain

Q(x) =

where

/CQ(X)

Ao(x)
0
0

Ci(x)
Ai(x)
A0(x)

0

C2(x)
A2(x)
Ai(x)
Ao(x)

• \

h (H )

C3(x) -

Cmj+1 -1(X) \

and

A0(a;) =

for j

) (x) ai (x) ..
0 ao (x) ..

0 0

amj- (x)
Omj-l(x) Q>m. i \ X }

/

for

This induces a different state space description of the M.R.P.: {(i, j) : i ̂  0,
1 £ j ^ ?n} x [0, +oo[. The state (i, j ) corresponds to a queue length
im + j — l after a transition. For the special case where m = 1, An (t) and
Cn (t), (n ̂  0), defined above reduce to (1) and (5) in Matendo [11].

For n > 0 and \z\ ̂  1, let An = A^ (+oo), Cn = Cn (+oo),

Recherche opérationnelle/Opérations Research
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A (z) = £ Ak z\ C(z) = J^ Ck z

Put A =
k>-0

and

a = Af(l)e =

where e is a column vector of ones.

Remark 2: (a) There are many stochastic models (queues, inventories,
communication Systems, dams, random walks,...) which have embedded
M.R.P. with block partitioned transition matrix of the form (11). These
models can be efficiently solved using the matrix-analytic techniques
developed by Neuts (We refer to Neuts [12] for the details). These
computational methods are an alternative to classical closed-form analytical
methods (based on an application of Rouché's theorem), for which many of
the proposed results are generally not in a computationally tractable form.

The matrix analytic approach to the above models is based on the
considération of the minimal nonnegative (and stochastic) solution G of
the nonlinear matrix équation

G = £ il, G1, (12)

for which the (jf, ƒ )-th entry is the conditional probability that the M.R.P.
will eventually reach the set of states {(£, j) : 1 <j j < m} by entering the
state (i, ƒ ) given that it starts in the state (i + 1, j)y i^.0. Once the mxm
matrix G is obtained, most important steady-state performance measures
(number in the System, response time, etc.) for the related model can be
written in algorithmically tractable formulas. We note that the matrix G can
be computed by successive substitutions in (12) starting with the nul matrix.
We also note that in the scalar case (L e. m = 1), we have G = 1.

(b) The stochastic matrix A is a circulant. Therefore A is doubly stochastic
so that its invariant probability vector, denoted by ?r 0*. e. TT A = TT, TT e = 1),
is given by ?r = m*"1 e. Furthermore, the matrix / — A + e w_ is nonsingular,
where / is the m x m identity matrix.

vol. 29, n° 1, 1995



102 S. K. MATENDO

(c) S ince p = n a < 1, E [Si] < + 0 0 (l<l^m),E [V] < + 0 0 and
E [Y] < +00, the M.R.P. {(Nn, Tn)}ny0 is positive récurrent and the vector

is finite. (See remark (6) on page 140 in Neuts [12].)
From (11), the transition probability matrix of the embedded Markov

chain {Nn}n^0 is given by

/Co Ci C2

40 Ai A2

0 Ao Ai
0 0 Ao

\ : : i

(13)

From (13), we deduce that this Markov chain is irreducible and aperiodic.
The invariant probability vector x, defined by x_Q — x} x_e — 1, then exists
and is strictly positive. If we partition x_ as (^0, x±, x2, ...), where x^ (i ^ 0)
is a m-row vector, then x^ is given by

(14)

3-1. Computation of x0

Let G as defined in (12) and let

The (j, ƒ )-th element of the irreducible stochastic matrix L is the probability
that starting in the state (0, j ) , the M.R.P. {(Nn, Tn)}n^Q eventually returns
to the set of states {(0, 1),..., (0, m)} by entering the state (0, ƒ ).

We have (see Schellhaas [15]):

(15)

where l is the invariant probability vector of L and

d
l

= 1 + ^ [C (1) e + (C - / ) (ƒ - A + ÇTT)-1 a]

Recherche opérationnelle/Opérations Research



APPLICATION OF NEUTS' METHOD TO BULK QUEUEING MODELS WITH VACATIONS 1 0 3

3.2. Computation of x^ i _: 1

Once the vector x0 has been obtained, the remaining components of x
are efficiently computed using the following récurrence formula established
in Ramaswami [14]:

i - 1

zH, (16)

where

and

Observe that the transition matrix of the Markov chain embedded at epochs
of visists to the set of states {0, 1,..., 2 m — 1} is given by

Co Ü i \
Ao Ai)

This finite Markov chain is irreducible so that the inverse (/ — A\)~x exists.

3.3. Mean queue length at service completion or inactive phase
termination epochs

Let us write the invariant probability vector of Q as
(uo, ui, U2-..)- The vector x^ i > 0, are then given by x2 —
(%i, Mmi+i,..., Umi+m-i)- {uj}j^o is the stationary distribution of the
queue length at a service completion or inactive phase termination epoch.
The stationary équations x Q = x_ can now be written as

m—l

J = u0
1=1

m+j

l~m
3 h 0. (17)
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The generating function Uu (z) = V^ UJ z3, \z\ < 1, then satisfies

Uu (z) [zm - a (z)} = n0 [zm c{z) - a (z)}
m-\

ul[zrnhl(z)~zla(z)] (18)

so that, differentiating twice in (18) and setting z — 1, the mean queue length
Ul(l) at service completion or inactive phase termination epochs is given by

= uo[m(m-l) + 2 mcf (1) + é1 (1) - a!1 (1)] - m (m - 1)
m - l

+ a" (1) + 5 ^ u/ [m (m - 1) + 2 m /ij (1) + M' (1) - a" (1)

- 2 Za' (1) - Z (I - 1)] (19)

where

^/ (1) - A2 (E [D])2 E [Sf] + A E [St] (E [D2] - E [D])

(1 ̂  M m-l).

Note that the right-hand sides in (18) and (19) depend on the components
of the vector xo = (UQ: ni , ..., um-i) given in (15).

4. THE QUEUE LENGTH AT POST-DEPARTURE EPOCHS

The queue lengths following departures and the times between departures
define another M.R.P. on the state space {z ̂  0} x [0, +oo[, with block-
partitioned transition probability matrix Q\ (x) given by

Recherche opérationnelle/Opérations Research
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Qi (x) =

where

Bj(x) =

x)
A0(x)

0
0

\

\X)

Bi{x)
Ai (ar)
Ao(x)

0

B2(x)
A2{x)
Ax{x)
Ao(x)

. . . \

; /

, mj+l (x)

\X)

x >: 0, (20)

i-I {X) \

i~l,mj+m—1 \X) /

with

m - l

l=m

f o r j -

We note that Q\ (x) differs from Q (rc)-given by (ll)-only in the entries
on the first line: Bi (x) instead of Ci (x). The invariant probability vector
y = (yJ&Q o f Qi = Qi (+°°) 0'- ̂  VQ = ̂  ye = 1) can be computed
in a way similar to that described in section 3 for the compilation of the
stationary probability vector x = (^)2>0.

Remark 3: Let Ï/ = (vo, vi, V2)---). so that

y- = (%», Vmi+i,..., Vm j+ m_i) , Z ̂  0,

where Vj (j ̂  0) is the stationary probability that j customers remain in
the System after a service completion. The following relation, noticed in
Matendo [11], holds:

— — Vi + no Ci, %>: 1, (21)

vol. 29, n° 1, 1995



106 S. K. MATENDO

so that

J1-UQJ
a), i y

(22)

To obtain (21), we note that UQ/VQ is the probability that a transition is a
service completion, UQ the probability that a transition is an inactive phase
termination. Since c% is the probability that % customers arrive in an inactive
phase, the resuit follows from applying the law of total probability.

The resuit for VQ in (22) follows from (21) upon summation over i The
corresponding resuit for v% (i ^ 1) is now obvious.

Using (18), the generating fonction Vy (z) = ^ v%\z% (\z\ < 1) is seen

to be given by

[ m - l -,

o(^) (c(z) - 1) + ^ C| (Z™ hx (z) - zla{z))
1=1 -I

m—1

vl[zmhl{z)-zla{z)] (23)

and from (19), we deduce that the mean queue length VI (1) after service
complétions is given by

i/0 [c" (1) + 2mpc' (1)] + a" (1) -m (m-l)
m - l

i// + ̂ ) ci) [m(m-l) + 2mtil (1) + /i'/ (1)

- a" (1) - 2 Z o ' ( ! ) - / ( / - ! ) ] (24)

Recherche opérationnelle/Opérations Research
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5. THE STATIONARY QUEUE LENGTH AT AN ARBITRARY EPOCH

In this section, we relate the stationary queue length distribution at an
arbitrary point of time, denoted by {pi}i>o, to the séquence {^}i>o* As
observed in Matendo [11], the distribution {pi}i>o can also be related to the
stationary distribution {vi}i>Q of the queue length at a service completion
epoch using the matrix Qi ( \ ) - Our approach [based on using the matrix
Q( . ) - instead of the matrix Q\ (. )] is motivated by the fact that the
expression for the entries on the first line is simpler in Q (. ) than in Q\ (. ).
Once the relation between the séquences {pi}i>o and {ui}i>o is obtained,
the probabilities pi can be related to the probabilities Vj, i ^ 0, by using (22),

We now outline the method of obtaining the relation between the séquences
{Pi}i>o and {ui}i>0 (We refer to Matendo [11] for the details).

We assume that time t = 0 corresponds to a transition in the M.R.P.
{(Nn, Tn)}n>0 and that No = i0 ^ 0.

First, we introducé the fundamental mean E* of Q (.) which is the inner
product of the vector x_ and the column vector of the row sum means

/ x dQ (x) e of the matrix Q (. ). From (10), it can be easily seen that the
Jo
first m rows of this column vector are given by E1 [F], E [Si],..., E [5m_i],
and all other rows by E[Sm], so that

m - l / m - l

We note that in the stationary version of the queue, E* may be interpreted as
the average time between two consécutive transitions (L e. service completion
or inactive phase termination). Secondly, we express the time dependent
probabilities,

Pioi (t) = Pr [N (t) = i\N0 = i0], i =: 0,

in terms of the Markov renewal matrix corresponding to Q (.) and of the
functions

Kioi (t) = P r [N (t) =i,e1> t\N0 = i 0 ] , for i ^ i 0 ,

by using the law of total probability.
Then, by using the key renewal theorem it follows that the limits

Pi = lim P(oi (t) exist (and are independent of io) and are given by

t—^oo
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1 f f°° / x V^ * 1
Pi — -j=r \uo I Koi (t) dt+ y UJ hj j _ 7 - >,

1 / f°°
E* l 7o

1 -< i -< m- 1

m—1 i ^

+ ]T UJ /i^.j- + 52 uj a*̂ - L i ^ m, (27)
,7=1 J = m ^

provided that the functions t —> Koi (t) be directly Riemann integrable.

The generating function Pv (z) — T^Pi zl (\z\ •< 1) satisfies

pu (z) = po + -p^ s ̂ o / üfo (*, ^) d* + [A - A D

m - l

- a ( « ) ) | ^ (28)

where Ko{t, z) — \ ^ ifoi(t)0*. Then, by differentiating both members

in (28), we can obtain the mean queue length \ J ipi — P!
u (1) once

*>i

üfo (t, z) rft is known.

6. SPECIAL CASE

In this section, we will concern ourselves with the distribution {ck}k>i
of Y (the total number of customers arriving in a typical inactive phase) and
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the functions KQÏ (£), i > 1, for the following exhaustive service vacation
policy. Upon returning from the (i — 1) st consécutive vacation (i > 1) in a
given inactive phase, the server becomes active immediately if he fînds at
least TV customers waiting. Otherwise, he décides to take another vacation-of
random length-with probability ai and remains in the System instead with
probability qi — 1 — 07. In the latter case, the server remains inactive,
inspecting the queue, until N customers are present. Vacation lengths are
assumed to be i.i.d. random variables with distribution function U(.) and
L.S.T. Ü(.). This extends Kella's scheme (see Kella [4]) to the case where
the décision of whether to take a vacation or not is allowed to depend on
the number of vacations already taken and the number of customers waiting,
compared to a specified number N.

The (T (SV)\ N)-pdlicy and the (T (MV); JV)-policy introduced in
Loris-Teghem [8] are special cases of the above description. For the former
model cri = 1 and ai = 0 (i > 2), while for the latter model ai = 1 (i > 1).
Note also that the special case with q\ = 1 gives the iV-policy model. q\ is,
indeed, the probability that once the System becomes empty, the server stays
inactive in the System, until TV customers are present.

Let

du(r)

(with fcg — for the Kronecker delta), be the probability that i batches
accumulate during r successive vacations, where U^ (t) dénotes the r-th
power of convolution of U(i).

We have:

(
r+l \ k min (n, N)-l N-l

II ** E E • bï] b"-> E * («)
_ /=l / n=l i=0 j=i

N /n-1 \ 7V-1

(29)
o

where TT^"/ = 1.
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2) Koi(t) = P{i,t), for 1 < i< N -

(y), for i>N, (30)

To obtain (29), assume that the number of batches arrived in an inactive
phase is n ( n ^ 1). Then, the first term in (29) corresponds to the case
where the inactive phase consists of (r + 1) vacations. During the first r
vacations, there are i arrivai batches {i < n, i < N) and the total number
of customers in these i batches is j (j < N). During the last vacation, there
are (n — i) batches with (k — j) customers so that the queue length at the
end of the inactive phase is k. The second term corresponds to the case
where the inactive phase consists of r successive vacations followed by an
inspection period. During the r vacations, there are i arrivai batches (i < n).
The total number of customers in the first (n — 1) batches is j (j < N), In
order that Y = fc, the n-th arriving group must have (A; — j) customers. The
resuit follows by application of the law of total probability.

To obtain (30), we note that since JVo = 0, 0\ is the duration of the first
inactive phase (i. e. Vi). For 1 < i ^ N — 1,

K0i (t) = Pi[N(t) = i,V1> t\N0 = 0]

is merely the probability that there are i arrivais in ]0, t] [i, e. P (i, t)}.

For i ^ N, in order that N (t) = i and the duration 6\ — V\ of the
inactive phase [consisting of (r + 1) successive vacations for some r > 0] is
greater than t, there must be k (k < N) arrivais during the first r vacations
(the r-th vacation ends at time y), The last vacation (which starts at ?/), is
still in course at time t and during the interval [y, t], (i — A;) arrivais occur.

We present below the particular results for the three special cases
mentioned above:

*The (T (SV); iV)-model

Let ai = 1 and ai = 0, i ^ 2. Then from (29) and (30) we get

(note that b\ ' = <5oz, dj (0) = 6OJ and b\ * — bi)
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k

Cfc = 2_^ bn dj~ (n)
n—l

N ,n-\ v N-l

n=l ^i—0 ' j=n~l

and

Koi(t) = P(i, t), for 1 ̂  i ^ N - 1

for i ^ i V (32)

*The (T (MV); AO-model

Let (7j = 1, i > 1. Then from (29) and (30) it follows that
(note that the second term in (29) reduces to 0)

J2 3 (*) d*-i (n " 0» * >: ̂  (33)
n=l i=0 J=Ï

= E &ip>, i h o
where

and

üfOj (t) = P ( i , t), for 1 ^ i ^ iV - 1

^E E /
ryo A;=0 ^°

x[l - U(t - y)] dt/(r) (y), for i > N (34)

Remark 4: (a) Results (31) and (33) were obtained by Loris-Teghem [10],
while (32) and (34) agree with the results given in Matendo [11].
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(b) When the service time distributions do not depend on the group sizes
(i. e. hi (z) = a (z), 1 < l ^ m - 1), it follows from (23) that

\zm — a (zW V (z) — n ( z) l un I r (z) - 1 4- V^ ci - ' ) ]
1=1

m - 1
(35)

Let TV = 1. From (31) we get

k

bn dk (TI) + &o <̂ /CÎ f ° r & = 1)
n = l

so that

c(z) = Ü [ A - A D (z)] -bo(l-D (z))

for the T(SF)-policy, and from (33) we get for the T (MV)-policy

k

• e* = (1 — ^o)"1 ^2 ^n ^k (n)> ^or ^ = •'•'

so that

c(*) = ( l -&o)- 1 ( f / [À-À J D(z)] -&o)

Substitutions in (35) lead, for both models, to the results obtained by
Chatterjee and Mukkerjee [1],

*The TV-poIicy

Let qi = 1 (so that a* = 0, i > 1). Then from (29) and (30) it is clear that

N N-l

c k ^ ^ 2 E di (n ~ 1 ) d f e - J ' for k^N (36)
n = l j=n—1

and

üfOi(*) = P(i , *), for 1 ̂ i X i V -
- 0 , for *>: N } { °
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Remark 5: The results for the JV-policy model can be derived from those
for the (T(SV); A^)-policy by putting U (. ) = 1, 60 = 1 and b{ = 0, i ^ 1.

7. APPLICATIONS

Bulk arrivai, bulk service queues arise in transportation problems
(involving buses, airplanes, trains, ships, elevators, shuttles, car ferries...),
manufactuiing, production, inventory, computer and communication Systems
(processing of computer programs, polling, local area networks...), etc. We
refer to Deb [2], Powel and Humblet [13], Stidham Jr. [16] and Lee and
Srinivasan [7] for further details and other useful applications. It is well
known (see Teghem Jr. [18]) that these Systems can be efficiently analyzed
when vie wed as bulk queueing Systems with vacations.

We mention that Lee and Srinivasan [6] considered the problem of
determining optimal control policies for the batch arrivai M/G/l queue
in which the server applies the Af-policy and the (T (MF); iV)-policy. Costs
are incurred each time the server is turned on (i. e., becomes available
to the customers), for waiting customers and when the server is present
at the queue. For both models, they derived the mean waiting time of an
arbitrary customer for a given value of N and, under the above cost structure,
obtained the stationary optimal policy.

In this section, we discuss two applications of our results to the modelling
of some production, computer and communication Systems considered in
Doshi [3], We also present a simple numerical example to illustrate the
tractability of the given results.

7.1. Maintenance in production Systems

Consider a machine used to produce a variety of items. When the machine
becomes idle, it undergoes préventive maintenance (referred to as a vacation).
If, on completion of this maintenance, some items are present, then the
machine immediately starts to process the items exhaustively. Otherwise, it
waits for the first item to start processing. The resulting model is a single
vacation model.

7.2. Maintenance in computer and communication Systems

Consider the following application used in computer and communication
Systems to schedule primary jobs (processing téléphone calls, processing
interactive and batch jobs, receiving and transmitting data,...) and
maintenance work. Here, the maintenance work is divided into short
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segments. Jobs arrive to a central processor (server) for being processed.
Whenever the System gets empty, the processor does a segment of the
maintenance work (L e., takes a vacation). If, on completion of this segment,
some primary jobs are present, then the processor serves the primary jobs
until the System becomes empty again. Otherwise, it begins to work on a
second maintenance segment and keeps on doing these segments until, on
return from a maintenance segment, if finds at least one primary job waiting.
The resulting model is a multiple vacation model.

We mention that for both applications (7.1 and 7.2), if the vacation
distribution is explicitely given, our results can be applied to solve them if we
assume that requests for service (items, jobs) arrive in batches to the machine
(processor) according to a Poisson process with rate À and are processed
in groups of maximum size m (as arises, as mentioned above, in many
practical applications). In both cases, we have a bulk arrivai, bulk service
M/G/l queue, with single vacation and multiple vacations, respectively.

Moreover, a threshold (N) can be introduced so that the machine
(processor) starts service at the end of a vacation only if it finds at least
N (N > 1) items (jobs) waiting upon returning from a vacation. Otherwise,
for the single vacation model with a threshold [/. e., the ( T (SV)\ JV)-policy],
the machine remains inactive, continuously monitoring the system, until at
least N items have accumulated. For the multiple vacation model with a
threshold [L e., the {T {MV)\ JV)-policy], the maintenance segments are
scheduled repeatedly until the processor finds at least N jobs waiting.

7,3. A numerical example

We assume that customers arrive in groups according to a Poisson process
with rate A = 3.0. The probability that the batch size equals j is dj = 0.2,
for j ~ 1, 2,..., 5. The customers are served in batches of maximum size
m = 2. The service time distribution does not depend on the group size.
The service times are i.i.d. random variables with an Erlang distribution with
two stages and a mean of 0.2. Thus, the traffic intensity is equal to 0.9. The
server applies the 2-policy (/. e. N — 2). For this problem, the queue length
distributions are presented in the appendix.

8. CONCLUDING REMARKS

This paper has been devoted to a single-server bulk arrivai, bulk service
queue in which the server applies a gênerai exhaustive service vacation
policy. Our analysis is based on the following approach:
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a) use Neuts' method (matrix-analytic methodology) to dérive the
stationary queue length at service completion or inactive phase termination
epochs;

b) relate the steady-state distributions of the queue length at post-departure
epochs and at an arbitrary epoch to the former distribution.

These computational results extend previous results for vacation models
with bulk arrivais (Matendo [11]).

In particular, we considered a spécifie vacation policy which is an extension
of Kella's vacation (Kella [4]). We showed that our results can be applied
to study maintenance in production, computer and communication Systems.
We provided a simple numerical example to illustrate the practical use of
the tractable results derived in this paper.

Our planned extension of this work is to allow the input process to be a
more gênerai (bulk) arrivai process including bursty arrivai processes which
commonly arise in packet voice technology and communication engineering.
We also are currently analyzing the waiting time distributions of the model
under considération. We expect to present these results in forthcoming papers,
where also other applications and numerical results will be discussed.
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APPENDIX

The queue length distributions

i

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

m = Pr
[i in the System

at service compl.
or inact. phase

terminât, epochs]

.044293

.031676

.043118

.046624

.043315

.044333

.033517

.030658

.029640

.028234

.027137

.025952

.024856

.023832

.022768

.021826

.020853

.019977

.019092

.018293

.017481

.016750

.016007

Vi = P r
[i in the System

at post-departure
epochs]

.046346

.033144

.033993

.037662

.034200

.035265

.033217

.032079

.031014

.029543

.028395

.027155

.026008

.024937

.023823

.022838

.021819

.020903

.019977

.019141

.018291

.017526

.016749

Pi-Pr
[i in the System
at an arbitrary

epoch]

.070691

.034779

.029463

.033690

.033745

.036608

.031936

.030756

.030115

.028909

.027835

.026458

.025377

.024357

.023291

.022316

.021329

.020430

.019538

.018711

.017891

.017133

.016382
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23
24
25
26
27
28
29
30
31
32
33
34
35
36

The proba. that there
are more

than 36 customers

The mean queue lengths

m = Pr
[i in the System

at service compl.
or inact. phase

terminât, epochs]

.015337

.014657

.014044

.013421

.012860

.012290

.011775

.011253

.010782

.010303

.009872

.009434

.009039

.008638

.186063

21.535700

Vi = Pr
[i in the system

at post-departure
epochs]

.016048

.015336

.014695

.014043

.013456

.012860

.012321

.011775

.011282

.010781

.010330

.009871

.009458

.009038

.194684

22.367000

Pi = P r
[i in the system
at an arbitrary

epoch]

.015688

.015001

.014365

.013736

.013154

.012578

.012045

.011517

.011029

.010545

.010098

.009655

.009246

.008840

.190765

21.871950
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