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PROPERTIES OF ORDINARY AND WEIGHTED SUMS
OF ORDER p USED FOR DISTANCE ESTIMATION (*)

by J. BRIMBERG (*) and R. F. LOVE (2)

Communicated by Brian BOFFEY

Abstract. - Surns of order p are encountered in numerous practical applications; an example is
the popular lp normfound in continuons location theory. This paper attempts to generalize varions
properties of ordinary and weighted sums of order p which are of theoretical and practical interest.
We expand the conditions for which Jensen's inequality holds. In addition, an important convexity
resuit is generalized and an open question posed by Beckenbach is resolved.

Keywords: Weighted sums, order p, distance estimation.

Résumé. - On rencontre des sommes de l'ordre p dans de nombreuses applications pratiques;
c'est ainsi que l'on trouve la norme populaire lp dans la théorie de la localisation continue. Dans
cet article, les auteurs essaient de généraliser les diverses propriétés des sommes ordinaires et des
sommes pondérées de l'ordre p qui présentent un intérêt théorique et pratique. Ils développent les
conditions pour lesquelles l'inégalité de Jensen est valable. De plus, ils généralisent un résultat de
convexité important et ils résolvent une question en suspens posée par Beckenbach.

Mots clés : Sommes pondérées, ordre p, estimation, distance.

1. INTRODUCTION

Distance predicting functions are used in many different applications.
Ginsberg and Hansen [5] utilized a distance predicting function (p.d.f.)
to check the accuracy of actual travel distance data. Westwood [19]
incorporated a p.d.f. into a distribution model. Kolesar, Walker and Hausner
[9] incorporated a p.d.f. into a response-time model for emergency vehicles
such as fire engines. Eilon et al [4] utilized a p.d.f. to compute depot-
to-customer distances in locational analysis studies. Kleindorfer et al [8]
discuss the use of a p.d.f. in routing problems, and Klein [7] uses p.d.f.s for
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construction of Voronoi diagrams. The use of p.d.f.s in location-allocation
models is given by Love et al. [13], Two of the most widely used truck
scheduling software packages in North America, Truckstops [16] and Roadnet
[15] incorporate p.d.f.s since they are much more efficient and comprehensive
to use in practice than attempting to assemble large files of distance data.

Love and Morris [10, 11, 12] applied several distance norms including
the weighted lp (klp) norm to Germany and several régions of the United
States. Let x = (xi, x%) , y = (yi, 2/2) be any two points in the plane.
The kip norm is given by

klp(x, y) = k[\x1-y1\P+\x2-y2\
p}1/p, k > 0, p > 0.

Love and Morris found that the klp norm was relatively easy to fit to a
geographical région and it has excellent prédictive properties. Ward and
Wendell [17, 18] have introduced the concept of utilizing block norms as
distance predictors. A new study by Love and Walker [14] shows that
although marginally better results can be obtained by using a block norm
with eight or more parameters than by using the klp norm, the computation
cost of fitting the block norms can be prohibitive. Conversely, the original
studies by Love and Morris [10, 11] show that the klp norm usually gives
much superior results compared to other simpler norms such as the weighted
Euclidean or weighted rectangular norms.

In the present paper we introducé a generalized klp norm in the form of
a weighted sum of order p. This is in effect adding a single parameter to
the klp norm since one of the two weights in the sum of order p function
replaces the k in the klp norm. Properties of the weighted sum as a function
of the parameter p are derived which can be utilized when fitting the norm
to actual geographical data.

2. PRELIMINARY RESULTS

A weighted sum of order p is defined as follow (e.g., section 2.10 of [6]):

(1)
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PROPERTIES OF ORDINARY AND WEIGHTED SUMS OF ORDER p 61

where

6 = (&i,..., 6JC) , h > O, i = 1,..., üf,

and p 7̂  0.
The vector 6 and the scalar p can be considered as a set of parameter values.
If all the weights b{ = 1, then T becomes the ordinary sum of order p
which is well-known in the literature (e.g., section 1-16 of [2]). Note that
the function T(y; 6, p) has the form of a generalized lp distance given by

hp (x) =
K

U=i

I/P

(2)

where x = , p is generally assumed to be greater than
K

( ) g y g
zero, and l^p estimâtes the distance between any two points y, z £ RK such
that x = y — z. The weights bi can be used to represent non-symmetric costs
along the axis directions in a location model. (A comprehensive treatment
of continuous location models is given in [13].) We are interested here in
studying the behaviour of the sum T as a function of its parameter p.

Consider first the asymptotic behaviour of T. Letting ym = mirii (yi) and
y M — niaxi(yi), we obtain

lim {T(y;b,p)}= lim
^+00 p ^ +

K |1/P'

Eb^
Lt=i

= y M

-VM,

V on —

i/p-

(3)

and sirnilarly,

lim {T(y; 6, p)} = ym lim

(4)
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Thus, the function T approaches the same horizontal asymptotes irrespective
of the positive weights &«, i = 1,..., K.

Without loss in generality, let us assume that all the ^ ' s have distinct
values; that is, yi ^ y3;, i / j , for all i, j G {1,.., K}. (If this is not the case,
common terms can be added together and K adjusted accordingly.) Denoting
the weights associated with ym and yM by 6m and &M respectively, it is
clear from (3) and (4) that for K > 2,

lim T={yM> if t"*1' (5)
+ UM' if ° < bM < 1,

and

lim T=[V? lf bm~h (6)
P — o o \ j / + , if 0 < 6 m < l .

Thus, the direction of approach from above or below the horizontal
asymptotes yu-, Vm dépends on the magnitude of the corresponding weights

We now examine the behaviour of T near p = 0. Letting

K

it is readily seen that for (3 > 1,

lim T = +00, lim_ T = 0; (8)

while for f3 < 1,

lim T = 0, lim_ T = +00. (9)

When f3 — 1,T {y\b, p) becomes the mean value function, for which the
following well-known result applies:

K

It follows from (8), (9) and (10) that T is continuous at p — 0 if, and
only if, p = 1.
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We now calculate the first and second-order partial derivatives of In T
with respect to p. Letting

ai - ^ ,

équation (1) can be rewritten as

= 1,..., K, (11)

where at > 0, i — 1,..., K, and

K

Then

(12)

(13)

a) First derivative

p2 Ylai $
t=i

K

Since

i i

f

P

V

rf
K

y

).
(14)

dp T dp'
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we immediately get

dT

L i = l

K
ai 2/f l n ƒ

\ i=i /J

' (15)

It is interesting to note that for f3 > 1,

O/Tl

lim —- = —ln/3. lim

lim
p-o-

[équation (10)]

(16)

Meanwhile, for (3 < 1, we obtain in similar fashion the following result.

lim ^ - = 0 + . (17)
p_j,o+ a p

b) Second derivative
In the following summations i, j G {1,..., i^} is understood, but omitted

to simplify the notation.

d2
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After some re-arranging this reduces to

^%-yfyf(ln^-ln%)2j, p # 0, (18)

where

K

3. PROPERTIES

Setting all the bi = 1, we obtain the ordinary sum of order p, denoted
as follows:

f) (20)

This sum satisfies the well-known relation,

S(y;P2)<S(y]Pl), 0<Pl<P2} K>2, (21)

which is usually referred to as Jensen's inequality. (For two different proofs of
(21), see Theorem 19 in [6], and the proof by Beckenbach [1].) Beckenbach
also shows that S (y; p) is convex in p for p > 0. His proof utilizes
techniques from convex analysis. Using the results of the preceding section,
we now obtain a gênerai condition whereby Jensen's inequality and the
convexity result of Beckenbach [1] are extended to the weighted sum.

THEOREM 1: Consider the function T(y; 6? p) defined in (1), with given
(constant) vectors y and b. Assume without loss in generality that yM =
maxi (yi) occurs for a unique M E {1,..., K}; Le., there are no des. (If
this is not the case, add the coefficients (bi) of the ties to form one term,)
Thenfor K > 2, T (y; 6, p) is a decreasing function ofpfor 0 < p < +oo,
if, and only if bM > 1, where 6M is the coefficient of' yM- Furthermore, if
f>M > 1, î1 w also a strictly convex function in p over this interval

vol. 29, n° 1, 1995
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Proof:

(i) (If) Since p > 0, K > 2 and bM > 1, it follows that

From équations (14) and (18), we see that

0 and

Hence, l n T is decreasing and strictly convex in p for 0 < p < +oo. It
immediately follows that T is a decreasing function of p in this interval.
Furthermore,

d2T d2 1 fdT\T*T+{) (23)

so that

d2T d2

dp2 ~ dp2

Thus, T is also strictly convex in p, for 0 < p < +00. We conclude that
&M > 1 is a sufficient condition for T to be a decreasing strictly convex
function of p E (0, +00).

(ii) (Only if) That bj^ > 1 is a necessary condition for T to be decreasing
in p immediately follows from the asymptotic behaviour of T as p —> +00,
shown in (5). If bM < 1, T approaches y M asymptotically from below, and
hence is increasing and concave for sufficiently large p.

CoROLLARY 1: T (y; b, p) with K > 2 is a decreasing function of p > 0
for given weights b and all (positive) y, if and only if bi > 1, i = 1,..., K.
Furthermore, T is also strictly convex in p under these conditions.

Proof: Consider any y such that the y^'s are not all equal. Clearly, bM ̂  1
if all the bi > 1. By Theorem 1, we know that T is decreasing and strictly
convex in p > 0. Now consider any y such that all the j/j's are equal. Then,
T = f31lp s/i, where (3 = Ef£a bt > 1 if all the bt > 1. It is readily shown
that T is once again decreasing and strictly convex in p > 0. Thus, bi > 1,
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i = 1,..., üf, is a sufficient condition. That this is also a necessary condition
is readily seen by contradiction. Suppose br < 1, for some r G {1,.. . , K}.
Construct a vector y such that y,- / t/J? i ^ j ? Vi, j G {1,. . . , K}, and
t/r = max (yi). By the theorem, we know that T is not a decreasing function

i
of p G (0, +oo), for this y.

The shape of T as a function of p becomes more complex when the criteria
on the weights are changed, as shown in the following result.

PROPERTY 1: Consider a vector of weights b, such that j3 = Ui b% > 1, and
br < 1 far at least one r G {1,..., K}. Then, for any given y there exists a
Ô > 0 such that T is decreasing and strictly convex in p G (0, 6). However,
if yr = max (yi), and there are no tiess then T is increasing and strictly

i
concave for sufficiently large positive p.

Proof: Follows immediately from the limit p —> Ö+ in (8) and the limit
p -+ +oo in (5).

Note that the function T described in the preceding result is neither
increasing or decreasing in p nor convex or concave in p over the entire
interval 0 < p < +oo, and that at least one inflection point exists in this
interval. This is illustrated in Figure L

The fact that T is a decreasing function of p in the interval (0, +oo) for
all y if» and only if» b{ > 1, i = 1,..., K (Corollary 1), has been recognized
previously (Theorem 23» [6]). However, their proof is different than ours
and does not show the important result that T is convex in p under these
conditions. The third and final case to consider for the weights b is where
ƒ? = Hibi < 1. In the same theorem, the above authors prove that T is
non-decreasing in p over the interval (0, +oo) for all y if, and only if, this
condition holds. Thus, the following property can be given without proof.

PROPERTY 2: A necessary and sufficient condition to have

T(y; b, W ) < T(y; b, p2), 0 < Pl < p2j

for given weights b and all y, is that /? < 1. Furthermore, there is strict
inequality unless all the yi are equal and /? = 1.

vol. 29, n° 1, 1995
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An analogous resuit holds for négative values of p. In this case, rewrite
r K i VP

2.1

1.9

1.5 -

1.3

y = (1.5, 1, l ) 1

b = (0,5, 1, l ) 1

0. 5. 25. 30.10. 15. 20.
Parameter p

Figure 1. - General shape of T under conditions of Property 1.

It follows from Property 2 that

T(y; 6, pi) > T(y; 6,p2), P2 < Pi < 0}

for given weights b and all y, if and only if j3 < 1.
Use of négative p when the weighted sum T is a distance function in

location models does not appear to have a physical interprétation. However,
there may be other situations where p < 0 might be considered. In any
case, we would like to take full advantage of our lengthy calculations of
derivatives. This questionable motivation leads to the foliowing results for
p < 0.
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THEOREM 2: Consider the function T(y; 6, p) defined in (1), with given
(constant) vectors y and b. Assume without loss in generality that ym =
mini (yi) occurs for a unique m € {1,..., K}] i. e., there are no ties. (If this
is not the case, add the coefficients (62) of the ties to form one term,) Then
for K > 2, T (y; 6, p) is a decreasing function ofp in the interval (—oo, 0),
if and only if bm > 15 where bm is the coefficient of ym. Furthermore, if
bm ^ lj hxT is also a strictly concave function of p over this interval.

Proof:

(i) (If). Since p < 0, K > 2, and bm > 1, it follows that

^-(—) < 1 , i = l,...,K. (24)
Om \ Vi

Returning to équations (14) and (18), we can readily show that

n ô 2 l n T rt

< 0 and o 9 < 0, p < 0.

Hence, lnT is decreasing and strictly concave in p in the interval (—oo, 0).
It immediately follows that T is a decreasing function of p in this interval.
We conclude that bm > 1 is a sufficient condition for T to be decreasing in
p and lnT strictly concave in p, for — oo < p < 0.

(ii) (Only if). That bm > 1 is a necessary condition for T to be decreasing
in p immediately follows from the asymptotic behaviour of T as p —> — oo,
shown in (6). If bm < 1, T approaches j / m asymptotically from above; so
that T (or lnT) is increasing and convex for sufficiently large négative
values of p.

COROLLARY 2: T (y; &5 p) with K > 2 is a decreasing function of p in
the interval (—00, 0) for given weights b and ail (positive) y, if and only
if h > 1, i = 1,..., K. Furthermore, lnT is strictly concave in p under
these conditions.

Proof: Consider any y such that the yi's are not ail equal. Clearly, bm > 1
if all the 6* > 1. By Theorem 2, we know that T is decreasing and lnT
is strictly concave in p E (—00, 0). Now consider any y such that all the
2/i*s are equal. Then, T = /31/pyi, where ƒ? = E* &« > 1, if all the bi's
> 1. It is readily shown once again that T is decreasing and lnT is strictly

vol. 29» n° 1, 1995



70 J. BRIMBERG, R. F. LOVE

concave in p E (—00, 0). We conclude that bi > 1, % — 1,..., K^ is a
sufficient condition» That this is also a necessary condition is readily seen
by contradiction, siirrilar to the procedure in Corollary 1.

An open question posed by Beckenbach [1] concerns a lower bound on
the number of inflection points of S (y; p) as a function of p in the interval
(—00, 0). This question is resolved below for the more gênerai weighted sum.

THEOREM 3: The function T (y; b} p) wiîh (3 > 1 has at least one
inflection point, and hence is neither convex nor concave in p, in the interval
—00 < p < 0.

Proof: From relations (6) and (8), it follows that T cannot be convex in
p over the entire interval (—00, 0). However, from (16) we see that a 6 > 0
exists such that Fis convex in p in the interval (—<5, 0). Hence, we conclude
that at least one inflection point exists.

It immediately follows that S (y; p) with K > 2 has at least one
inflection point, and hence is neither convex nor concave in p, in the
interval — 00 < p < 0. As a final comment we note that Theorem 3 applies
when (3 < 1 and p G (0, +00). The proof follows in a similar fashion from
relations (5), (9) and (17).

4. CONCLUSIONS

This paper investigates properties of the weighted sum of order p as a
function of the parameter p. The weighted sum is a generalized form of the
ordinary sum of order p, which is alternatively known in location theory as
the popular lp distance function or lp norm when p > 1.

The well-known resuit that the ordinary sum is a non-increasing, convex
function of p in the interval (0, +00) has been useful in deriving efficient
algorithms to find the best-fitting parameter values of the weighted lp norm
for estimating distances in a given geographical région (see Brimberg and
Love [3]). General conditions have been presented hère for extending the
monotonicity and convexity properties to the weighted sum. This sum can be
interpreted as a generalized lp distance which allows non-symmetric travel
in the axial directions through the use of unequal weights on the coordinates.
The new form should provide greater accuracy for estimating travel distances
on a transportation network. However, there is a computational cost for the
gain in accuracy, since additional parameters must be fitted to the network.
For example, the weighted lp norm in the plane has two unknown parameters,
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whereas the generalized form diseussed here will have three. The theoretical
results presented in this paper are being applied by the authors to extend the
existing fitting algorithms to the genera! weighted lp norm. In addition, we
plan to do empirieal testing of the new metrie,

This paper also résolves an open question in the literature concerning the
existence of inflection points for sums of order p (see Beckenbaeh [1]).
Since the conditions under which these inflection points occur are typically
not encountered in practical applications of the sum of order p as a distance
fonction, these particular results are currently of theoretical interest only,

ACKNOWLEDGEMENT

This research was supported by grants from the Natural Sciences and Engineering Research
Council of Canada and the Department of National Défense (Canada) Academie Research Program.

REFERENCES

L E. F. BECKENBACH, An Inequality of Jensen, American Mathematica! Monthly, 53,
1946, pp. 501-505.

2. E. F. BECKENBACH, R. BELLMAN, Inequalities, Second revised printing, Springer-Verlag,
Berlin, 1965.

3. J. BRIMBERG, R. F. LOVE, Estimating Travel Distance by the Weighted lp Norm, Naval
Research Logistics, 38, 1991, pp. 241-259.

4. S. EDLON, C. D. T. WATSOM-GANDY, N. CHRISTOFDDES, Distribution Management:
Mathematica! Modelling and Practical Analysis, Hafner Publishing Company, New
York, 1971.

5. V. GINSBURGH, P. HANSEN, Procedures for the Réduction of Errors in Road Network
Data, Operational Research Quarterly, 25, 1974, pp. 321-322.

6. G. H. HARDY, J. E. LITTLEWOOD, G. PÓLYA, Inequalities, 2nd édition, Cambridge
University Press, Cambridge, 1952.

7. R. KLEIN, Voronoi Diagrams in the Moscow Metrie, Institute für Informatik,
Universitât Freiburg, 1987.

8. G. B. KLEINDORFER, G. A. KOCHENBERG, E. T. REUTZEL, Computing Inter-Site Distances
for Routing and Scheduling Problems, Opérations Research Letters, i , 1981,
pp. 31-33.

9. P. KOLESAR, W. WALKER, J. HAUSNER, Determining the Relation between Fire Engine
Travel Times and Travel Distances in New York City, Opérations Research, 23,
1975, pp. 614-627.

10. R. F. LGVE, J. G. MORRIS, Modelling Ïnter-City Road Distances by Mathematical
Models, Operational Research Quarterly, 23, 1972, pp. 61-71.

11. R. F. LOVE, J. G. MORRIS, Mathematical Models of Road Travel Distances,
Management Science, 25, 1979, pp. 130-139.

12. R. F. LOVE, J. G. MORRIS, On Estimating Road Distances by Mathematical Functions,
European Journal of Operational Research, 36, 1988, pp. 251-253.

vol. 29, n° 1, 1995



72 J. BRIMBERG, R. F. LOVE

'13. R. F. LOVE, J. G. MORRIS, G. O. WESOLOWSKY, Facilities Location: Models and
Methods, North-Holland, New York, N.Y., 1988.

14. R. F. LOVE, J. H. WALKER, An Empirical Comparison of Block and Round Norms
for Modelling Actual Distances, Location Science, to appear.

15. ROADNET, Roadnet Technologies, 10540 York Rd., Huntvalley, Maryland, 1993.
16. TRUCKSTOPS 2-Vehicle Routing System, Micro-Analytics, Suite One, 2045 North

15th Street, Arlington, Virginia, and Suite 201, 1986 Queen Street East, Toronto,
Ontario, 1993.

17. J. E. WARD, R. E. WENDELL, A New Norm for Measuring Distance Which Yields
Linear Location Models, Opérations Research, 28, 1980, pp. 836-844.

18. J. E. WARD, R. E. WENDELL, Using Block Norms for Location Modelling, Opérations
Research 33, 1985, pp. 1074-1090.

19. J. B. WESTWOOD, A Transport Planning Model for Primary Distribution, Interfaces,
8, 1977, pp. 1-10.

Recherche opérationnelle/Opérations Research


