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THE GENERALIZED WEBER PROBLEM
WITH EXPECTED DISTANCES (*)

by E. CARRIZOSA C1),

E. CONDE (*), M. MUNOZ-MÂRQUEZ (*) and J. PUERTO

Communicated by Brian BOFFEY

Abstract. - In this paper we study a generalized Weber problem where both demand locations
and the facility to be located may be régions and are assumed to be dïstributed according to some
probability measures inside each région. A gênerai notation is proposed to describe these location
problems and sève rai properties are proved which enable the resolution of the problem using existing
algorithms. In some special cases the gradient of the objective function is evaluated, leading to the
resolution of a wide range of problems even when the exact expression for the objective function
is unknown. This methodology is applied to some cases.

Keywords: Location theory, average distances, régional facilities.

Résumé. - Dans cet article on étudie un problème de Weber généralisé où la demande et l'origine
qu'on doit localiser peuvent être des régions et on assume qu'elles sont distribuées selon quelque
mesure de probabilité dans chaque région. On propose une notation générale pour décrire ces
problèmes de localisation et on prouve quelques propriétés qui vont nous permettre la résolution du
problème en utilisant des algorithmes qui existent déjà. Dans quelques cas spéciaux on évalue le
gradient de la fonction objective et on arrive à la résolution d'un vaste „ensemble de problèmes même
quand l'expression exacte de la fonction objective n'est pas connue. On applique cette méthodologie
dans quelques cas.

Mots clés : Localisation, distances moyennes, services sur régions.

1. INTRODUCTION

The continuous single-facility location problem in its many variations and
generalizations has been widely studied in the literature of Location Theory
[11, 20], The objective of the problem is to place a facility some where on a
région in some optimal manner in order to serve the existing demand.

Although most existing papers suppose that the demand is concentrated
at a discrete set of points and the facility has negligible size, (thus assumed
to be a point), there are cases where the demand fits better when it is
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36 E. CARRizosA et al

considered to be distributed over a région rather than concentrated at points.
In addition, the assumption that the facility has also an area leads to more
realistic models, which can be applied, for example, to the location of public
facilities such as parks or industrial areas to serve different communities.

Different motivations may be made for the problem to be studied. For
example, existing facility or demands may be points, although each point is
a random variable with a probability measure over an area. This is the case
of location problems under conditions of uncertainty [6, 9, 14], Secondly the
facilities may have areas instead of points, as suggested for instance in [16].
A third interprétation is that the problem deals with a very large number
of demand and facility points clustered in some neighborhoods, thus being
more appropriate to model it as an area-demand and area-facility problem
rather than a conglomerate of many points [7].

Traditionally the Weber problem [10, 11] has been addressed in its point
version. However, since the early seventies one can find the régional
approach in different papers. Love [17] présents a computational procedure
for locating optimally a facility when the demand is distributed in a union
of rectangles. Drezner [5] and Juel [14] discuss the Weber problem with
demands uniformly distributed on circular régions. Drezner and Wesoloswky
[8] develop an itérative procedure for solving problems with régional demand
when distances are measured by means of lp norms (p > 1). Drezner [7]
considers the Weber problem where both demand and the facility are assumed
to be uniformly distributed on circular shapes. Aly and Marucheck [1, 18]
deal with the problem of demand uniformly distributed over rectangular
régions with the Manhattan norm. Recently Koshizuka and Kurita [16] have
studied the Weber problem with uniform demand on circular areas using
approximate formulas for average distances.

As each author develops a particular solution-method which does not work
directly for other problems, it is désirable to develop a unified approach,
this is the aim of the paper. If one could obtain explicit functional forms for
the expected distance between régions then these problems could be solved
by standard optimization procedures. However, observe that the expected
distance between two régions is given by

\\x-y\\dP(x)dQ(y)

where P and Q are probability measures in R2 and even in the most
simple case of uniform distributions, the évaluation of these formulae, when
possible, is very time-consuming [16].
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THE GENERALIZED WEBER PROBLEM WITH EXPECTED DISTANCES 37

In the literature there exist other approaches which avoid the exact
calculation of expected distances [1, 4, 7, 18] but are only valid for particular
norms and shapes.

Now we describe the contents of the paper. In Section 2, we present the
model to be studied and we introducé a notation which is inspired in the
Standard in Queuing and Scheduling Theory. In Section 3 we state some
properties extending well-known results for the classical Weber problem
which are the basis of an algorithm which does not need the évaluation
of expected distances to solve the gênerai problem. Finally we apply this
methodology to two different cases in Sections 4 and 5.

2. FORMULATION AND NOTATION

The problem we study consists of placing a facility, whose shape F is
fixed (but not its location), to serve a demand D. For instance, if one wants
to locate a circle of radius R, then F is given by the circle centered at the
origin with radius R, and the problem is where the circle should be located,
which is equivalent to locating its center.

The only constraints imposed on F is compactness. We also assume that
both the facility and the demands are distributed following independent
random variables inside their régions. The distances between points are
measured by a gauge 7, see [19, 21].

We must note that the unique décision variable is the translation vector x
that moves F to the facility région x + F = {x + f : f E F}.

Hence, the gênerai location model we consider, hereafter called the
Generalized Weber problem, is formulated as follows

min / / 1(x + f-d)dP(d)dQ(f) (1)
*ee2 JF JD

where
x = (zi, 32), d = (di, d2) E A ƒ = (ƒ1, ƒ2) E F
7 = a gauge in R2

D = the set of demand points
F = the shape of the facility
P = probability measure over D
Q = probability measure over F

It is useful todefine the following fonctions:

ij) \ xt-*ip(x)= ƒ 7(2; — d)dP(d)
JD
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38 E CARRizosA et al

JF
vF :

iF
ip (x) represents the expected distance (measured by the gauge 7) between x
and the set D of demand points and vp (x) represents the expected distance
from the facility in x + F to the région D.

The formulation of Problem 1 includes as particular instances different
problems proposed in the literature. For instance, for F = {(0, 0)}, a finite
set D = {ai, . . . , an} and probability measures

l̂ u otnerwise ^u otnerwise
n

where V ^ ^ i = 1, we obtain the classical Weber problem [11]
i—l n

mffi Y] wi 7 (x - ai) (2)

n

For F = {(0, 0)}, D = ( J iî,, where each Ri is a rectangle, 7 (-) = || • ||2,

Q is the degenerate measure over (0, 0) and F is a mixture of uniform
measures over each Ri, we obtain the location problem

/ | | a ? -

JRi

min S^ wi / | |a?-6| |2dP(6)
xeU2 *£ J

addressed in [17].
Finally, for 7(•)=.[] • ||2 and uniform distributions over the sets F and

D one obtains (see [7])

— T — / ƒ ||x + ƒ — a||2 d a d /
(F){i(D) JF JD

min / ƒ
œem fi(F){i(D) JF J

where \x is the Lebesgue measure in R2.
We have now developed enough terminology to introducé the notation we

propose to classify these location problems. The notation discussed in this
section is inspired in Kendall's notation [15] for Queuing Theory. Each of
these location problems is described by six characteristics:

1/2/3/4/5/6

The first and the second characteristics describe the type of the probability
measure over the facility F and the demand set D, The following standard
abbreviations are used:
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THE GENERALEED WEBER PROBLEM WITH EXPECTED DISTANCES 39

D — deterministic, which corresponds to assume that the facility or the
demand are points.

U = uniform measure

MU — mixture of uniform measures

G = gênerai probability measure

Any necessary parameter has to be added.

The third characteristic is the number of facilities to be located.

The fourth characteristic spécifies the type of facility to be located. The
following standard abbreviations are used:

x = point facility

F — régional facility with shape F.

The fifth characteristic spécifies the shape of the demand set D. When
D is the union of more simple sets Dj, i G ƒ, one can use the following
convention D = M A -

iel
The sixth characteristic describes the gauge used to measure the distances.

The standard abbreviations used in Location Theory may appear.
As an illustration, D/G/2/x/R/\\ • H2 represents a problem with two

point facilities with demand set R, a gênerai probability measure over D
and distances measured by means of the Euclidean norm.

3. PROPERTIES

In this section we discuss some properties of the objective function
i/p of the Generalized Weber problem, which show some similarities and
différences that exist between Problem 1 and its point version, Problem 2.
First of all, we assume that the facility F and the demand D are compact
sets, which is not restrictive from a practical viewpoint. In what follows we
assume it without explicit mention.

As these results do not require other assumptions on F than compactness,
they also hold for i/;9 which corresponds to ^{(o;o)}-

PROPERTY 3.1: If the probability measures P and Q are absolutely
continuons then

vF O ) > 0, Va: G R2

The proof follows from the définition of i/jp>

vol.-29, n° 1, 1995



40 E. CARRizosA et al

PROPERTY 3.2: There exists a constant k such that ujr (x) < 7 (x) + k,
Vx G R2, hence the function vp is finite everywhere,

Proof: By définition,

"F(X)= f f <y(x + f-d)dP(d)dQ(f)
JF JD

Let a = max 7 (—d) and B — max 7 ( f). Observe that a and 8 are finite
deD v /ei^

because D and F are, by assumption, compact sets.
Then,

f 7 ( x + / _ d ) d P ( d ) < f
JD J D

Hence,

^F (x) < / (7 O) + /? + a) dQ (6) == 7 (x) + /? + a

Taking A; = /? + a, the result holds. D

PROPERTY 3.3: ^ w a proper convex function.

Proof: First of all ujr is finite everywhere. Beside for any x, y G R2,
À G [0, 1], one has

= J J
= ƒ ƒ
< j J {

Hence ^ is a proper convex function. D

As a conséquence of property above one has

PROPERTY 3.4: The function vF is continuous in R2.

Recherche opérationnelle/Opérations Research



THE GENERALEED WEBER PROBLEM WITH EXPECTED DISTANCES 4 1

PROPERTY 3.5: The function i/p has compact lower level sets.

Proof: For all R > 0 let L(R) = {x e R2 : vF (x) < R}. By
Property 3.4, L(R) is a closed set. It is only necessary to show that L (R)
is also bounded. Indeed, for any x E L (R), one has

R>vF(x)= f f i(x + f-d)dP(d)dQ(f)
JF JD

> f [ (7 (*) - 7 ( -ƒ) - 7 (<*)) dP (d) dQ (ƒ)
J F JD

> 7 (ar) - m^c 7 (-ƒ) - ™ 7 (d)

Hence, L(R) C {x : j(x) < R + max 7 (-ƒ) + max7(e£)}, which is

bounded. D
Properties above lead us to prove the existence of a solution for Problem 1.

This is stated in the following theorem.

THEOREM 3.1: The set of optimal solutions to Problem 1 is convex, compact
and not empty.

Proof: By Property 3.5 the set M of optimal solutions to Problem 1 is
compact and not empty. Besides, as vF is convex M is also convex. D

A gauge 7 is said to be strict if the boundary of its unit bail does not
contain nondegenerate segments.

THEOREM 3,2: If 7 is a strict gauge and P is absolutely continuons then
Problem 1 has a unique optimal solution.

Proof: It suffices to show that uF is a strictly convex function. Let
x ^ y e R2, 0 < A < 1. For ail ƒ G F define the set

Z(f) = {dED: 0, \(x + f-d),
and (1 - À) (y + ƒ - d) are not collinear},

which is a set with probability P (Z•(ƒ)) = 1. Indeed, the complement
Z ( ƒ )c of Z ( ƒ ) is the intersection of D with the line passing through x + f
and y + ƒ, thus Z (f)c has zero Lebesgue measure, and by assumption, P
is absolutely continuous. Hence P (Z (ƒ)) = 1.

As 7 is a strict gauge, for any d G Z ( ƒ ) one has:

-À) (y+f-d))
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4 2 E. CARRizosA et al

Hence,

= ƒƒ
= f f
< f f
= A f /

7 Jz(f)

Hence z^ is strictly convex, thus Problem 1 has exactly one optimal
solution. D

The result above is not true for gênerai gauges. As a simple
counterexample, consider the problem D/U/l/x/[0, l]2 U [2, 3\2/h. It can
be shown that the set of optimal solutions to this problem consists of the
square [1, 2]2.

These results lead to the characterization of a dominant set for the
Problem 1, which extends the localization property given by Wendell and
Hurter [24] for Problem 2.

Dénote by conv (A) the convex huil of the set A and by A — B the set
{a - b : a E A, b G B}.

THEOREM 3.3: If "y is a norm then conv (D — F) contains at least an
optimal solution to Problem 1.

Proof: Let x* be an optimal solution to (1). For each d E D, f E F, define:

Rd_f (a?*) = {x : 1{x + ƒ - d) < 7 (** + ƒ - d)}

We are in position to show that conv (D-F)D Q Rz (x*) ^ 0. Indeed,

if conv (D-F)n p | Rz (x*) = 0, by Helly's theorem there would exist
zeD-F
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zi9z2,zseD-F such that conv (D - F) n f] RZi (x*) = 0. Then
«=1,2,3

conv ({^ : i = 1, 2, 3}) n p | i ^ (x*) = 0

«=1,2,3

which contradicts Theorem 3 in [24]. Then

conv(D-F)n f] Rz(x*)^Q.
zeD-F

Take

xf e conv (£> - F) H p | iîz (a?*).

By construction, 7 (2/ + ƒ - d) < 7 (re* + ƒ - d) for all ƒ G F, d e D, hence

f 7 (*' + ƒ - d) dP (d) < f 7 (x* + ƒ - d) dP (d), V ƒ G F

thus VF{X*) ^ ^ir(x*).
As x* was by assumption an optimal solution to (1), so is xl and this

proves the theorem. D
An interesting question concerning Location Problems is to develop

optimality conditions. Their usefulness, for deriving itérative resolution
procedures, is well known [19].

Since v-p is a convex function, the primai optimality condition at a point
ar is 0 G dvp{x). We shall prove that when P is absolutely continuous
it is possible to obtain a simpler condition because of the properties of
function vj?.

Applying Theorem 1 in [13] and Corollary 25.5.1 in [21] one obtains
the following

THEOREM 3.4: If P is absolutely continuous, then i/jr is continuously
differentiable everywhere and

= J J (x + f-d)dP(d)dQ(f).

To sum up, we have shown that (1) is an unconstrained convex problem
which always has an optimal solution. Furthermore, when P is absolutely
continuous, the objective function vp is differentiable, and its gradient is

vol. 29, n° 1, 1995



44 E. CARRizosA et al

given in Theorem 3.4. Hence, a number of existing algorithms could be
used. Nevertheless, as i/jr is given by an intégral, even its évaluation may
be a hard task.

It is sometimes easier to evaluate Vi/p rather than vp\ for these cases,
algorithms that solve the problem avoiding the évaluation of i/jr, like the
Steepest Descent method with fixed step [2] or the EUipsoid Method with
central eut [3, 12] seem to be more appropriate. We discuss these ideas in
the next two sections.

4. THE £>/G/l/a;/£>/7Poiyhedrai

In this section we address the problem of locating a point facility when the
demand D has an absolutely continuous probability measure P and distances
are measured by a polyhedral gauge 7, Le., a gauge whose unit bail is a
polyhedron, (see [19, 23] for further details).

Then the problem can be formulated as

min V O) = f 7 (x - d) dP (d) (3)
eu2

 J

In order to solve Problem 3 we first obtain a tractable expression for
the gradient. Let v\ i = 1, . . . , n be the extreme points of the unit bail
of the gauge dual to 7. It is well known that j(x) — max vlxf. For

ï = l , ...,n
i = 1, . . . , n, let Qi = {x G IR2 : 7 (x) = vi x!}.

THEOREM 4.1: Let P be absolutely continuous and 7 a polyhedral gauge.
Then

Proof: By Theorem 3.4 one has

V^(x)= f V1{x-d)dP(d)

Recherche opérationnelle/Opérations Research
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As | JQ Î = R2, mi(Qi)nmt(Qj) = 0J V i^ j and P(Qi)==P(inti

it follows that

n f

= y2 / V

rr{ Jx-int (Qi)

JT{ Jx~int (Qi)
JT{ Jx-mt(Qi

n

dF (d) v{

This complètes the proof. D

The theorem above leads to simple optimality conditions in the polyhedral

case.

COROLLARY 4.1: x* E R2 is an optimal solution to Problem 3 iff

t = i

Some examples that show the usefulness of this result are now given.

(-1,-1)

(04)

(1.-1)

D

The unit bail The feasible région

Figure 1. - Example 4.1.
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46 E. CARRizosA et al

Example 4.1: Consider the asymmetrie polyhedral gauge 7T whose unit
bail is the triangle with vertices ( - 1 , -1), (1, -1), (0, 1). It is easy to show
that 7T (x) = max vi x\ with v1 = (2, 1), v2 = ( - 2 , 1), v3 = (0, -1).

Consider the square D = [0, l ]2 and let P be the uniform measure over D.
In this example the corollary above can be applied to obtain an optimal
solution. Indeed x* is an optimal solution iff

2P(x* - Qi) - 2 P(x* -Q2) = 0

P(x* - Qi)+ P(x* - Q2) -P(x* - Q3) = 0

which is equivalent to

This system of équations is easily solved giving re* = (1/2, 1/4).

Example 4.2: Let || - ||i be the Zi-norm,

|jx||i = \xi\ + \x21 = max v%x

where ^ = ( 1 , 1), v2 = (-l, 1), vs=(-l, -1), t;4 = (l, -1).

The optimality condition above states that x* is an optimal solution iff

P(x* - Qi) - P ( x * - Q 2 ) - P ( x * -Qs) + P(x* - Q4) = 0

P(x* - Q i ) + P(x* _ g 2 ) _ p ( x * _ g 3 ) _ p ( a r * _ g 4 ) = o

which occurs iff :r* is the 2-dimensional médian. With the demand set of
Example 4.1 the optimal solution is x*=(l/2, 1/2).

The rest of this section is devoted to illustrate how Theorem 4.1 can
be applied in order to evaluate the gradient of the objective function for
Problem 3, enabling the use of an optimization scheme to solve the problem
when demands are distributed uniformly on circles and distances are given
by the Zi.oo norm [22]. Remark that the same methodology with minor
changes can be applied to any polyhedral gauge.

The problem to be solved has the following formulation

Ik- /Hi ,oodPi ( / )
Ci

Recherche opérationnelle/Opérations Research



THE GENERALIZED WEBER PROBLEM WITH EXPECTED DISTANCES 47

where each P% represents the uniform measure over the circle C{.

Thanks to the linearity of the gradients and intégrais and as by définition
||x||iîOo = ai \/2||^||oo + a2 ||#||i, it follows that calculating the gradient
of the objective function above reduces to evaluating the gradient of the
expected distances to a circle in || • ||i and || - ||QO.

We first dérive an expression for the gradient, hereafter called Voo (#), of
the expected l^ distance from an arbitrary point x to the circle C centered
at (0, 0) with radius r.

In this situation the sets Qi are given by

Qi

Q2

{(xi, x2) G R2 : xi + x 2 > 0, -

{( x2) G R2 : + < 0

Qi = {(xi, x2) G R : xi + x 2 > 0, -xi +x2 > 0}

Q2 = {(xly x2) G R2 : xi + x2 < 0, -xi + x2 > 0}

Q3 = {(xu x2) G R2 : xi + x2 < 0, -

Q4 = {(xi x2) G R2 : xi +rc2 > 0 -

i + 2 ,

2) xi + x2 < 0, - x i + x2 < 0}

x2) G R2 : xi +rc2 > 0, - x i + x 2 < 0}

and then

Voo (x) =P (x - Qx) (0, 1) + P (x - Q2) ( - 1 , 0)

+ P (x - Q3) (0, -1 ) + P (x - Q4) (1, 0)

Define for each i, pi (x) — P (x — Qi). Thanks to the symmetry of the
circle and the unit bail of the norm, the calculation of pi (x) is reduced to
the case x G Q\. Indeed, for example, let x G Q2, then

pi (x) = P({(ci , c2) e C : -xi + c i +X2 - c2 > 0,

xi - ci + X2 - c2 > 0})

= P({(ci , c2) e C : xi - ci - X2 +C2 < 0,

- Xi + Cl - X2 + C2 < 0})

, -Xi) - Q 4 )

With similar arguments, one can obtain the following table of équivalences

V2
P3
P4

vol. 29,
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Now, we show how to calculate pi (x) when x G Q\. In order to do that
we décompose Q\ into 5 zones, Z\ to Z§, defined as follows

ry r/ \ I \ /i-T i \ /Ö /̂v.1
/ . "i ^^^ < i ô * i if*o 1 T̂  "i i..- nr*r\ ^ \ / / nr^ o î ^^- T̂ o - ^ \ / >/ T̂  >
• " 1 — ! l'*'! ) •" Z ) * JL>\ i i*/ ^ ^ _ \ £J t } ju j[ n^ «^2 _ . V " * f

y,c\ ~^~ X | T**i 'T* r\ I * 'T* -i I 'T* o ^** \ f s If* T* ~i ^— T*o ^^ \ / S T* >
• " ^ l \ 1 Î ^ / * * " 1 ^ ^ i ^ ^ V " ' ) " ^ 1 1̂  ^ i _ _ » f

/7 f/ \ î \ /r> i «, J^ / ö .̂1
X* o -™^ J f 'T*-4 'T*rt 1 * ^y*-| I 'T*rt ^^ \ / y ^ 'T*î L ŷ*r\ < \i / nf^ >
£J j — i I J / J ^ **^ Z ) ' %*J\ i^ **^ 2i _ . V ^f * j * " 1 \^ **/ Z ^ ^ V " * ƒ

^^ -i "'• J i O^-i O** o 1 * ^ ^ O î —J T̂ rfc < '̂ \ / / HT* **f* t I T*ri ^̂ *" \ / x 'T* I T* 11 o ^ * 'y V
•^-/•4 — l \ i * ' l ï •*/ Z ) * •*' 1 i^ " Z ^ - V • " * ï «^ 1 T^ •** Z ^ ^ V -̂> ' j ^ 11^ ^!_ * f

/7 f / \ i ^ . /rC „ î ^ , / r ï 11 /v, II ^ - «,̂ 1
/ , »* J I /y* -| T* o 1 * ^— 'T* î ^ T* o <̂ ^ A / / T* 'T* -i I T * O ^ ^ \ / x 1^ 11 'T" 11 o ^^ T̂  >

• " 5 i v 1 î ^ Z } ' Ji/\ | ^ ut/ ^ ^ ^ V ^ ' 5 «jk 1 1̂  «^ Z ^ ^ » « ' ^ 11 I ^ ^**" J

Within each zone the area of {x — Qi} O C is easily calculated using
the formula

2

r a cos - — hr \ 1 - -2 A \ , /- //^
T V V r

which gives the area of the région S of Figure 2, where h is the distance
from the origin to the line /.

Figure 2. - Circular segment 5.

In order to give a compact expression for pi we introducé the fonction

1 i
p (t) — — (a cos (t) — t y 1 — t2)

7T

Then within each zone, the probabilities pi are easily shown to be given by

• Zone Z\

V\ (x) = 1

502 lx) = 0
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Zone

Zone

• Zone Z4

• Zone

Pl (x) = 1 -

VI (ar) = 0

P3 (a;) - 0

(ar) = p f \xi -

(X) = 1 - V2 (x)

/ \ r\

P4 (x) = 0

pi (ar) = 1 -

P2 (a;) = p

P3 {x) = 0

P4 (ar) = p
\x\ - x2\

\/2r

Pi (x) = l~
\x\

~ VZ (x)

P3 (ar) =
X\

2r27T

~x2\

= P

This concludes the description of the five subcases and leads, as shown
above, to the détermination of the pi, i = 1, 2, 3, 4 in the whole plane. Hence
we can détermine the gradient of the expected distance with the norm loo.
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In order to obtain the gradient of the expected l\ distance, the required
probabilities can be evaluated after rotating an angle ?r/4 the demand set.

Now as an application consider the following location situation: some fire
vigilance posts are placed on a forest. One can assume that régions covered
by these posts are circles. Let us suppose known the expected fire alarm rate
Xi associated with the z-th circle in the period of interest (alarms per hour). A
fire station minimizing the expected distance to the fire must be located. The
use of the Zi;OO norm in this case might be applicable due to the existence
of fire-break, which limit movements to the travel directions of this norm.

To give a numerical example we use the gradient method [2] to solve
the problem with all the X% i — 1, . . . , n equal to 1 and coordinate posts
and radii given in Table I.

TABLE I

Demand régions

Demand région

Ci

c2

c4

c5

Radius

3

1

1.5

2

1

ai

8

12

13

2

1

a2

10

3

6

6

1

The following form of the norm is used

and the problem is solved for the different values of \i from 0 to 1 with
stepsize 0.01. For each ^, the algorithm was stopped when the norm of the
gradient was less than 10~3 and the différence between the coordinates of
two successive solutions was less than 10"4.

A curve fitting the solutions obtained is represented on Figure 3.

5. THE U/MU/1/TL/ \J Ri/h MODEL

The aim of this section is to show how the methodology developed in
section above can be applied to solve a location problem when both the
facility and demand have an area. We obtain formulae for the gradient
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5 10 15 7.6 7,7

Figure 3. - Fitting solutions.

of the expected Zi -distance between two rectangles with parallel sides to
the coordinate axes. Although in this case the problem could be solved
exactly by others methods, the strategy proposed here can even be applied
to the calculation of the gradient of i/p, for any other polyhedral gauge and
polyhedral régions.

The model dealt with is the Generalized Weber Problem with several
rectangular-area demands, one rectangular-area facility, mixture of uniform
distributions over the rectangles and distances measured by the /i-norm.

In order to obtain the gradient of the objective function we consider,
without loss of generality, a square 5 centered at the origin with side length 2
and a rectangle R centered at the point (aso, J/o)» w r th side lengths 2 a and
26 respectively. Note that it is always possible to reduce the calculations
to the case where XQ > 0, yo > 0.

Let ipR (tt, v) and V ̂ R (U, V) dénote respectively the expected h -distance
from a point P = (it, v) inside S to R and its gradient. As in Section 4,
let Q% = {x G R2 : ||a:||i = vi xf}, i = 1, . . . , 4, where ^ = ( 1 , 1),
v2 = ( - 1, 1), v3 = ( - 1, - 1), v4 — (1, - 1). We first obtain the expressions
for V t/jji (u, v). Four different cases must be considered.

Case 1. The rectangle R is contained in the set P + Q\.

Case 2. The rectangle R intersects the sets P + Qi, P + Q4 and is
contained in P + (Q\ U Q4).

* , « ) = - v -
b
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Case 3. The rectangle R intersects the sets P + Qi, P + Q2 and is
contained in P + (Qi U

Case 4. The rectangle R contains the point P.

V

The proofs directly follow from Theorem 4.1.

Our attention now turns to the computation of V ^ (0), the gradient of
the expected l\ distance from 5 to R. Four cases must be distinguished. It
is noted that by the symmetry of the shapes and by means of rotations with
±TT/2 and ±?r angles any other case can be reduced to one of those.

Let V = (xo — a, yo — 6), the lower, left vertex of R. The following
cases have to be considered:

Case A.l. The square S is inside the set V + Q3

V I/H (0) = ( - 1 , - 1 )

Proof: All the points inside S (see Figure 4) verify the Case 1 above.
Thus, by direct intégration one obtains the resuit. D

Figure 4. - Case A.l.
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Case A.2. The square S intersects the sets V + Q2, V + Q3 and is
contained in V + (Q2 U Q3)

Proof: In this case (see Figure 5) the points inside S belong to either
Case 1 or 2 above. The points inside the rectangle [—1, 1] x [—1, yo — 6]
are in Case 1. The points inside the rectangle [—1, 1] x [yo — 6, 1] are in
Case 2. Thus V vR (0) is given by

- j dv du )
J

Integrating the expression above the result follows. D

(xo - a, y0 + b) (x0 + a, y0 + b)

(-1,-1) (Case 1)

Figure 5. - Case A.2.

Case A.3. The square S intersects the sets V + Q3, V + Q4 and is
contained in V + (Q3 U Q4)

zo - a)2 -2 (XQ +a) + l
VuR (0) =

4a

Proof: In this case (see Figure 6) the points inside S belong to one of
the Cases 1 or 3. The points inside the rectangle [—1, xo — a] x [—1, 1]
are in Case 1. The points inside the rectangle [xo — a, 1] x [—1, 1] are in
Case 3. Hence

Vi/fl(0)

- ï UT" L'-1- - L L
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(XQ - a, 2/0 + b) (XQ + a, y0 + b)

(xo-a,yo-6)

Figure 6. - Case A.3.

Integrating the expression above the result follows. D

Case A.4. The square S contains the point V = (XQ — a, yo — b):

(XQ -af -2 Oo +a) (yo-b)2-2(yo + b) + l
46

Proof: In this case (see Figure 7) there exist points inside S belong to all
the four cases. The points inside the rectangle [—1, XQ — a] x [—1, yo — b]
are in Case 1. The points inside the rectangle [—1, XQ - a] x [yo - b, 1]
are in Case 2. The points inside the rectangle [XQ — a, 1] x [—1, yo — b] are
in Case 3. Finally the points inside the rectangle [XQ — a, 1] x [yo — &, 1]

(Case 2) »

(Case 1) 1

(-1,-1)
| l

-

Figure

R

,l)(Case 4)

(Case 3)<*»

7. - Case A.4.

Recherche

+ a,yo-b)
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are in Case 4. Hence

— 1, —1) dv du

i rvo-b u _ x \

+ / / , - 1
Jxn-a J-l V a J

Integrating the expression above the result follows. D
It may be remarked that, once one has an expression for the gradient, it

can be integrated into an optimization scheme similar to the one used in the
section above and the problem can be solved.

6. CONCLUDING REMARKS

In this paper we have addressed the Generalized Weber Problem with
Expected Distances, which includes as particular cases most Weber problems
studied in the literature. We develop a methodology to solve the gênerai
problem which avoids the difficult calculation of the expected distance
between two régions, because it only needs the calculation of the gradient,
which is in gênerai simpler.

We propose an easy method to compute the gradient, which reduces
its computation to the évaluation of some simple probabilities, when the
distances are measures by a polyhedral gauge.

Some properties of the Classical Weber Problem are extended to
the Generalized Problem. Localization results, stability and geometrical
characterization of optimal solutions,, or even the détermination of the optimal
shape for the facility when the area is fixed are open questions which are
now under study.
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