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MOMENTS OF AN AMPLITUDE PROCESS IN
A RANDOM WALK AND APPROXIMATIONS:

COMPUTATIONS AND APPLICATIONS (*)

by P. VALLOIS (l) and C. S. TAPIERO (2)

Abstract. - This paper évaluâtes the first two moments of the inverse of the range process in
a symmetrie Bernoulli random walk. Applications providing a strong motivation for this problem
are considérée.

Keywords: Stochastic processes, range process, quality control.

Résumé. - Cet article évalue les deux premiers moments de l'inverse du processus de l'amplitude
d'une marche aléatoire symétrique. Des applications motivant ce problème sont considérées.

Mots clés : Processus stochastique, processus de l'amplitude, contrôle de qualité.

INTRODUCTION

The purpose of this paper is to consider the range process for a discrete
random walk. This problem is of considérable usefulness in the control of
variability. For example, it can be used to test the variability of a random
walk, in providing statistical tests for the détection of outliers and in gênerai in
testing the variability of stochastic processes (such as stock priées, exchange
rate mechanisms, control of production processes, etc.). Applications are
considered in subséquent papers, although some simple examples are treated
hère. This paper dérives both the probability generating function as well as
its first two moments. A single parameter standardized version is obtained
whose mean is 1 and whose variance converges quickly to 1/3.
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THE RANDOM WALK MODEL

Consider a symmetrie Bernoulli random walk and let XJ, i = 1, 2, • • • be
the record of this process. Namely, at any time t + 1, the process can either
increase or decrease by a unit with the same probability, or

Xt+i = xt + et, xo = 0 (1)

with

r + l w . p . i / 2
l - 1 w.p. 1/2

where et are independent random variables as defined above. The probability
distribution of x at time t is well known and given by the binomial
distribution. Consider now the range of an on-going process and let the
range at time t be Rt,

Rt = Max [xi, X2, X3, • • •, xt] — Min [xi, X2, #3, • • •, xt] (3)

A controlled process will have a predictable range process, while an
uncontrolled process points out to some unlikely process variation.
Practically, range control can help locate and control outliers (which is
often very important to do). The range process was first introduced by Feller
in 1951 (Feller [2]) who remarked that it is in gênerai difficult to compute
the Rt distribution for a fixed t. Wetherhill [6] indicated that this process
has so far not been studied, although Grant and Leavenworth [3] pro vide
some approximation. Since Rt is a growing process, we can, equivalently,
study its inverse process. Namely, this is the first time that the process has
a range which is greater than n, or,

0 ( n ) = ï n f ( i ^ O ; Rt > n) (4)

Clearly, { Rn < a } is equal to { 9 (a) ^ n } and therefore the law of Rt
can be studied equivalently through the probability law of 6 (a). Such a
resuit is given by Vallois [5] who shows that if Xe^ dénotes the Bernoulli
random walk value when the process amplitude (the range) first reaches the
value a, then the following holds:
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Further, if F {z\ a) dénotes the probability generating function of the first
time the range attains the amplitude a, given by

(6)
3=0

with,

where a is a solution of the following quadratie équation and is therefore
a function of p,

px2 -2x + p = 0 (8)

A proof of these results can be found in Vallois [5]. Our purpose hère is to
develop an alternative représentation of the probability generating function
through which we can calculate the expected value and the variance of
that first instant when the process attains an amplitude of given size. These
two moments can be used to construct approximate tests on the range in
a random walk.

PROPOSITION 1: Let 9 (a) be the first instant that a process attains the
amplitude a, or

0(a)=Inf{*>O, Rt ^ a} (9)

Then the mean of 9 (a) is given by,

(10)

Proof: Since a is fixed we dénote by F (p) = F (p; a). Let the Probability
Generating Function be written in the following form:
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Thus, we have

which implies that

which we dérive to note that

2 ( 1 - a 2 ) ,

2 a

0(a)

2\2a2)

and since

h! (1) - o

The previous équation can be transformed in the following form:

and therefore we obtain the equality,

.E{6{a))= -ti'(l)

A second derivative of h(-) using L'Hopitale's rule leads at last to
h" (1) = - ( a ( a + l)/2) and to E (6 (a)) = a(a + l ) /2 as stated in
the proposition.

Q.E.D.

We consider now the second moment. To do so, we calculate another
expression of the Probability Generating Function which will eliminate the
discontinuity at p — 1. To do so, first we write,

[1 + v/l - p2]n = an (p) + bn (p) y/\ - ai)
where

2fc+l<n

(12)
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Of course, an (1) = 1 and bn (1) = n. These équations can be written in
a recursive form,

(p) = an (p) + bn (p) (1 - p2) (13 a)

bn+i (p) = bn (p) + an {p) (13 b)

We shall also use for convenience the added notation»

cn (p) = (1 + P) an (p) + bn (p) (1 - p2) (13 c)

dn(p) = an(p) + (l + p)bn(p) (13 d)

en (p) = (pn + an (p)) (pn+1 + an+1 (p))

+(l-pi)bn(p)bn+1(p) (13 e)

fn (p) - bn (p) (p^1 + an+1 (p)) + 5n+i (p) (pn + an (p)) (13 f)

Finally, to avoid any confusion, we set an = an (p)} bn = bn (p). On the
basis of this notation we prove the following proposition.

PROPOSITION 2: The probability Generating Function (7) can be written as
follows:

and further

en(p)dn(p) = cn(p)fn(p) (15)

Proof: Let a = ot{p) and thus write,
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a)an= \-
- p2~\ fan -P2

p j v Pn

an (1 + p) + bn (1 - p2) + (on + (1 + p) bn)

Cn + dn

Further,

, ,

1

and thus,

Consequentiy,

a

p„.-r* ,?n+an + bn\/l-p
2)

x (pn+1 + an+i + bn+i \/l - p2)

(en + / n
02n+l

Ên + /n V I - -

Multiplying through its conjugate value, we obtain,

2 p " (On + dn
F (p; n) -

or

F(p, n) =

-PL

l - ƒ2 (1 - p2)
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Now set Q (p) = e^ — f% (1 — p2). Since an and bn are polynomial functions
of p, en and ƒ„ are necessarily polynomial functions and therefore Q is also
a polynomial function with,

The rational functions defined above have a non null denominator and
therefore the Probability Generating Function in the neighborhood of p = 1
is in class C°°. As a resuit, we obtain,

&n u>n C"n Jn = U

as stated in the proposition. Therefore it is easily shown that

r ( , 2pn(cnen-dnfn(l~p2))

Since

Jn == ̂ n u>n/Cn

the Probability Generating Function is reduced to the simpler form stated
in the Proposition,

F( x 2 p ( c n e n ( e n 4 / c n ) ( l p 2 ) ) _ 2pncn
[ P ' U )

 e 2 { e d ) 2 { 1

Since we also have cn/en = dn/fn the expression stated in the proposition
is proved.

Q.E.D.

This new formulation of the Probability Generating Function will now be
used to calculate the second moment. Unfortunately, it involves a number
of complicated computations to be performed first For some function ƒ,
define the following function,

f(x) = f(l-x) (16)

Using this notation, we shall compute the functions dn (rc), fn (x) and use,

F(z)fn(x) = 2(1-X)ndn(x) (17)

with F (x) = F(x; n). Further, based on the polynomial development of
these functions we state the following Lemma:
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LEMMA 1:

2n0

àn (x) = Y! x*xk <18)
Jfc=0

where

I n

2̂(fe - m)/ \ m

2-n-i

[n - 1
ni = 2 I '

n \ f k — m
m

Proof: We prove équation (18) first. Since,

fc=0

E fc+m ofc-

By using a change of indices such that k + m = l and m — m, we note
that 0 ^ / < 2 no. Further, the inequalities O ^ m ^ n o , m ^ / c = / - m
and A; — / - m < no is equivalent to the foliowing system 0 ^ 2 m ^ 1
and l — no ^ m which leads finally to the inequality used in (18), or
(l — n o ) + ^ m ^ 1/2 (where we used k rather than /)• I n a similar manner
we can proceed and obtain the proof for bn (x) as shown in équation (19).

Q.E.D.
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In particular, note that Ào = 1 and I/Q = n. Further, if n is even then
\n 1 +

no = n/2, n\ — 1 and no = n\ — (n — l) /2 if it is odd.
(2 J

LEMMA 2:

oo

dn (x) = y (A& + 2 i/fc — V]z—i ) x " (20)

fre convention that

i/-i = 0, A* - 0,

Ayu/ = 0 for k > 2no and kl > 2 n\

Proof: Since

dn (x) = an (x) + (2 - re) 6n (x)

where

oo

&n (x) =

oo
. „ft

oo

fc=0 ft=l

as stated in (20).

Q.E.D.

Although it is difficult to compute fn (x) for all n, we can calculate it
for orders up to 2. To do so, we first note the following results using the
above lemma.

LEMMA 3:

Ao = 1, Ai = n (n — 1),
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n ( n - l ) ( n - 2 )
u0 = n i/i = * ^ S

„ > 5 j (22)

OU

n > 5

( 2 3 )

/- A direct development of (18) leads to (21), while (19) leads to (22)
and thus using (20) we obtain (23). Explicitly, we have:

m = 0

which leads to:

as stated in (21).

_n(n-ï)(n-2)

x [(n - 3) (n - 4) - 5]

( n 7 T C + 7 ) ; ^ 5

Finally, to compute (23), note that

x 2 n ( n - l ) ( n - 2 )
Ai + 2 z/i - i/0 = n (n - 1) + —^ - ^ - n

Ó

= |(n-2)(2n + l)

and
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A2 + 2 V2 - i/i = ^ - - (n2 - 5 n + 3)

15
n (n - 1) (n - 2) _ n (n - 1)

3 ~ 30
x (2n3-13n2 + 7n + 7)

Q.E.D.

LEMMA 4:

ƒ„ (x) - 2(2n + 1) + £ (10n2 - 9n - 7)z

+ " ( " ~ 1 } (34 n3 - 81 n2 - n + 24) a;2 + 0 (rr2) (24)
U

Proof: As stated earlier [équation (13/)], we have

/ n (x) - bn (x) (o„+i (x) + (1 - ^)W+1) + 6n + 1 (a:) (an (x) + (1 - a;

where

ân (x) = 1 + n(n - 1) x + —~ (n2 - 5 n + 3) x2 + 0 (x2)

(V

(n — 1) (n — 2) n (n — 1) (n — 2)
5 i i ^ ^ x + ^ ^ ^

(n - 1) (5 n - 1) (n - 1) (n - 2)
= n 2 + ^ ^ ^ x + ^ J~ ^
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n(n~ 1) O r r ^ , OO\„2(Yin1 - 55n + 32)x
30 v ;

Inserting these équations above in fn (x), we obtain équation (24).

Q.E.D.

Finally, we turn to Lemma 5 which will be used subsequently to compute
the variance.

LEMMA 5:

tOMlll . )- . ) ) . ' -1"'1;""^ (25,

Proof: We begin by letting Fn(x\ n) = 1 + 71 a; + 72 ̂ 2 + O (re2). From
équation (17) we dérive,

F (x; n) fn (x) = 2 (2 n + 1) + { 2 71 (2 n + 1)

= 272(2n + l) + -(10n2 - 9 n - 7 ) } '

oU

ar]B = 1 - nx
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This leads to the following équations,

27i(2n + l) + ^ ( 1 0 n 2 - 9 n - 7 ) = 2 ( J (n-2) ( 2 n + l ) - n ( l + 2

and

ri =2r2

The first équation leads to,

^ -6n-4-6-12n)

and after its solution to:

n(n + l)
71= —

As noted earlier, F ' ( 1 ; n) = - F ' ( 0 ; n) = - 7 1 , providing thereby
an expression for the mean. For the second équation, this leads to,
2 (2 n + 1)72 = (n/30)r3, where

r3 = 2 ( n - l)(2n3 - 13n2 + 7n + 7)

- 20 n (n - 2) (2 n + 1) + 30 (n - 1) (2 n + 1)

+ 5 (10n2 - 9 n - 7)n(n + l) - (n - l)(34n 3 - 81 n2 - n + 24)

Since 10 n2 — 9 n — 7 = (2 n + 1) (5 n — 7), extensive manipulations of the
previous identity lead to:

and finally to:

F" (1; n) - F" (0; n) = 2 7 2 = E (6 (n) (9 (n) - 1))

Q.E.D.

With these Lemma, Proposition 3 provides the variance estimate of 6 (a).
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PROPOSITION 3: Let 9 (a) be again thefirst instant that a process attains the
amplitude a, then its variance is given by,

Var (9 (a)) = ( - P «(" + P ( « + 2) ( 2 6 )

Proof: Using the previous results, the proof of this proposition is
straightforward. Note that

E (9 (a)2) = E(9 (a) (0 (a) - 1)) + E (9 (a)) = | (a2 - l)(a + 2)

+ a ( a + i ) = a ( a + l) 2 + 2 a _
2 6

As a resuit, the variance of 0 (a) is given by,

) p ^ + 2.l|

_ ( a - l ) a ( a + 1) (a + 2)
" 12

as stated in the proposition.

Q.E.D.

Using these two propositions it is possible to standardize the distribution.
Explicitly, consider the following random variable which is divided by its
mean. The mean will therefore equal one, while the variance is

Var (g (a)) _ (a - 1) (a + 2)
[E (9 (a))]2 " 3a (a + l)

When a increases, this variance tends to 1/3. For example, for an amplitude
of 9, this variance equals already (1/3) (88/90). This standardization can of
course be used to construct Tables and use approximations using other
distributions. If the unit for the amplitude is very small, we obtain
approximately,

In order to test the validity of these results extensive simulations were
performed, the mean and the variances calculated. The results obtained have
confirmed the theoretical results derived hère. Of course, using simulation,
higher order moments can be computed and the simulated probability
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distributions constructed. These can be used to construct statistical tables as
well as test approximations using simpler and well documented distributions
(such as Weibull, Gama, inverse Gaussian distributions and distributions
with three or more parameters).

APPLICATIONS

Exchange Rate Controls

Let x% be an exchange rate process and assume that we seek to control the
process variability through measurement of the time consumed to reach a
given amplitude. In other words, let there be some exchange rate (amplitude)
variation R observed at some given time t. Can we infer that this observation
is unexpected? Similarly, given bounds for exchange rate variations, we can
estimate the "normal" time for the exchange rate to exit these bounds (and
thus require the intervention of the Central Bank). Say that measurements
occur in the time interval (0, t) and let the maximal amplitude be A observed
at time T. Standardize this observation by dividing by A (A+ l ) /2 . Namely,
we record 2T/A(A + 1). For discussion purposes, assume that we use a
Weibull approximation with parameters a and c (appropriately computed by
equating the first two moments),

E(2t/A(A + 1)) =

and

Then the probability of recording an amplitude A before or a time T is
given by:

Û V) = exp I - (^ j 1, where y = 2 T/A (A +1)

which can be used to construct confidence intervals and test hypotheses
regarding the occurrence of amplitudes in exchange rate variations. Further
research is required however, using appropriate stochastic models of
exchange rates variations.
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Statistical Tolérance Limits

Statistical tolérance limits are defined by:

Prob \ f f(x; 9) dx ^ ë\ =a

with a and b random, are an important tooi of quality control. These limits
are used to indicate with a given probability a the amount of variability
that one can expect in at least 100 <S percent of the specimen tested in a
production process. As a resuit, the statistical tolérance limits provide an
estimate of the process variability. Of course, to calculate the distribution of
(a, 6), the amplitude (b — a) distribution is required. Then,

Eaybï>rob\f f(x; 9)dx^s\ =a

When the process is described by a random walk, this approach is no longer
feasible. Using our results, we can define a statistical tolérance limit as the
probability for the amount of time needed to attain a given boundary. The
larger this time, the more stable the process and vice versa (assuming of
course, that the process is controlled in the mean). Explicitly, for an amplitude
yy the probability that this amplitude is reached prior to T is, P {9 (y) £ T).
Thus if y is a maximal (and tolerable) amplitude, the probability that the
amplitude will be smaller than y in a given time interval T is given by

f
which provides an alternative measure of process stability. These and other
applications such as the détection of outliers, inventory control and so on
provide important motivation for the study of amplitude processes in random
walks and will be considered in subséquent research.
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