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STABILITY OF NASH EQUILIBRIA IN LOCATIONAL GAMES (*)

by J. BHADURY (*) and H. A. EISELT (*)

Communicated by Brian BOFFEY

Abstract. - Consider a locational game on a network in which two competing facilities charge
ftxed, but not necessarily equal, priées and the décision variables are their respective locations.
Rather îhan deciding in a given situation whether or not an equilibrium exists, we devise a stability
index that measures the stability or instability of a given situation. In other words, given that an
equilibrium exists, our index indicates how much externat effort (or subsidy) is required to destroy
that equilibrium; if equilibria do not exist, the index shows how much external effort (or tax) is
needed to "générale" an equilibrium. Computational évidence for randomly generaled problems
is presented.

Keywords: Compétitive location, Nash equilibria, stability.

Résumé. - Nous considérons un jeu de localisation dans un réseau avec deux établissements
compétitifs, des prix fixes, mais pas nécessairement égaux. Les variables de décision sont les
localisations des établissements. Au lieu de déterminer s'il y a un équilibre dans une certaine
situation, nous construirons un indice de stabilité qui mesure la stabilité ou l'instabilité d'un
arrangement de localisations. En d'autres termes, si un équilibre existe, notre indice indique combien
d'effort extérieur (ou de subvention) est nécessaire pour détruire cet équilibre; si l'équilibre n 'existe
pas, l'indice indique combien d'effort extérieur (ou d'impôt) est nécessaire pour « générer » un
équilibre. Nous présentons des résultats sur une série des problèmes générés de façon aléatoire.

Mots clés : Problèmes de localisation compétitive, indice de stabilité, résultats numériques.

1. INTRODUCTION

The model that forms the basis of this paper has its roots in the work
of Hotelling (1929). In his model two dupolists locate on a linear market,
Le. a line segment with potential customers evenly distributed along the
market. The products offered by the competitors are homogeneous, and
customers make their purchases from the cheapest source. The décision
variables available to each of the two competitors are price and location.
Hotelling concluded that if both duopolists were to charge equal prices and
locate at the center of the market, a Nash equilibrium would be reached,
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2 0 J. BHADURY, H. A. EISELT

Le. a situation in which neither competitor can unilaterally improve its profit
by changing its price or location. Even though d'Aspremont étal (1979)
showed that Hotelling's argument was flawed, his analysis has become the
basis of a plethora of compétitive spatial models put forward by researchers
over the last sixty years.

Most subséquent authors have focused on existence and uniqueness of
equilibria in Hotelling models. For some introductory surveys, the reader
is referred to Graitson (1982), Greenhut étal. (1987), Friesz étal (1988),
Hakimi (1990), Gabszewicz and Thisse (1986 and 1991), Eiselt et ai (1993),
and Labbé et ah (1993). The discussion of equilibria is the focusses almost
exclusively on the yes - no dichotomy: either an equilibrium exists or it
does not. Clearly, life is more subtle than that (and so is the theory of
location games!). For instance, in physics we distinguish between stable (or
self-restoring), neutral, and unstable equilibria. A similar approach is taken in
this paper, where we replace the "equilibrium - no equilibrium!' dichotomy
by a continuüm that is separated by a "stability line", a line that séparâtes
equilibria from non-equilibria. Loosely speaking, points on the continuüm
express the degree of stability (instability) in case an equilibrium does (or
does not) exist by the distance of a given situation from the stability line.
The introduction of stability in the discussion of compétitive situations is
not entirely new, though. Schofield (1978) studied stability in the context
of dynamic games, more recently Kohlberg and Mertens (1986) and Wilson
(1992) have employed the notion of stability in genera! two-person games.
Stability of equilibria is also a topic that is well known and studied in
political science and voting theory, see, e.g., Kramer (1977) and Tovey
(1991 and 1993). The discussion in this paper will focus exclusively on the
stability of locational games.

The remainder of this paper is organized as follows. In the second section
we introducé our basic model and develop the stability index. In the third
section we discuss the case in with equilibria exist, in the fourth section
we investigate the case of disequilibria, and in the fifth section we present
some results of computational experiments. We conclude by offering some
thoughts on possible extensions of our results.

2. THE BASIC MODEL

Even though our arguments can be applied to compétitive location
problems with any number of competitors in arbitrary spaces, we will
illustrate most of our concepts for a duapoly on a graph. For that purpose,
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STABILITY OF NASH EQUILIBRIA IN LOCATIONAL GAMES 2 1

define a graph G — (V, E) with set of vertices V = {vi, V2, . . . , vn} and
set of edges E = {e^ : ^ , ^j E F} . The demand is assumed to occur only
at vertices and is fixed (implying that we are dealing with an essential good),
its magnitude is w (vi) > 0, VVJ G V. Let a positive distance be associated
with each edge and the distance between two vertices V{ and Vj is then
defined as the shortest path between vi and VJ , denoted by dij. Competitors
A and 5 are currently located at vertices VA and VB, respectively. Both
charge mill prices, Le, customers piek up the good at the facility and have to
pay for the transport separately. The mill prices are PA and p$, respectively,
so that, given unit transportation costs, the delivered prices of a customer at
Vi are PA + cU* from facility A and PB + diB from facility B. Customers
purchase from the facility that offers the lowest delivered price.

We can generally distinguish between two models concerning customer
behavior.

(a) "Winner-take-air means that a customer at a vertex v% purchases w (v{)
units from facility A, if PA + ^A < PB + d%s, and similarly from facility B.
In case of equal delivered prices, customers satisfy their entire demand from
the supplier with the lower mill price. This assumption is quite arbitrary and
made solely for the reason of unequivocally describing the competitors' profit
functions. Changing this assumption does in no way impede our arguments.

(b) In a "proportional model" customers purchase from both facilities. The
proportion of their demand that they satisfy from a facility dépends on the
relation between the two delivered prices. In this paper we assume that a
customer at v% will purchase {(ps + diB)/[{pA + diA) + (PB + diB)] } w (vi)
from facility A and { (PA + ^ A ) / [ ( P A + ^ A ) + (PB + (UB)] } w (vi) from

facility B. As an example, if the mill prices charged by A and B are
3 and 5, respectively, and a customer is located 7 miles from A and 3 miles
from B, then the delivered prices are 10 and 8, respectively, and if the
demand of the customer is 54, then in this model the customer will purchase
[8/10 + 8] (54) = 24 units from A and [10/10 + 8] (54) = 30 units from facilityS.

In both the winner-take-all and the proportional model, facilities A and
B compete exclusively by adjusting their locations. More specifically, the
planning facility will consider its opponent's location temporarily fixed and
relocate to the vertex that offers the highest profit. We will refer to a
locational game with simultaneous moves, if A and B (in a gênerai n-person
game: all players) optimize and relocate simultanously. Similarly, we call a
locational game sequential, if facilities A and B optimize and relocate in
an alternating séquence (in gênerai n-person games: in a fixed order). In
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2 2 J. BHADURY, H. A. EISELT

this paper we only consider simultaneous moves. Note that this also implies
that we cannot prohibit location of the facilities at the same vertex as is
possible in case of sequential moves. We assume inertia to prevail, Le. if a
competitor's highest profit is achieved at its current location as well as at
some other vertex, it will not move.

With the above assumptions, we are now able to construct an index that
measures the stability of locational arrangements on a given graph. Loosely
speaking, the stability index developed in the following measures how much
incentive, Le, subsidy, it takes to destroy an equilibrium provided one exists;
or how much disincentive, Le. tax, it takes to create an equilibrium, given
that none exists in the original model.

3. THE CASE OF EQUILIBRIA

We first consider the case in which equilibria exist. To facilitate the
discussion, we consider any one of the equilibria. Dénote the current profits
of the facilities by p^ and pg, respectively. By définition, given facility
B's current location, there is no place A could move to and achieve a
profit level higher than p ^ ; the same is true for facility B. Let now
PA~2 (Hl" 2 ) dénote the highest profits A(B) could possibly enjoy if it
were forced out of the equilibrium under considération; the superscript
indicating a facility's move from equilibrium to the second-best solution,
given its opponent's current location. Then A + PA (A+ ps) is the smallest
possible loss facility A (B) would sustain if it were forced to move out
of equilibrium, provided facility B (A) does not move. Ignoring inertia
for a moment, A + PA = PA~~ PA~2 *S m e dollar amount which leaves
the décision maker at facility A indifferent between statying at its current
location and moving to the next-best location. Defining A + PB similarly,
we can then compute A+=min{ A + pA\ A + pB }, so that A + + e with
e > 0 but arbitrarily small, is the smallest subsidy which, if offered to each
of the players for moving out of his current location, would be accepted by
at least one of them, and thus destroys the equilibrium. Note that in case of
multiple equilibria, we would have to compute A + values for each of them,
the maximum value among all A + plus some small e is then sufficient to
destroy any of the equilibria in the model.

It stands to reason that a problem, in which it takes a lot effort or money
to convince facilities to move out of an equilibrium, will be called stable.
Similarly, if small amounts of subsidy are sufficient to make facilities move
out of their equilibria, the problem will be considered fairly unstable. Hence,
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we use the expression A + as indicator for the stability of a problèmes
equilibria.

We should point out that our stability index as defmed above is a purely
local criterion in the sense that it only considers how to convince facilities
to move out of an equilibrium situation; what happens after such a move is
completely ignored. A one-time subsidy payment such as the one discussed
here will temporarily move facilities out of an equilibrium, but in repeated
subséquent moves the facilities may return to the same equilibrium as appears
to be the case in many situations. The situation is different if the subsidy
were offered in each step. However, if the facilities actually do return to
an equilibrium or if the system is permanently thrown out of equilibrium
is of no conséquence here.

As an example for the computation of the stability index consider the case
of two facilities locating at the vertices of a tree. Suppose that facilities locate
at the same vertex, and assume that their mill prices p are fixed and equal.
It is well known that an equilibrium is reached if both facilities locate at a
médian, see, e.g., Eiselt and Laporte (1991). Dénote the médian by vq and
let T-j3, Tjf, ... be subtrees that are generated by deleting from the given tree
vq and all edges incident to it. The weight of a tree or subtree is denoted by
w {Tf) and defined as the sum of weights of all vertices included in the tree.
We can now order the subtress, so that w{Tf)>w(Tj), Vi < j . Finally,
define vq as the unique vertex in T% that is adjacent to the médian vq.

With A and B locating at vq at equilibrium, the two facilities share the total

demand w (T) equally, Le. sales of the two facilities are SA = SB — 7:^ (T)

and profits are p\ = pf = - pw (T). Assume now that facility B were forced
out of equilibrium to any other vertex on the tree. Eiselt and Laporte (1991)
have shown that f?'s best option would be to locate at vq9 thus capturing

sales of 5A = w (T*)< ~w(T), leaving the remaining w (T)-w(T^) to A

Consequently, pf~2 = p[w(T) - w(T%)] and pf~2 = pw(T^). Facility

B's loss is then p - w (T)-w (7f) . The computations would be identical
L J

if facility A were to move out of equilibrium rather than B, thus our stability

index is A + = p - w (T)-w (7f ) . This implies that whenever the weight
of the largest subtree generated by the médian is small, our stability index
A + assumes a large value. This coincides with the intuitive notion of stability
as a small weight of the largest subtree implies that the weight of the entire
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tree is widely distributed among the subtrees. Such a distribution would
be considered balanced, a situation that is usually associated with stability,
confirming the above result.

4. THE CASE OF DISEQUILIBRIA

In this section we consider the case in which equilibria do not exist. Define
pr

A (t) as the profit that is realized by facility A in period t, and similar
for pr

B (£). Furthermore, let pa
A (t) dénote the profit facility A anticipâtes to

achieve in period (t+1) while it plans in period t to maximize its profit in the
succeeding period, assuming that facility B remains at its current location.
Then A~ PA (t) = pa

A (£) — pa
B (t) indicates the benefit derived by facility

A when it relocates, and similar for A~ pg (t). Clearly, if A~~ PA (t) > 0,
facility A will move, assuming zero relocation costs. In other words, it
would take a fixed disincentive, or tax, of A~ PA (t) to stop facility A from
moving in period t. Neither facility will move provided that A~ pA (t) < 0
and A~pB(t)<0. Defining A~ p(£) = max{ A~ pA (*); A~ pB (*)}, we
can state neither facility will move in period t as long as A~ p (t) < 0. Then
a disincentive of A~ =mint { A~ p(t)} assures that the relocation process
stops eventually. We know, but for the moment ignore, the fact that the value
A~ clearly dépends on the initial location of the two facilities. Moreover, we
will see that it also dépends on the choice of tiebreaker. In other words, if a
facility that considers relocation has more than one optimal choice, we have
to specify the rule for choosing the next location. In essence, this leaves us
with four cases to consider:

(a) The initial location is fixed and so is the tiebreaker rule.

(b) The initial location is fixed and ties are broken randomly.

(c) All initial locations are considered the tiebreaker rule is fixed.

(d) All initial locations are considered and ties are broken randomly.

For computational convenience we will dénote the disincentives required
to interrupt the process of relocation in the four above by A~, A^~, A~,
and A^~. A few simple relations about the disincentives in the four cases
are readily apparent. For instance, A~ < A~ and Â ~ < A^\ Also, in case
(a) there is only one cycle which has to be interpreted whereas in case (6),
there may be many and since the idea is to stop movements eventually, it
is sufficient to interrupt any of the cycles, hence A^ > Â ~ and, similarly,
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A simple example of a location problem on a linear market may explain
cases (c) and (d). Let a linear market, Le, a line segment, extend from 0 to L
with L/2 denoting the center of the market. Two facilities A and B can locate
anywhere on that market. Following Eiselt (1992), we can define sufficient
spatial séparation (S S S) as a distance equal to the price differential charged
at the two facilities. If two facilities are at least SSS apart, then neither
of them is eut out. The concept of SSS is similar to Eaton and Lipsey's
(1975) "zero conjectural variation", the latter being, however, a behavioral
assumption whereas SSS is simply a measure of distance. Formally, let p^
and PB dénote the fixed priées charged at facilities A and B, respectively,
and assume that PA < PB- Now, whenever facilities A and B are less than
SSS — \PA — PB | distance units apart, then the cheaper facility A undercuts
the more expensive facility B, leaving the latter with no market at all. On
the other hand, if A and B are farther apart than SSS, then each captures
its own hinterland (Le, the area facing away from its opponent) and some
of the compétitive région between them. Consequently, A will always try
to locate closer than SSS to B and gain the entire market, whereas B will
locate SSS + e, e > 0 but arbitrarily small, distance units away from A
towards the longer side of A. In doing so, B does not get anything in the
compétitive région but captures its own hinterland. If SSS > L, then A could
locate at L/2, eut out B anywhere on the market, and capture everything.
Consider now the case of SSS < L and let x and y be two points given by

x — - [L — S S S] and y — - [L + SSS] as shown in Figure 1. Suppose now
that facilities A and B engage in sequential relocation, where one facility
relocates so as to maximize its profit, then the other facility maximizes
its own profit on the basis of its opponent's location. This process is then
repeated until either an equilibrium is reached, or, in case no equilibrium
exists, it continues indefinitely. We first show that, regardless of the facilities'
initial locations, facility A will eventually locate between points x and y.
Suppose this were not so. Without loss of generality, let A locate between 0
and x, Based on the above discussion, B then locates to the right of A at a

SSS/2 SSS/2

U2 y l

Figure 1.
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distance of SSS + e . B may now be located to the right or to the left of x,
but it surely locates to the left of y. Assuming that A moves just as much
as absolutely necessary, it moves to the right just enought to be closer than
SSS to B. This move again pushes facility B to the right. The relocation
continues until A locates at or to the right of x.

Suppose now that A is located between x and y at a point z as shown in
Figure 1 and assume that it is now £?' s turn to move. As A has just moved,
it controls the entire market and B's market share is currently zero, B now
moves SSS + e distance units to the right to point t. At t, B captures its own

hinterland which is - [L - SSS] — e, which is also U's gain in the move as
it captured nothing before. As £ G [0; SSSf2], £Ts gain is in the interval
[L/2 - SSS; L/2 - S S S/2}. If there were a relocation cost or tax of this
amount, then B would no longer move. This is our instability measure A~.
Note that for small values of SSS, Le. similar prices, ITs potential gain and
the instability index is large. This is not really surprising as similar prices
indicate a climate of active compétition in which a slightly more expensive
facility has a lot to lose when it is eut out.

Consider now the case of compétitive locations on a network G. In
order to compute values for A~, it is useful to construct a compétition graph
QC = ^Nc^ Ac^ a s SUggested by Eiselt and Bhadury (1993), The compétition
graphs for sequential and simultaneous moves are substantially different; here
we are only concerned with the compétition graph for simultaneous moves.
The set of nodes Nc = {(£, j)} is defined for each possible pair of locations
of the duopolists, Le. the compétition graph has O( |F|2) nodes. The set
of arcs 4̂ = {a^ kl} is defined as follows. Assume that facility A currently
locates at vertex VÎ and facility B locates at Vj in the original graph G.
Given üTs location at VJ, A's optimal location is at vertex t%, given Â?s
location at vi, B*$ optimal location is at vertex v\. If ties exist for the
maximum, arcs from VJ (vi) to ail such vertices Vk (yi) exist. As an example,
consider the graph in Figure 2 in which the double-digit numbers next to
the vertices dénote their weights and the single-digit numbers near the edges
indicate the distances.

Given prices PA = 3 and ps = 5, Figure 3 a shows the compétition
graph associated with the graph in Figure 2 on the basis of the winner-
take-all assumption. The compétition graph in Figure 3 b is based on the
proportional modeL

As an example for its construction, consider A and B both locating at v$.
Presently, facility A undercuts B and hence captures ail three vertices of
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27

500 300

Figure 3 a.

200

350

Figure 3 b,

the graph, whereas facility B gets nothing. The currently realized profits are
pr

A (£) = 390 and pr
B (£) = 0. Given B7$ location at v$, A's best option is to

stay at v^, still undercutting B and capturing the entire demand on the tree;
its anticipated profit is pa

A = 390. Similarly, given A's current location at i?3,
S's optimal strategy is to move to v\ or V2i in both cases B will capture
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the demand at vertices v\ and V2 for an anticipated profit of <pa
B = 350. Thus

the compétition graph has arcs leading from node (3, 3) to nodes (3, 1) and
(3, 2). Note that if a node in the compétition graph has outdegree zero, it
constitutes an equilibrium. In the case under discussion in this section such
a node does not exist. Finally, as discussed above, the smallest tax required
to stop any further moves at some point where A is located at v% and B at Vj
is A " p (t). In the above example, A" p (t) =max { 390-390; 350-0 } = 350.
In other words, if the two facilities were both located at v$, then a tax of
at least $350 would stifle any further moves and force an "equilibrium". In
the compétition graph, we assign such values A~ p (t) to all nodes. In the
following these values will be referred to as numerical labels.

We are now able to discuss the four aforementioned cases in detail. As
by assumption no equilibrium exists and the number of possible locations is
finite, facilities A and B must eventually reach a pair of locations that they
located at earlier. We will refer to any such path as a relocation path Pij.
In terms of the compétition graph, each relocation path has the shape of a
looking glass - a path leads from an original pair of locations (i, j) to some
other pair of locations (fe, l), and from there starts a cycle that eventually
returns to node (&, l). In other words, relocation paths in Gc consists of a
path and a cycle with the set of arcs on the path possibly empty. In case of a
fixed tie-breaking rule, only one relocation path Pij needs to be considered,
in case of breaking ties randomly (with each choice having a strictly positive
probability), all possible paths P%3 need to be known. The smallest numerical
label of a node on any path Pij is able to stop moves on that particular
path and thus constitutes the desired tax A~. We are now able to discuss
the four cases introduced earlier.

Case a: The initial locations are fixed and there is a fixed tie-breaking
rule. Only one relocation path Pij exists and A~ is the minimum over all
nodes on Pij. As an example, consider the location pair (t>i, vi) in the
above example and suppose that ties are broken according to a maximum
index rule. The relocation path is constructed directly from the compétition
graph and is shown in Figure 4 with the numerical labels A~ p (t) next to
the nodes. In this example it takes a tax of A~ =min{ 500, 300, 300, 180,
350, 210} = 180 to stifle all moves.

Case b: The initial location is fixed and ties are broken randomly.

Given that ties are broken randomly with each choice having a positive
probability, the goal is to interrupt the relocation process eventually. A
simple approach to accomplish this is to détermine all paths and cycles in

-Recherche opérationnelle/Opérations Research



STABILITY OF NASH EQUILIBRIA IN LOCATIONAL GAMES 29

Figure 4.

the compétition graph that can be reached from a given starting node (i, j);
A^ is then the minimum taken over the A~ values of all relocation paths so
determined. However, it is sufficient to détermine all nodes in Gc that can
be reached from the initial node (i, j ) . Then the smallest numerical label of
any of these nodes will indicate the disincentive required to stop relocations
at some time in the process. Finding the set of nodes reachable from the
fixed starting point (z, j) can be achieved by any of the well-known shortest
path methods. Then define Sij as the set of nodes that can be reached from
(z, j ) ; the desired value A~ is the minimum taken over the numerical labels
of all nodes in Sij. As an example, consider the problem in Figure 2 with
the compétition graph in Figure 3 a. Let the starting node again be (1, 1).
Detailed computations can be found in Table.

TABLE

a

0
1
2
3
4
5

Nodes reachable from (1, 4) in a steps

(1,1)
(1,2)
(2,2)
(2,3)
(3,3)

(3, 1), (3, 2)

A p (t) values

500
300
300
180
350

210, 210

From the last column we infer that Ab =180, so that a tax of $180 is
sufficient to force a standstill in the relocation process.

Case c: All initial locations are considered and the tiebreaker rule is fixed.
In principle, we could repeat the procedure described under case a for all
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possible pairs of locations, Le. nodes in Gc, and select A as the maximum
of all A~ values computed in case a. This task can, however, be simplified
considerably. Consider again a relocation path that starts at node (i, j)9 leads
on a path to (fc, Z), and the cycle returns to (fc, l), The minimum tax that
stifles the relocation process is either determined by an arc on the path or on
the cycle of the relocation path. However, not only relocations on the path
anywhere between (z, j) and (fc, l) must be stopped, but relocations on all
other paths as well. In particular, consider the relocation path that starts at
node (fc, Z). In order to stop its moves, it is mandatory to stifle relocation
on the cycle which is the same as the cycle part of the relocation path that
starts at (z, j). In other words, it is sufficient to consider a subgraph of
Gc that contains only nodes that are located on a cycle. We define such a
graph as the reduced subgraph Grc — (iVrc, Arc) which is obtained from
Gc by the following procedure:

- Delete all nodes with zero indegree and the arcs leading out of them.

- Repeat until no more nodes with zero indegree exist.

The reduced compétition graph of Figure 3 a is shown in Figure 5.

350

Figure 5.

We are now able to describe a procedure that finds Ac in polynomial time.

Step 1: For all nodes (z, j) in Grc, fînd the relocation path and label ail
its nodes that are also in Grc with node labels "(z, j)".

Step 2: Create a list L = 0 and let (fc, Z) be the vertex with the smallest
numerical label.

Step 3: Add all node labels of (&, Z) to L.
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Step 4: If L = JVrc, STOP; else let (&, I) be the vertex with the next
smallest label and go to step 3.

The gênerai idea of the above procedure is as follows. If a node (z, j)
has been assigned node labels (ki, h), (&2, ̂ 2), • *• , then node (i, j) is on
relocations paths that start at nodes (fci, li), (^2, Z2)» etc. In other words,
stopping the relocation process at node (.i, j) interrupts all relocation paths
that start at any of its node labels. We now have to find the lowest cost to
interrupt all paths, Le. find a collection of nodes the union of whóse labels
equals Nrc and whose largest numerical label is as small as possible. This
is achieved by the above algorithm.

Consider again the above example with the maximum index rule as tie
breaker. Here, nodes (2, 2), (2, 3), (3, 2), and (3, 3) receive node labels
[(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)] = Nrc and the remaining
labels are [(1, 1), (3, 1)] for node (1, 1), [(1, 1), (1, 2), (3, 1)] for node
(1, 2), and [(3, 1)] for node (3, 1). Tiie smallest numerical label of any node
in Nrc is 180, it is associated with node (2, 3), As L — Nrc already in
the first itération, the algorithm terminâtes with the conclusion that a tax of
A~=$180 is sufficient to stifle all further movements.

Case d: This case can be solved by applying the procedure described
under (b) for O (n2) times. The tax AJ is then the maximum value of A^~,
taken over all initial nodes in the compétition graph. There does not appear
to be an obvious shortcut to this method. In our example, Aj = 180.

We are now finally able to define our stability index A. In case an
equilibrium exists, we set A = + A + , the positive sign indicates that at one
of the facilities a subsidy payment is received. On the other hand, if an
equilibrium does not exist, we set A = —A"", the négative sign indicating
that the facilities are charged a payment, or tax, for relocating.

5. COMPUTATIONAL RESULTS

A number of graphs were generated randomly and relocation paths starting
at fixed initial locations were computed on the basis of winner-take-all and
proportional models. A number of different combinations of prices were
examined and stability indices were computed. Note that in the case of equal
prices we have assumed the facilities to be distinguishable in the sense that
A locating at vertex vi and B at VJ is considered different from A locating
at Vj and B at vi. The graphs have between 15 and 25 vertices and between
24 and 44 edges.
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In case of equal prices, both winner-take-all and the proportional model
produced the same results: either an equilibrium exists with a 50 percent
market share and profit for each facility, or no equilibrium exists. In those
cases, we computed the average market share and profit on the cycle which
turned out to be a 50-50 split as well. In cases of unequal prices, none
of the examples showed an equilibrium. This behavior of the model is
straightforward in winner-take-all models, as the less expensive facility will
always move to the current location of its opponent where it can eut out
its opponent and capture the entire market. At the same time the more
expensive facility will move away from such an arrangement, so that the
lack of equilibria in these cases is no surprise. The proportional model does
not offer a similar, easy, solution.

An interesting observation concerns the proportional model with equal
prices in which no equilibrium existed. We varied the prices from PA =
PB =0.5 to 10 or 20, and computed the A~ values, Le. the "immobilization
cost", as a fonction of the prices. These immobilization cost first rose with
the prices as expected, but then eclipsed and decreased, and reached zero
at which point an equilibrium existed. The largest A~ values occurred
somewhere in the vicinity of PA = ps = 1. It is not known whether or not
this is a provable property.

6. CONCLUSIONS

In this paper we have introducted a measure of stability for compétitive
location models. This measure indicates how much incentive is required to
force facilities out of an equilibrium, given that one exists, or how much
disincentive is needed to stop the relocation process and thus immobilize the
facilities. It is then shown how to compute the index and the calculations were
demonstrated by an example. Some computational results are also provided.

One strand of further research could investigate whether or not anything
can be said for the stability index for trees or genera! graphs. Another question
is if a spécifie stability in the winner-take-all model has any implications for
the proportional model in the same graph or vice versa. Also, nothing much
is presently known about the proportional model, not even on trees, as far as
equilibria are concerned. In gênerai, it appears that the proportional model
is much more well-behaved and less volatile than the winner-take-all model,
but we have to see if further studies bear this out.
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