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FRITZ JOHN'S TYPE CONDITIONS AND
ASSOCIATED DUALITY FORMS IN CONVEX

NON DIFFERENTIABLE VECTOR-OPTIMIZATION (*)

b y I. K O U A D A (*)

Communicated by J.-P. CROUZEIX

Abstract. - Necessary and sufficient conditions of the Fritz John's type as well as wolfe's type
duality for convex non differentiable constrained multicriteria optimization problems have been
studied by orthers under a rather strong constraint qualification. We first note that under the
latter constraint qualification, every Pareto-optimal point is in fact a proper Pareto-optimal point
in the sens presently commonly accepted. Furthermore, we show that with a weaker constraint
qualification, simillar necessary and sufficient conditions and duality results as above still hold
for proper Pareto-optimality. We also consider a dual derived front the Fritz John saddle point
type problem.

Keywords: Convexity, continuity, subgradient, subdifferential, vector-valued Lagrangian, saddle
point, duality, Pareto-optimality.

Résumé. - Des conditions nécessaires et suffisantes du type Fritz John aussi bien que la dualité du
type Wolf e pour des problèmes d'optimisation multicritères convexes et non différentiables ont été
étudiées par d'autres en présence d'une conditiion de contraintes plutôt forte. Nous montrons tout
d'abord que sous cette même condition tout point optimal-Paréto est en fait proprement optimal-
Paréto au sens présentement communément accepté. Ensuite, nous montrons qu'avec une condition
de contrainte plus faible, des conditions nécessaires et suffisantes et une dualité similaires à celles
ci-dessus tiennent encore pour Voptimalité-Paréto propre. Nous considérons aussi un dual dérivé
d'un problème de point de selle du type Fritz John.

Mots clés : Convexité, continuité, sous-gradient, sous-différentiel, Lagrangienne vectorielle,
point de selle, dualité, optimalité-Paréto.

1. INTRODUCTION

Let Y be a locally convex real topological vector space in duality with
y*, ƒ = (/i, . . . , f h) be a vector fonction from Y to R^ and X a given
non-empty subset of Y. For any x and y G Rk, x > y (resp. y < x) means
that Xi > yi (resp. yi <x%) for each i while x > y (resp. y < x) means that
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4 0 0 I. KOUADA

^i > yi (resp. yi < X{) for each i and (x, y) = xy — x\ y\ + . . . + £& yk- The
product of a real matrix A with an euclidean vector z will be noted zA or
depending on the one allowed. For two sets S and T in Y (resp. Y*,
5 + T - {x + y : x G 5, y G T}, S - T - {x - y : x G S, y G T},
S \T = {x G 5 : x g T} and for a G R, a S = {ax : x G S},
( - 1 ) 5 - - 5 = {-ar : x G 5}.

DÉFINITION 1: A point x e X i$ said to be Pareto-minimal (resp. Pareto-
maximal) for ƒ over X if for any other y G X such that (s.t.) f (y) < f (x)
(resp. f (y) > f (x)), we have ƒ (x) — ƒ (y) in which case we also say that
the objective value ƒ (x) is Pareto-minimal (resp. Pareto-maximal), D

A Pareto-optimal point is also said to be efficient. The problem of
characterizing the set of Pareto-minimal (resp. Pareto-maximal) points is
the vector-optimization primai problem which we note.

(P) : min [(ƒ (x) : x G X] (resp. max [ƒ (x) : x G X]).

Already in 1950, in their well known paper on nonlinear programming,
Kuhn and Tucker observed in a differentiable bicriterion maximization
problem the existence of an unstable qualified as non proper maximal point
at which a décision maker may be willing to accept "a second order loss in
one criterion to achieve a first order gain" in the other. later on, in 1968, in
the nondifferentiable vector maximization problem, Geoffrion also observed
the existence of an undesirable Pareto-maximal point at which the marginal
gain in one criterion can be made arbitrarily large relative to each of the
marginal losses in the others. He consequently introduced a new concept of
proper Pareto-maximality to rule out such points. Others such as Borwein,
Benson and Morin in 1977, Hartley in 1978, Benson again in 1979 also
considered other concepts of proper optimality. It turns out that when X
is convex and ƒ convex (resp. concave) that is each component fi convex
(resp. concave), then ail those concepts of proper-Pareto minimality (resp.
Maximality) coincide with the following:

DÉFINITION 2: Let X be convex and ƒ convex (resp. concave). x° G X is
said to be a proper Pareto-minimal (resp. Maximal) solution for (P) if there
exists p G Rfc, p > 0 s.t. x° is optimal to the scalar convex (resp. concave)
minimization (resp. maximization) problem (Pp) : min \pƒ (x) : x G X]
(resp. max [pƒ (x) : x G X]). In that case ƒ (x°) is also said to be a proper
Pareto-minimal (resp. maximal) objective value for (P). D
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FRITZ JOHN'S TYPE CONDITIONS 401

It is easy to verify that proper Pareto-optimal points are Pareto-optimaL
A proper Pareto-optimal point is also said to be a proper efficient point.
For the remaining of the paper, we suppose ƒ convex with all components
bounbed from above on a non empty open subset of Y. As the convexity
of ƒ is equivalent to the convexity of all the components which are then
continuous, ƒ is continuous. We also let g = (#1, , ^m) be a convex and
continuous vector fonction from Y to Rm and C a non empty, closed and
convex subset of Y so that the indicator fonction le of C defined on Y by

. , . ƒ 0 if x G C
lc{x) = Uoo i f x ^ C

is lower semi-continuous. We take X — {x G C : g(x) < 0} which we
suppose non empty and we consider only the convex vector-minimization
problem (P). We recall from [2] that if h is a numerical fonction on Y and
x° G y, then any y G y* such that h(x) > h(x°) + (x - x°, y) for ail
x G y is called a subgradient of h at x° the set of which noted dh (x°) is the
subdifferential of h at x°. If dh (x°) / 0 , h is said to be subdifferentiable
at x°. It is well known [2] that h(x°) — min [h(x) : x G y] if and only
if (iff) 0 G dh(x°). Let us observe that nc (x°) = dlc (x°) = {y G Y* :
(x - x°, y) < 0 for ail x G C} is the normal cône to C at x° if x° G C
(empty if x° & C). In [4], Kanniappan considered necessary conditions for
x° G X to be a Pareto-minimal solution for (P) under the rather strong
constraint qualification that follows.

DÉFINITION 3: X is said to satisfy the strong constraint qualification
(SCQ) if each Pareto-minimal x° G X is s.t. for each component fi of
ƒ. /i0*0 < /t(ar°) for ail j G {1, . . . , k}\{ï} and g (x) < 0 for some
x G C. D

In [1], Lai and Ho derived necessary and sufficient conditions for Pareto-
minimality of the Fritz John stationary point type for (P) under the above
SCQ. Specifically, their resuit says that x° G X is Pareto-minimal for (P) iff
there exist a real k x fc-matrix A = (aij) and a real fc x m-matrix U — (uij)
s.t. a%i = 1. ay > 0 for i / j , itij > 0, Ug(x°) = 0 and 0 G A d / (x°) +
T r n / f ) \ i ivr / fl \ i o ^ / 0 \ / O J * / 0 \ O J ? / 0 \ \/ / fin l T*w 1 1 l\js~i I T* 1 WnPt*P / / T I 0"^ 1 [ sy T^ I o»" 1 f~j Ti i T* 1 I\j (-/y \Jb j n^ -t"C7 v*** y vviicic t / j ^x ^ — \^JL \*^ / ^ * • * ? ^Jk \ / / —

{(Z/1, . . . , Vk) ^ y* x . . . X y * : yi G dfi(x°), i = 1, . . . , fc},

yi e % (x°), i = 1, . . . , m } , iVc (x°) = ( n c (a;0), . . . , n c (ar0)) with
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k, k k v

k components, Ad f (x°) = f ̂  axj df3 (z°), . . . , £ a*i ô / i (x°) )
S=i j=i '

k k V

3 na, dg3 (x% . . . , £ nmj ÔW (ar0) .
i j=i y

In the remaining, AQ (resp. ZY) is the set of matrices as A (resp. U) above.
Based on their result that we just gave, Lai and Ho constructed a dual of
Wolfe type to (P) on which we will be back in the third paragraph. Let us
recall Slater's constraint qualification {see [5] for example).

DÉFINITION 4: X (or g on C) is said to satisfy Slater's constraint
qualification (noted CQ) if there is x G C s.t. g (x) < 0. D

CQ is obviously much weaker than SCQ and is used in convex scalar
optimization. Is this paper, we will show that when X satisfies SCQ then
every Pareto-minimal point is in fact a proper one. Further, with only CQ, we
will show that similar results as Kanniappan's necessary condition resuit, Lai
and Ho's necessary and sufficient condition resuit as well as their Wolfe's
type duality results still hold with the concept of proper Pareto-minimality.
We will finally also consider the Fritz John saddle point type problem and
dérive from it a dual to the convex vector minimization problem (P).

Let us take k = 3, Y = R3 and ƒ = (/a, f2} h) from R3 to R3 s.t.
h {x) = - 2 x i +X2 - X 3 , h (#) = xi -2x2 +^3 and h(x) = 3xi -X3 .
Let us also take m — 3, g = (</i, ^2, 9z) s.t. gi (x) = Xi — 1 for i = 1, 2, 3,
C — {x G R3 | x > 0} the positive orthant of R3 which is closed, convex
and non empty so that X — {x G R3 | x > 0, Xi < 1, i ~ 1, 2, 3} is non
empty and satisfies CQ. With these hypotheses, we consider the linear vector
minimization problem (P). It is well known that for such problems, the set of
Pareto-optimal points coincides with the set of proper Pareto-optimal points.

Now let us observe that the linear problem (LPi) : min {f\ (x) \ x G X}
has a unique optimum at x° — (1, 0, 1) and this point is obviously a Pareto-
optimal point thus a proper Pareto-optimal point for (P). Ho wever X does
not satisfy SCQ for taking i — 2, there is no x G C s.t. f\ (x) < f\ (x°),
h (x) < h (x°) and g (x) < 0 otherwise x° would not be optimal for (LPi).

On the basis of this particular example, we see that under CQ, a proper
Pareto-optimal point may exist at which SCQ fails to hold.

We now get back to the gênerai problem (P).

Recherche opérationnelle/Opérations Research



FRITZ JOHN'S TYPE CONDITIONS 403

2. OPTEVÎALITY CONDITIONS

THEOREM 5: Let X satisfy SCQ. If x° G X is Pareto-minimal for (P), then
it is a proper Parato-minimal solution for (P). D

Proof: For each i G {1, . . . , k}, x° is optimal to the scalar convex
problem min [fi (x) : x G X, fj (x) — fj (x°) < 0, j / i] whose constraint
functions fj — fj (x°) satisfy the usual Slater's constraint qualification over
X. It follows from the usual Lagrange multiplier technique in scalar convex
optimization that there exist k - 1 reals a^ >0,j^i s.t. for ail x G X,

fi (x°) + J2 oy < fi (x) + J2 an fj (x)

Summing over i, we get :

kk

E l + E-K* ƒ' ( ^\ <^j \x ) ^ 1 +

Setting pj: = 1 + for j = 1, . . . , fe and p = (pi, . . . , p*), we have

p > 0 and p / (x°) = min \pf (x) : x e X], We conclude that x° is a proper
Pareto-minimal solution for (P). D

The following resuit improves Lemma 3.2 in [1].

LEMMA 6: Suppose that X satisfies CQ and let x° G X, Then x° is a proper
minimal solution for (P) ifffor each i G {1, . . . , k} there exist k — 1 reals
a>ij > 0 j ^ i and m reals un > 0,' Z = 1, . . . , m s.t.

n 9i (?) =.0\ - for l = 1, . . . , m (1)

0 G dfi (x°) + £ atJ dfj (x°) + ^T un d9l (x°) + n c (s
0) (2)

m which case we can choose each a{j > 0. D

Proof: Let x° be a proper Pareto-minimal solution. Then there exists
p G Rk, p > 0 s.t. p / (a;0) = min \pf (x) : x G X) = min [p/ (x) + Zc 0*0 :
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g(x) < 0, x G Y]. It follows once again from the Lagrange multiplier
technique in convex scalar optimization that there exists v G Rm

5 v > 0
and vg (x°) = 0, hence vi g\ (x°) = 0 and pf (x°) + lc (x°) + v^ (x°) <
pf (x) + lc (x) + vg(x) for all a; G F. It follows that a:0 is optimal in
min pf (x) + lc (x) + vg (x) : x G y], thus 0 G d(pf + vg + lc) (x°),
dlc (x°) = ne (x°). From Theorem 6.4.6. in [2], for each i and i,
dfi(x°) ^ 0 , dgi(x®) ^ 0 and it cornes from corollary 6.6.8 also in
[2] that

9(pf + vg + lc) (x°) = dpf(x°) + dvg(x°) + nc (x°)
^pdf (x°) + v dg (x°) + nc (x°).

So 0 G pdf(x°) + vdg(x°) + nc(xö).
Now for each i G {11 . . . , fc}, let us take aij = Pj/pi for j ^ i and

^a = v//pi for ail L As n^ (a?0) is a cône, nc(x°)/pi — nc(x°). We
conclude that (1) and (2) of the theorem hold for each i .

Conversely let us suppose that (1) and (2) are satisfied for each i. Summing
A; k

each over i and setting pj = 1 + \ ^ a^ for each j and vi — V j un for

each l, p = (pi, . . . , p*.) and u = (vi, . . . , vm), as the sum of k terms
n e (x°) + . . . + ne (x°) is ne (x°) since ne (x°) is a convex cone, we get
vg(x°) = 0 and 0 e dp f (x°) + dvg (x°) + nc (a;0). Consequently a:0 is
optimal in min [p ƒ (x) + vg (x) : x G C],

Since x° G X = {x : x G C, # (a:) < 0} and vg (x°) = 0, x° is optimal in
min [p/ (or) : x G X]. The conclusion cornes from the fact that p > 0. D

We now have the following necessary and sufficient conditions resuit for
Pareto-minimality which is of the Fritz John stationary point type,

THEOREM 7: if X saîisfies CQ» then x° G X is a proper Pareto-minimal
solution to (P) iff there exist A G AQ and U &U s.t.

^ ( * ° ) = 0 (3)

0 G A df (x°) + Udg(x°) + Nc (x°) (4)

in which case in addition to having an — 1 for each % we can choose A
s.t. aij > 0 for i ^ j , D

Proof: If x° is a proper Pareto-minimal point then (3) and (4) are the
matrix forms for (1) with i = 1, . . . , k and I = 1, . . . , m and (2) with
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FRITZ JOHN'S TYPE CONDITIONS 405

i = 1, . . . , k respectively in the lemma and the last part of the theorem
also follows from the lemma.

Conversely, given A G AQ and U eU satisfying (3) and (4) then for each
m

i we have (2) and ^ uugi (x°) — 0. As g\ (x°) < 0 and uu > 0, we have

uu 9i (x°) — O for l — 1, , . . , m that is (1) of the lemma for each i. Once
again the conclusion cornes from the lemma. D

Remarks 8: 1. Suppose that X satisfies CQ. If x° G X is a proper Pareto-
minimal solution to (P), then as we showed in the first part of the proof
of Lemma 6 above, there exists p G Rfc, p > 0 and v G Rm, v > 0 s.t.
vg (x°) = 0 and 0 G pdf (x°) + vdg (x°) + nc (x°). This is an improvement
of Kanniappan's necessary theorem 3.4 in [4].

2. Let us define the Fritz John's type lagrangian L on C x AQ X U as
follows. For any (x, A, U) £ C x AQ x U, A = (a>ij) and U = (uu)
being as in Theorem 7 above, with L(x, A, £/") = A ƒ (x) + Ug (x),
we have L (x, A, [/ = ƒ (x) + A • ƒ (x) + Z7flr (x) where A * ƒ (x) =

k

ƒ ( 'T* 1 1 t ( J\ -^ T ( T* 1 I f l I ^1 I T" I v̂* 1 1 * Ŵ Aï * ' T * f fY* \ C/™\ "l"rl O"J" T/"\T*

k m

each i = 1, . . . , k, Li (x, A, Z7) = /2 (x) + V a2J /7 (x) + V ) u,/ ^ (x).

Thus for (A, [/) fixed, L{ is a continuous convex fonction of x on C and
consequently so is the vector-valued Lagrangian L, Now if g (x) ^ 0, that is
x G C\JK", say gq (x) > 0, then taking mq = t > 0 for all i and uu — 0 for all

k

i and all / ^ g, we get L8- (x, A, 17) = /j (x) + ^ a y /j (a ; )+t^ (x) -> +oo

as t ^ +oo so that max [L (x, A, £/) : 17 G W] = 0 .

On the other hand if g (x) < 0, that is x G X, since C/ # (x) < 0, we have
max [L (x, A, 17) : C/ G W] = A ƒ (x). We therefore deduce that

min max L(x, A, U) — min A ƒ (x).

3. For the remaining of the paper, we set:

A = {A e AQ : A > 0}
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where for A = (a^), A > 0 means each a^ > 0. Recall that for A G Ao.
au = 1 for each i and each aij > 0. D

LEMMA 9: If (x°, A0, £7°) e X x AQXU, then U°g(x°) = 0 iff
L(x°, A°, U°) = max L{x°, A0, U). D

Proof: Let U°g(x°) = 0. Since a:0 € X, thus g(x°) < 0, then for
ail U E U, we have A0 ƒ (a;0) + Ug(x°) < A0 ƒ (rc°) + Ï7°fl(x°), so
L(x0 , ' A0, U°) = max L(:r0, A0, U)..

Conversely, if L(x°, A0, t/°) = max L(rr°, A0, Ï7), then as x° G l , it
LA

cornes from the second part of Remarks 8 that max L (x°, A0, U) —

A0 f(x°), so that A0 f(x°) + U°g (x°) =A° ƒ (x°), hence C/° g (x°) = 0. D
We have the following définition of a Fritz John type saddle point.

DÉFINITION 10: (x°, A0, U°) e C x AxU is said to be a saddle point for
L if L Or0, A°5 U°) e [max L (s0 , A°, U)) n [min i (x, A°5 C/0)]. D

We can now prove the following Fritz John saddle point type necessary
and sufficient conditions for minimality.

THEOREM 11: Let X satisjy CQ, x° G C and suppose every Pareto-minimal
solution for (P) is a proper Pareto-minimal one. Then x° is a Pareto-minimal
solution for (P) iff there exists A0 E A and U° EU s.t. (x°, A0, U°) is a
saddle point for L in which case U° g (x°) = 0, D

Proof: Let a:0 be Pareto-minimal for (P). Then rc° G X and from
Theorem 7, there exist A° e A and U° E U s.t, U°g(x°) = 0 and
0eA°df (x°) + U° dg (x°) + Nc {x°). From Lemma 9, L (x°, A0, U°) =

L(x°, A0, U).

k

Now for each i = 1, . . . , ft, 0 G dft (x°) + ^ a% df3{x®) +

m

^2 u% ®9i (x°) + nC (^°) and we consequently have L% {x°, A0, U°) =

min Li (a?, A0, U°) for each i so that L (x°, A0, U°) = min L (x} A
0, U°). It

follows that (x°, A°517°) is a saddle point for L. Conversely, let (x°, A°, U°)
be a saddle point for L. Since L(x°} AQ, U°) E max L(aj0, A0, U), the

latter set is non empty and it cornes from the second part of Remarks 8

- Recherche opérationnelle/Opérations Research
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that x° G X and max L (x°, A°,U) = A°f (x°). From Lemma 9 we also

have U°g(x°) = 0. Now L(x°, A0, U°) G min L{x, A0, U°) and since

i ° 6 l c C , w e have L(x°, A0, U°) G min L(x, A°, U°). We deduce

that A0 ƒ (a;0) € min A0 ƒ (x) for otherwise if x1 G X is s.t. A0 f (x1) <

A0 ƒ (z°) with A* f (x1) ? A0 ƒ (a;0), since £7° p (a;1) < 0 we would have
L{x\ A0, U°) < L(x°, A°, U°) with L^ 1 , A0, U°) ̂  L(x°, A0, U°)
leading to a contraction since L(x°, A0, U°) G minL(a;, A0, U°).

So we do have A0 ƒ (x°) G min A0 ƒ (x). This in turn implies

that x° is Pareto-minimal for (P). Otherwise there exists x2 G X s.t.
f(x2) < f(x°) with ƒ (a;2) ^ ƒ (a;0) which would imply, since A0 > 0,
that A0 ƒ (x2) <A°f (x°) with A0 ƒ (rc2) # A0 ƒ (a:0), a contradiction to
A0 f(x°) G min A°f(x). D

Let us mention that in convex vector-optimization, hypotheses that X
satisfy CQ and that Pareto-minimal solutions for (P) be proper Pareto-
minimal ones that appear in the preceding theorem are very common in
many interesting duality and saddle point results (see [3, 6] for example).

LEMMA 12: Let X satisfy CQ, x° E C and every Pareto-minimal solution
for (P) be a proper one. Then x° is a Pareto-minimal solution iff there exists
A0 e A s.t. A0 ƒ (x°) = min [A0 ƒ (x) : x G X}. D

Proof: If A0 G A exists and is s.t. A0 ƒ (x°) G min [A0 ƒ (x) : x G X],
then proceeding as towards the end of the proof of the preceding theorem,
we conclude that a:0 is Pareto-minimal for (P).

Conversely let x° be a Pareto-minimal solution for (P), hence a proper
one. From Theorem 7, there exist U° G U and A0 G A s.t. U° g (x°) = 0
and 0 G A0 df (x°) + U° dg (x°) + Nc (x°). If A? (resp. C/f) is the z-th
row of A0 (resp. U°) then 0 G A? 0 / (x°) + Uf dg (x0) + nc (x°), Using
arguments already used in the first part of the proof of Lemma 6, we get
0 G d (A^ ƒ + [/ƒ g + lc) (rr°), that is x° is optimal in the scalar problem
min [A® ƒ (x) + Uf g (x) : x G C], Consequently x° is Pareto-minimal in
min [A0 f(x) + U° g (x) : x G C], Since U° g (x°) = 0, a;0 is Pareto-minimal
in

THEOREM 13: Let X satisfy CQ, x° e C and eve?7 Pareto-minimal solution
for (P) èe a proper one. Then x° is Pareto-minimal iff there exists A0 G A
s.t. max L(x°v A0, C/) n min max L(x, A0,17) # 0 . D
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Proof: Let x° be Pareto-minimal. From Lemma 12, there exists
A° e A s.t A° f (x°) G min [A° ƒ (x) : x G X], Further, from
the second part of Remarks 8, max L(x°, A°, U) = A° ƒ (x°) and

min max L(x, A°} U) = min [A° ƒ (re) : x G X]. It follows that
C IA

max L(x°5 A°5 U) f) min max L(x? A°? [/) is non empty as A° ƒ (x°)
t4 O IA

belongs to it.
Conversely let A° G A be s.t. the intersection of the lemma is non empty.

Then once again from the second part of Remarks 8, max L (x°} A°, U) =
A°f(x°) E minmaxL(x, A°,U) = m i n m a x L ^ A°, 17) = minA0 f(x)

C 14 X. IA X

as for x £ C\X, max L (rr, A°, U) — 0 . It follows from Lemma 12 that
LA

x is Pareto-minimal. D

3. DUALITY

WithF = {(x,A,U) eCxA
Lai and Ho defined in [1] the following Wolfe type dual to the primai convex
veetor-minimization problem (P).

(DLH) : max [L (x, A, U) : (x, A, U) G F],

Exception of their weak duality result (first part of the next remarks)
which they prove in the absence of any constraint qualification, all their other
duality results related to (DLH) require the strong constraint qualification
SCQ of Définition 3. As we saw in Theorem 5, under such a condition, every
Pareto-minimal solution for (P) is a proper one. In the light of the preceding
paragraph, necessary and sufficient conditions for proper Pareto-minimality
require only the weaker constraint qualification CQ of Définition 4 which is
the usual Slater's constraint qualification. Consequently Lai and Ho's duality
results requiring SCQ may be improved as summerised in the following
remarks.

Remarks 14: L Let x1 e X and (x2, A, U) G F. Then A ƒ (x1) >
L(x2, Ay U). The reason is simple. Since x1 G X} Ug(x1) < 0 so
A ƒ (x1) > L (x1, A, Ï7). Now (x2, A, U) G F implies that for j = 1, . . . , fe
and l — 1, . . . , m, there exist yj G dfj (x2), z\ G dg\ (x2) and WJ G no {x2)

k m

s.t. for each i = 1 , . . . , fc, y» + ̂  aij yj + ^ un z\ + w% = 0. Using
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subdifferentiability at s2 , we get

Li (x\ A, U) - U {x\ A, 17) = [fi (x1) - fi (x2)]
k m

+ E aa [/; O*1) - fi (œ2)] + E «« to 0*1) - ai (*2)]
k

> (yi, xl - x2)

m

Since wi G nc(x2), we have -{w^ x1 - a;2) > 0. We conclude that
A f (x1)- L(x2

} A, U) > 0.
2. Let X satisfy CQ and x° £ C If x° is a proper Pareto-minimal point

for (P) then there exist A° eAomdU0 eU s.t. (a:0, A0, t/°) G F and if
(x°, A0, C7°) is optimal to ( D L H ) then L(ar°, A0, U°) = A0 ƒ (a:0). This
is an evident conséquence of Theorem 7.

3. Let X satisfy CQ, x° G X, (x°, A0, U°) G F for some AQ and U°.
If A0 ƒ (x°) = L(x°3 A°} U°) then (x°, A0 J7°) is optimal for {DLH).
Because we would have C/° g(x°) = 0 and the resuit cornes again from
Theorem 7. D

Theorem 13 above suggests that we consider the following problem that
we also call dual to the primai convex vector-minimization problem (P).

(D) : Finding the set of (A0, U°)EAXU s.t.

min L (x, A0, U°) H max min L (rr, A°} U) ^ 0 .
O M G

Any (A0, £7°) belonging to the desired set is said to be optimal for (JD) in
which case any L (a;0, A0, U°) that belongs to the non empty intersection is
an optimal objective value. We also consider the following auxiliary problem
which, when we look at Theorem 13, is related to the primai minimization
problem (P) under certain circumstances as we will see.

(P') : Finding the set of (a;0, A0) G Cx^ls.t.

max L(x°, A0, U) H min max L(x, A0, U) ^ 0 .
IA C LÀ
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Any (x°, A°) belonging to the desired set is said to be optimal for (P') in
which case any L (z, A°, U°) that belongs to the non empty intersection is
an optimal objective value. When X satisfies CQ and every Pareto-minimal
solution for (P) is a proper one, then it cornes from Theorem 13, the second
part or Remarks 8 and Lemma 12 that (P') is equivalent to the minimization
problem (P) minimal solutionwise.

LEMMA 15: (a;0, A0, U°) is a saddle point for L iff (z°, A0) is
optimal for (P') and (A0, U°) is optimal for (D) with A0 ƒ (x°) G
min L(x, A0, U°) n max min L(x, A0, 17). D

C LÀ C

Proof: Let (a;0, A0, U°) be a saddle point for L, Then L(x°, A°,U°)e
max L (x°, A0, U) so a;0 £ X according to the second part of

Remarks 8 and U°g(x°) = 0 according to Lemma 9. On the other
hand A° ƒ (x°) = L{x°, A0, U°) e min L(x, A0, U°) and since

x° e X C C, A0 f (x°) = L{x°, A0, U°) G min L(x, A0, U°). Further

since U° g(x°) = 0, A0 ƒ (x°) e min A0 ƒ (x) and from the second part

of Remarks 8, min A0 ƒ (x) = min max L(x, A0, U). We deduce that

(z°, A0) is optimal to (P')-

If L(x°, A0, U°) <£ max min L(x, A0, U), then there exists U1 G U
LA O

s.t. for some x1 e C, we have L(xl, A0, U1) G min L(x, A0, U1) and
L(x\ A0, U1) >L(x°, A0, U°),L(x\ A0, U1) ^L{x°, A0, U°). Since
U1 g (x°) < 0 and U° g (x°) = 0, we get A0 f{xl)+Ul g(xl)> A0 f(x°)+
U1 g (x°) - C/1 g 0 ° ) > A0 f{xQ) + Ul g (rc° ) where the first inequality is not
an equality. We get a contradiction to L (x1 A0, U1) G min L(x, A0, U1).

Consequently L(x°, A0, U°) = A0 ƒ (x°) G min L (x, A0, U°) n

max min L(z , A0, U) so that (A0, U°) is an optimal solution to (D)
LA C

with the required conditon. Conversely, let (x°, A0) be optimal to (P')
and (A0, U°) s.t.

A0 ƒ (z°) G min L (x, A0, U°) n max min L(x, A0, U). From the
C LA C

second part of Remarks 8, we must have x° G X so that U° g (x°) = 0 and
L (x°, AQ, U°) G max L (x°, A0, U) according to Lemma 9. Since we also

have L (x°, A0, U°) = A0 ƒ (s0) G min L {x, A0, f/°), we conclude that

(x°, A0, f/°) is a saddle point for L. D
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THEOREM 16: Let X satisfy CQ, x° G C and every Pareto-minimal solution
for (P) be a proper one. Then x° is Pareto-minimal iff there exists an
optimal solution (A0, U°) for (D) with A0 ƒ (x°) G min L (x, A0, U°) n

G
max min L (x, A0, U). D

LA G

Proof: From Theorem 11, x° is Pareto-minimal iff there exist A0 G A and
U° EU s.t. (x°, A0, Z7°) is a saddle point for L. According to Lemma 15,
tins in turn means that (x°, A0) is optimal for (P') and (A0, C/°) is optimal
for (D) with

A0 ƒ (ar°) G min L (s, A0, U°) n max min i (x, A0, C/) (•).
G LA G

On the other hand if (A0, Ü70) is optimal for (D) and (*) is satisfied, since
x° G X, we have A0 ƒ (a:0) G min A0 ƒ (#) and x° is Pareto-minimal to

x
(P) according to Lemma 12. D

Remark 17: Let X satisfy CQ, a;0GC and every Pareto-minimal solution
for (P) be a proper one. Then it cornes from Theorem 16 and its proof that
the following are equivalent:

a) x° is Pareto-minimal for (P);
b) There exist A0 G A, U° G U s.t. (x°, A0, U°) is a saddle point for L;
c) There exist A0 G A, Uö G U s.t. (x°, A0) is optimal for (P') and

(A0, U°) is optimal for (D) with

A0 ƒ (x°) G min L(x, A0, [/°) n max min L(ar, A0, U). D
G tY G

4. CONCLUSION

We showed that under some sort of a stronger Staler's constraint
qualification used by researchers to study Fritz John's type optimality
conditions and Wolfe's type duality for convex multicriteria optimization
problems, every Pareto-optimal solution is in fact a proper Pareto-optimal
solution. Further, with a weaker constraint qualification which is the usual
Slater's constraint qualification, similar results they obtained still hold with
proper Pareto-optimality. Finally we considered a Fritz John saddle point
type problem and another form of duality for the convex vector-optimization
problem.
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