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OPTIMAL TOOL PARTITIONING RULES FOR NUMERICALLY
CONTROLLED PUNCH PRESS OPERATIONS (*)

by B. GABOUNE (*), G. LAPORTE (*) and F. SOUMIS (*)

Communicated by Philippe CHRÉTIENNE

Abstract. - The purpose of this paper is toformulate and solve an optimization problem arising in
the opérations ofa numerical control machine such as a punch press. Holes ofn different types must
be punched by a press on a linear object such as a metallic bar. Each type ofhole requires a different
tooi and tools are mounted on afixed rotating carouseL Holes are punched in several passes on the
bar, using each time a contiguous subset of tools. The problem is to détermine a partition of the
tools inio subsets that will minimize expected completion time. The problem is first formulated as a
shortest path problem on an acyclic graph. It is shown how this problem can be solved in O (n2 )
or in O (n3) time and that a closedform solution can sometimes be obtained in constant time.

Keywords: Numerical control machines, punch presses, press drills, acyclic graphs, shortest path
problem, flexible manufacturing.

Résumé. - L'objet de cet article est de formuler et de résoudre un problème d'optimisation
se posant dans la gestion des opérations de machines à commande numérique telles les presses-
poinçons. On doit percer des trous de n types différents à l'aide d'une presse-poinçon, sur un objet
lineaire comme une barre métallique. Chaque type de trou requiert un outil particulier et les outils
sont installés sur un carrousel rotatif fixe. On perce les trous en faisant plusieurs passages sur
la barre, en utilisant à chaque passage un sous-ensemble contigu d'outils. Le problème consiste
à déterminer une partition des outils en sous-ensembles afin de minimiser le temps espéré de
complétion. On formule d'abord le problème comme un problème de plus court chemin sur un
graphe acyclique. On démontre comment résoudre ce problème en temps O (n2 ) ou O (n3 ). Dans
certains cas, on peut même résoudre le problème de façon analytique en temps constant

Mots clés : Machines à commande numérique, presses-poinçons, presses-perforeuses, graphes
acycliques, problème du chemin le plus court, ateliers flexibles.

1. INTRODUCTION

The purpose of this paper is to formulate and solve an optimization
problem arising in the opérations of numerical control machines, e.g., punch
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presses and press drills. The punch press problem can be described as
follows. Holes of n different types must be punched by a press on a linear
object such as a metallic bar. An equivalent situation is where holes are
distributed along a predetermined path on a two-dimensional object such as
a metallic sheet. Gaboune, Laporte and Soumis [4] describe optimal strip
sequencing stratégies for the détermination of such paths. Each type of
hole requires a particular tooi and the n types of tools are equally spaced
in a circular manner on a carousel. Tool change is carried out by rotating
the carousel by the appropriate angle at constant speed. Examples of such
machines are described in Ahmadi, Grotzinger and Johnson [1], in Groover
[5] and in Winship [7], Holes of any type are randomly distributed along a
line segment according to a known distribution. Typically, the tooi carousel
is mounted on a fixed support and can rotate freely in either direction. The
bar can slide back and forth under the carousel and stop whenever a hole is
required. A schematic représentation of this process is given in Figure 1.

There are two extreme stratégies for punching all holes. In one case, holes
are punched sequentially, in a single pass of the bar, and the carousel rotates
to provide the appropriate tools. This strategy minimizes bar movement
but may require several carousel rotations. At the other extreme, the bar
is shifted n times and a single tooi is used during each pass. Depending
on problem parameters, a strategy minimizing completion time would lie
somewhere between these two extrêmes. A set of consécutive tools would
then be selected and all corresponding holes would be punched sequentially
in a single pass of the bar. Then, another set of consécutive tools would
be used for the next pass of the bar, and so on until all holes are punched.
Our aim is to détermine a tooi partitioning rule that will minimize the total
expected completion time. Since the actual punching time is constant, we
disregard it and minimize the total expected time spent between consécutive
punching oprations. This amounts to determining a partition of an ordered set
N = { 1 , 2 , . . . , n} into ÜT subsets JVfc = [jk-i + ljk] = {jk-i + h • • • ,.jfe}.
with jo = 0, in order to minimize

where K is an integer variable in [1, n] representing the number of bar
passes, and ƒ (iVfc) is the expected time to exécute a full pass of the bar
with the tools of Nk-
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Figure 1. - Two représentations of a bar and tool carousel

2. THE MODEL

The problem can be formulated as a least cost path problem as follows. Let
G = (JVU {0}, A) be a connected graph where A = {(i, j) : i, j e NU {0}
and i < j}. Define costs Cij = ƒ ([« + 1, j]). Then the problem consists
of determining a least cost path from 0 to n on G, Assuming the c^'s
are given and since G is acyclic, the problem can easily be solved in
O (n2) time, as each arc needs processing only once (Ford and Fulkerson,
[3]). This model is obviously valid if sets of consécutive tools are used.
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Otherwise, a more involved model would in principle be required, but this
is not in fact necessary as an interchange argument shows that it is never
suboptimal to use consécutive tools. The model just described is of gênerai
applicability. In particular, our problem is similar to a classical equipment
replacement problem described in some network flow textbooks - see, e.g.
Jensen and Barnes ([6], p. 37). Another application of this structure to a
line simplification problem arising in cartography is provided in Campbell
and Cromley [2].

In what follows, we provide low complexity procedures for Computing all
Cij's so that the overall time complexity is 0{n2) or in O(n3), depending on
the System's operating rules. We also show how under some circumstances
the problem can even be solved analytically, in constant time.

3. COST COMPUTATION FOR THE GENERAL CASE

In addition to the notation already introduced, define

Pi (i — 1, . . . , n): the probability of requiring a tooi of type i (or the
proportion of holes of type i)\

d: the overall density of holes on the bar expressed in number of holes
per unit length; note that the density of holes of type i is given by dpf,

vx'. the bar velocity expressed in unit bar length per time unit;

vy: the carousel velocity expressed in number of tools per time unit;

-Xi+i, J: the time required to move the bar between two consécutive holes
requiring tools in [i + 1, j]\

Yi+i, j '. the time associated with carousel movement between two
consécutive holes requiring tools in [i + 1, j],

Since time units have not been specified, vy can be set equal to 1
without loss of generality and vx can therefore be replaced by the ratio
v — vx/vy. Also, the bar length can be taken as one unit. When
tools in [i + 1, j] are used, the time between two punching opérations
is expressed as p (Xi+i^j, Yi+ij), where p is a metric defined according
to the operating System. For example, if the bar and the carousel move
sequentially, then p ( X ; + i j , Yi+ij) = Xi+ij + ïï+i,.?» Le-> 9 is'the
h or Manhattan metric; if the bar and the carousel move simultaneously,
p(Xi+\j, Yi+\) — max(Xi + i ï j , Yj+i^), Le., p is the loo or Chebychev
metric. The expected time to exécute a complete pass of the bar
using the tools of [i + 1, j] is obtained for each metric by multiplying
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E (p (Xi+ij, Yi+ij)) by the expected number of holes requiring those
tools, Le.,

ƒ ([i + 1, j]) = E(p (Xi+u, l î+i . i)) (d P i + i , ,•), (1)

where

For a Manhattan metric

E (P (X.-+1,,-, y i + l ï i ) ) - s (Xi+i.j) + ̂  (lï+i, ; ) . 0 )

The first term of (3) can be expressed as

E{Xi+hj) = {vdPl+l,iT\ (4)

while

j-i-i

E(Yi+li3)=

where y represents the absolute différence between any two tool indices r
and 5 in [i + 1, j] • In other words,

3 J

E(YÎ+ij)= J2 J2 \S~r\PrPs/P^j (5)

i-i j

= 2 E E
The value of .Epf i+i j ) in. (4) was obtainedby dividing (dPj+i^-)"1» the

expected distance between two consécutive holes requiring tools in [i +1, jf],
by the bar velocity u. In (5), the numerator sums ail interpoint distances
\s - r|, weighted by their joint probability PrPs/P^ijl to avoid Computing
symmetrie cases twice, the double summation in (6) extends over s > r
only and is multiplied by 2. Dividing by Pf+\ j is necessary as we seek to
compute a conditional expectation relative to tools i + 1 to jf; in other words,
when computing the expectation, each of the two probabilities pr and ps
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must be divided by the probability Pi+i, j that a tooi in the interval [i + 1, jf]
will be required. Finally note that if j — i + 1, the value of E (Yï+ij) is
then equal to 0 since in this case only tooi i + 1 is used during a pass of
the bar, which requires no carousel movement.

From (1), it follows that for a Manhattan metric

ƒ ([i + 1, j]) = y ' 1 + 2dSi+ij/Pi+ij ( 0 < i < j < n ) , (7)

where

i-i j

In the case of a Manhattan metric, the computation of (3) uses the additivity
property of expectations, but this does not apply to the Chebychev metric.
The computation of E (max (Xi+ij, Yi+ij)) is more involved and now
dépends on the distribution of holes along the bar. We will compute this
expression for the case where the holes are distributed according a Poisson
process. To avoid the boundary effect, the expected time between two
consécutive holes is computed assuming the bar length is infinité. It is then
multiplied by dPi+ij to obtain the expected exécution time ƒ ([* + 1, j])
for a unit bar length. Under these assumptions, Xi+itj is an exponential
random variable of parameter At+i,j = vdPi+ij. The interpoint expected
time is therefore

E ( ( i +

= V / max (x, y) Ai+ij e " ^ 1 ^ P {Yi+l,3 = y) dx,

assuming independence of Xi+ij and Yi+ij. This expression can be
rewritten as
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OO

Xi+1J xe~x^^x dx\ P (Yi+1J = y)

j-i-l

y=0
j-i-l

y=0

r=*+l s~î+l

(2K}lJ E E e-^'M

*=»+i / /
(9)

where E (Yï+ij) is defined as in (6). Note that it is now necessary to
consider cases where s = r as the corresponding terms do not vanish. This

3
explains the présence of the term À ^ • ^ pi in (9). Defining

3

e~Xij(s~r)PrPs (l<i<j<n) (10)

and combining (1) and (9), ƒ ([i + 1, j]) can be rewritten as

If all O (n2) values of ƒ ([i + 1, j]) defined by (7) or (11) are computed
independently, and assuming the Pij values are precomputed, the total
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computation will require O (n4) time because of the double summations in
Sij and Tij. However, abetter time complexity is possible if some additional
preliminary computations are carried out. First consider the Manhattan
metric. For 1 < i < j < n, compute in O (n2) time the coefficients

3

Qij = £ kPk. (12)
k=i

Then the computation of Sij in (8) can be decomposed as

i-i J- r) PrPj

= Sij-it +jpj Pi,,-! "Pj Qij-! (1 < i <j < n). (13)
r—i

The value of ƒ ([i + 1, j]) is easily computed for each z, starting with
Sij = 0 for j : = i and then increasing j . If the value of Sij-\ is stored,
then ƒ ([i + 1 , j]) is obtained in constant time from ƒ ([i + 1 , j — 1]) once the
Pij and Qij coefficients are known. Therefore, the overall time complexity
clearly reduces to O (n2) for the Manhattan metric.

An O (n3) time complexity can be obtained for the Chebychev metric.
For this, first define for 1 < i < j < n and for 1 < y < j - 1 the coefficients

j-y
Rijy = ^2 PkVk+y (14)

In the square defined by [1, n]2, Rijy sums the products of row
and column probabilities in the yîh diagonal above the main diagonal,
starting in row i and ending in column j . These values are easily
computed starting with i?^ i+Vi y = pi pi+y and using the recursion
Rijy = Ri^ j« i ï y + pj-y pj (i + y + 1 < j < n), so Üiat all Rijy values can
be obtained in O (n3) time. Then Tij can be rewritten as a summation over
all diagonals having the same value of y = s — r for s > r, Le.,

iy (15)
y=\

In other words, each Tij can be computed in linear time once the Pij and
the Rijy coefficients are known. It follows that all Tij and ƒ ([i + 1, j])
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computations can be carried out in O (n3) time. Note that memory
requirements can be limited to O (n2) by Computing the Tij*s and the
Rij y's in increasing order of j , using at each step a two-dimensional array
of Rijy coefficients. Whenever j is incremented, the iJ^y+^y array can
easily be derived in O (n2) time from the Rijy array.

4. NUMERICAL EXAMPLE

We now illustrate the computations for the Manhattan metric. Let n = 4,
pi=0.4, p2 = 0.1, P3=O3» p4=0.2, and d=\0. We first concentrate on the
computation of the Sij values in (8). The relevant numerical values of Pij
and Qij for this example are given by TABLE I.

T A B L E I

Numerical values of Pij and Qij

A'
1
2
3

1

0.4
' -
-

Pij
2

0.5
0.1
-

3

0.8
0.4
0.3

4 .

1.0
0.6
0.5

•V
1
2
3

1

0.4
—
-

2

0.6
0.2
-

3

1.5
1.1
0.9

Then, using (13) and Su = 0, we obtain

51.1 = 0,

51.2 = Si , !+ 2p2

51.3 = S

51.4 = Si,3 +

S2)2 = 0,

52.3 = S2)2 +

52.4 = S2,3 +

S3>3 = 0,

S3,4 = S3,3 +
S4i4 = 0.

l.l - P2 Ql,l = 0.04,

,2 - P3 Ql,2 = 0.31,

l,3 - PA Ql,3 = 0.65,

-P2,2 - P3 Q2,2 - 0.03,

F2,3 - P4 Q2,3 = 0.13,

P3,3 - Pi $3,3 = 0.06,

The values of ƒ ([i + 1, j]) are then easily obtained by using (7). These
values are reported in TABLE II for v = 1/3, 2 and 1/10.
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7.33
Figure 2. - Acyclic graph for v = 1/3. The optimal path (0, 2, 4) is indicated by the bold arcs

TABLE n

Numerical values of ƒ ([i + 1, j])

0
i
2
3

1

3
_
_
-

v =

2

4.6
3

-

= 1/3

3

10.75
4.5
3
-

4

16
7.33
5.4
3

0
i
2
3

1

0.5
_
_
-

V

2

2.1
0.5
_
-

= 2

3

8.25
2
0.5
-

4

13.5
4.83
2.9
0.5

0
1
2
3

1

10
_
_
-

v =

2

11.6
10
_
-

1/10

3

17.75
11.5
10
-

4

23
14.33
12.4
10

The acyclic graph corresponding to v — 1/3 is depicted in Figure 2. It
can readily be verified that the optimal path is (0, 2, 4) and has a cost of
4.6 + 5.4 = 10. In other words, tools 1 and 2 should be used in a first pass of
the bar, and tools 3 and 4 in a second pass. Note that this optimal policy
is directly dependent on the value of v. For example, if v — 2, then the
optimal path becomes (0, 1, 2, 3, 4) and has a cost of 2. This corresponds to
using a single tool in each of four passes of the bar. At the other extreme,
if v = 1/10, the optimal path is simply (0,4) and has a cost of 23. In this
case, all holes should be punched in a single pass of the bar.

5. COST COMPILATION FOR EQUAL PROBABILITES

In the case of the Manhattan metric, and assuming pi = 1/n for ail i, the
optimum can be determined in constant time. Indeed, the computation of
ƒ ([i + 1, j]) given by (7) reduces to
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J - l 3

r—i+l $=r+l

= v-1 + [2d/n (j - i)} [(j - if - (j - t)]/6

This function can be rewritten in terms of t = j — i > 1, as

in other words, ƒ dépends only on t, the number of tools, and not on
the particular tool séquence that is used. If integrality requirements are
disregarded, an optimal least cost path solution of cost z (t) will contain
n/t arcs. Therefore,

z {t) = (n/t) ƒ {t) = nv^/t + (d/3) (t - 1/*),

a function attaining a minimum at

/ 2 if 3n > d^ |̂

i (16)
otherwise. J

The optimum provided by (16) must be interpreted in an asymptotic sensé
since t* is in gênerai non-integer and does not necessarily divide n. For
small values of n, it is usually necessary to explore the neighbourhood of i*
to identify an optimal value. To illustrate the computation of t* in the case
of equal probabilities, in a 12 tool problem with v — 1/10 and d = 25, the
value of t* in (16) is equal to 3.6606. Since z(3) = 62.22 and z(4) = 61.25,
four consécutive tools should be used during each pass.

Finally, it is worth noting that a similar analysis can be conducted in the
case of a Chebychev metric. However, the computations are more involved
and although the total cost z (t) can still be expressed as a function of
t, there is no closed form expression for the minimum and a numerical
optimization method is required. As a resuit, this case présents less interest
and is not presented hère.

6. CONCLUSION

The objective of this study was to formulate and solve a partitioning
problem arising in a flexible manufacturing context. We have shown that
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the corresponding optimization problem can be modelled as a least cost path
problem on an acyclic graph. By appropriately exploiting data structures, the
problem can be solved in O (n2) or O (n3) time, depending on the metric
considered. When all tooi probabilities are equal, a closed form solution can
sometimes be obtained in constant time.
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