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Recherche opérationnelle/Opérations Research

(vol. 28, n° 2, 1994, p. 181 à 202)

A NOTE ON RISK AVERSE NEWSBOY PROBLEM (*)

by T. Dom C1), A. WATANABE (l) and S. OSAKI (l)

Abstract. - This paper considers the maximization of expected utility fonctions in the classical
newsboy problem. First, the gênerai theory for the risk averse utility fonctions is developed. Then,
the necessity of approximation occurs when the logarithmic utility, which is familiar to the risk
theory, is used in the newsboy problem. Applying the Taylor approximation, we consistently define
the logarithmic utility in the context of the newsboy problem. Secondly, we discuss an alternative
problem maximizing the upper and lower bounds of the expected utility fonction, instead of the
direct maximization ofit. Some numerical examples show that the approximation procedure and the
alternative objective proposed here are usefol from the practical viewpoint.

Keywords: Newsboy problem, Expected utility, Risk aversion, Approximation, Upper and lower
bounds.

Résumé. — Nous examinons la maximisation de Vespérance de la fonction d'utilité dans le
problème classique dit du « distributeur de journaux » (« newsboy problem »). Nous développons
tout d'abord la théorie générale pour les fonctions d'utilité dans le cas d'aversion du risque. La
nécessité d'opérer une approximation se présente lorsque Vutilité logarithmique, qui est familière
dans la théorie du risque, est appliquée à notre problème. Appliquant l'approximation de Taylor,
nous définissons en conséquence l'utilité logarithmique dans le contexte de notre problème. En
deuxième lieu, nous examinons le problème de la maximisation de la borne supérieure et de la
borne inférieure de Vespérance de la fonction d'utilité, au lieu de sa maximisation directe. Des
expériences numériques montrent que la procédure d'approximation et les autres maximandes
proposés ici sont utiles du point de vue pratique.

Mots clés : Problème du distributeur de journaux, utilité moyenne, aversion du risque,
approximation, bornes supérieures et inférieures.

1. INTRODUCTION

The newsboy problem is a single-item single-period inventory problem
characterized by a newsboy facing an uncertain daily demand for newspapers.
If he carries only a small quantity of newspaper, he misses out on a profit.
Conversely, if he buys too much newspapers, he must pay for a penalty. The
problem is to détermine the optimal order quantity of newspaper maximizing
an objective function. This kind of inventory model is applicable to many
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182 T. DOHI, A. WATANABE, S. OSAKI

practical situations (e. g. the overbooking in hotel réservations). One of the
most traditional approaches to the newsboy problem was to simply maximize
the expected profit. It is, ho wever, pointed out by many authors that this
kind of approach takes account of only risk neutrality of the décision maker,
but never common risk aversion.

As the risk averse newsboy problem, Lau [8] and Ward et al. [13]
provided a utility function consisting of the mean and the standard déviation
of stochastic profit. Anvari [1] and Chang [6] discussed the newsboy problem
in the context of CAPM (Capital Asset Pricing Model), which is familiar
to the financial theory. Recently, Bouakiz and Sobel [5] analyzed a multi-
period newsboy problem with an exponential utility function by applying the
theory of Markov décision process. It should be noted, ho wever, that the
inventory control problems discussed in earlier contributions specified the
type of utility function. Although Atkinson [2] used the utility fonctions of
HARA (Hyperbolic Absolute Risk Aversion) class to explain the relationship
between incentives, uncertainty and risk in the newsboy problem, the more
gênerai theory of risk aversion in the newsboy problem is needed.

The main purpose of this paper is to develop the optimality condition
for the risk averse manager facing the newsboy problem. We analyze
the optimization problem with the risk averse utility function. Then, it is
necessary to approximate the most common utility function as a logarithmic
utility function. We propose an approximation procedure for the utility
function. In numerical examples, we investigate the précision of the
approximation and carry out the sensitivity analysis. Next, we suggest
an alternative objective of the newsboy problem. Concretely speaking,
the maximization problem of the upper and lower bounds of risk averse
expected utility functions is discussed. These two optimality criteria seem to
be useful to realize a flexible décision making, when the Schmeiser-Deutsch
distribution [2] is assumed as a demand one. We numerically examine
the optimal ordering policy and refer to the applicability of this alternative
optimization problem. Finally, we conclude with a discussion and some
directions for future research.

2. SINGLE-PERIOD NEWSBOY PROBLEM

Notation and assumption
Following Lau [8], let us make some basic assumptions on the classical

single-period newsboy problem. A single item is considered. The amount
of item Q (0 < Q < oo) is ordered and instantaneously delivered at the
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A NOTE ON RISK AVERSE NEWSBOY PROBLEM 183

initial time. The goods are delivered with cost C per unit and its unit selling
price is R. The demand D for the period is a random variable, where the
probability density function and the cumulative density function are g(-) and
G (-), respectively. At the moment we assume D G [0, oo). Let V be the
salvage value per unit at the end of period. If the demand is less than Q,
the manager disposes of the extra goods at the cost V, otherwise, the cost
5 is suffered for the shortage penalty per unit. Without loss of generality,
suppose that R > C > V > 0.

Then the actual sales and the stochastic profit are

i = min(Q, D), (1)

Y(Q) = RÂ + Vmax(0, Q - D) - Smax (0, D - Q) - CQ
= (R-V + S)Â-SD-(C-V)Q. (2)

Let E be the expectation operator. The mean and the variance of profit are

E [Y (Q)] = {R-V + S)E[A]-SE [D] ~{C~V) Q, (3)

Var [Y (Q)] =(R - V + S)2 Var [Â]
+ S2 Var [D] -2S(R-V + S) Cov [Â * D], (4)

where the mean and the variance of demand and actual sales are

E [D] = H Dg (D) dD, (5)
Jo

E[Â] = EQ[D] + Q{1-G(Q)}, (6)

Vax[D] = E[D2]-{E[D]}2, (7)

Var [Â] = EQ [D2] + Q2 {1 - G (Q)} - {E [Â}}\ (8)

respectively, and the covariance of them is

Cov [Â'D] = EQ [D2] -{Q + E [D]) EQ [D] + QG (Q) E [£>]. (9)

Also the first and second order partial moments are

fQ
EQ [D] = / Dg (D) dD, (10)

Jo
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184 T. DOHI, A. WATANABE, S. OSAKI

rQ
EQ [D2] = f

Jo
D2g(D)dD, (11)

respectively.

Motivation for risk averse décision making
First, let us consider the risk neutral newsboy problem. This problem

discussed in the standard text book on the inventory theory is to dérive the
optimal order quantity simply maximizing the expected profit as follows;

Q>o
s.t. Y (Q) = {R - V + S) min (Q, D) - SD - (C - V) Q, \ (12)

R > C > V > 0.

We summarize the following standard resuit.

PROPOSITION 1: Under the condition of R > C > V, E [Y (Q)] is a
unimodal function of Q and there is a finite and unique solution of the risk
neutral problem in Eq. (12).

Proof: Since d2 E [Y (Q)]/dQ2 < 0, lim dE [Y {Q)]/dQ > 0 and

lim dE [Y (Q)]/dQ < 0 from Eq. (3) and R > C > V, dE [Y (Q)]/dQ

is a monotonically decreasing function in 0 < Q < +oo and E [Y (Q)}
is a concave function of Q. Thus there is a unique optimal order quantity
maximizing E [Y (Q)]. D

It is clear that the optimization problem above never takes account of the
manager's risk aversion, which is considered as the most gênerai attitude
toward the risk. Lua [8] and Ward et al [13] considered the following
expected utility function consisting of mean-standard déviation tradeoff;

EU (Y (Q)) = E[Y (Q)} - k x/Var [Y (Q)], (13)

where k is the parameter reflecting a manager's individual degree of risk
aversion. This objective function is essentially the same as quadratic utility
function. Pulley [11] proposed the mean-variance approximation to the
expected utility by using a similar formula to Eq. (13). It is noted, however,
that the quadratic utility displays increasing absolute risk aversion in the
sence of Arrow-Pratt and that the marginal utility of the quadratic one
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A NOTE ON RISK AVERSE NEWSBOY PROBLEM 185

is not always positive. Further, the manager's préférence is not always
représentée! only by the mean and variance of profit. These properties make
us questionable to use the quadratic utility function.

In gênerai, the utility fonctions called HARA (Hyperbolic Absolute Risk
Aversion) class are used in the risk theory to illustrate the properties of risk
aversion. The HARA class of utility functions satisfy

= a + by, (14)
r(y)

where a and b are the constant parameters presenting the risk sensitivity and
where r (y) = ~Un (y)/U; (y) is called the absolute risk aversion measure.
Atkinson [2] applied this kind of utility functions to the newsboy problem,
which is different from our model.

As mentioned in Section 1, the purpose of this paper is to develop the
optimal policy and to propose it for the risk averter facing the newsboy
problem. Then, there are three problems which should be overcome as
following:

1) Proof for the existence of optimal order quantity when the risk averse
utility function is adopted.

2) Calculation procedure deriving the optimal policies and their associated
expected utility functions.

3) Approximation procedure of the common risk averse utility function.
Especially, it is noted that the approximation procedure is needed in order

to apply the plausible utility function to the objective one, since the profit
variable in Eq. (2) can be négative.

Moreover, as an interesting and extended problem, we can consider the
nearly optimal ordering policy so as to maximize the upper and lower
bounds of expected utility. This alternative décision problem is discussed
in Section 4. In the next section, we develop the gênerai theory for the
risk averse manager.

3. UTILITY THEORY IN THE NEWSBOY PROBLEM

Risk aversion
The manager who faces the newsboy problem has his or her own utility

£/(•), which is well-defined on Y (Q), and wishes to find the optimal order
quantity Q* maximizing it. The manager is risk averse and the utility U (•)
has the properties as follows;
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186 T. DOHI, A. WATANABE, S. OSAKI

(A-l) U (•) is twice continuously differentiable.
(A-2) U (•) is strictly increasing.
(A-3) U (•) is concave.

Then the manager's objective is to solve the foUowing problem;

s.t. Y (Q) = (R - V + S) min (Q, D)-SÏ)-(C- V) Q, ) (15>
R>C>V>0. J

Since, from Eq. (2),

{{R-V + S)D-SD-(C-V)Q; (Q > D),

we have

and

d2 Y (Q)/dQ2 = 0. (18)

Then we obtain the analytical results as follows;

LEMMA 2: Suppose that R > C > V', U' (•) > 0, U" (•) < 0 and
dU(Y (Q))/dQ is finite for 0 < Q < oo. Then,

(i)

= E\4,U(Y(Q))]. (19)

(ii) f/ (Y (Q)) is a concave function ofQ, provided U'" {•) > 0.

Proof: (i) From the définition of differentiation,

iE [U(Ym]/dQ = lin, E R y W + * » g y W » 1 . (20)
h—*0 L J

Recherche opérationnelle/Opérations Research



A NOTE ON RISK AVERSE NEWSBOY PROBLEM 187

Since Y (Q) and U (Y) are strictly monotonically increasing functions of
Q and Y for a fixed D (> Q), respeetively, we have

U (Y (Q + h)) -
h

U(Y(Q)) U

i

S?

/ o

\
v

> 0 .

(Y (Q + h)) -
Y(Q + h) +

Y (Q + h)-Y
h

+ S-C)
U(Y(Q + h))

Y (Q + h)

U(Y(Q))
Y(Q)
(Q)

-U(Y(Q))
+ Y(Q)

(21)

From the concavity of £/"(•), {U(Y(Q+h))-U(Y(Q))}/h is a monotonically
decreasing function of h. Since dU (Y (Q))/dQ is finite for 0 < Q < oo,
Lebesgue's monotone convergence theorem gives

dEU

The proof for the case of Q > D is similar.
(ii) Using the resuit above gives

(22)

(23)

E\

E
)

lim

\ui
u

(Y (Q))

(Y(Q))
h

-U
h

(Y

(Y

(Q + h))

In a similar fashion to (i), when Q < D, we have

d2

—2 EU (Y (Q)) = (R + S - C) lim E

\Uf(Y(Q + h))-U*(Y(Q))}
x L (24)

L h J
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Since Uf (•) is non-negative and a decreasing fonction, {U1 (Y (Q H- h)) —
Uf (Y (Q))}/h is a monotonically decreasing fonction of h from Y' (Q) > 0
and U111 (•) > 0. By the monotone convergence theorem,

^ 2 £;[/ (Y (Q)) = (R + S-C)2E [U" (Y (Q))] < 0. (25)

The case of Q > D is also similar. Hence, C/ (Y (Q)) is a concave
fonction of Q- C

PROPOSITION 3: Under the condition of Lemma 2, there exists at least a
finite optimal order quantity Q*, which maximizes E [U (Y (Q))].

Proof: From Lemma 2, dSC/ (Y (Q))/dQ is a decreasing fonction of Q.
Then the first order condition of optimality is

dEU(Y (Q))/dQ = E\ — U(Y (Q)) Q<D

= / {R + S-C)U'{Y{Q))g{D)dD
JQ

rQ
- (C-V)U' (Y (Q)) g (D) dD = 0. (26)

Jo

On the other hand, for 0 < Q < oo,

Hm ^ £[/ (F (Q)) = (fl + S - O £tf' (y (Q)) > 0, (27)

Km - ^ EU (Y (Q)) = -(C - V) EU' (Y (Q)) < 0. (28)

This complètes the proof. D
The non-negativity of Unf (•) is a simple conséquence of decreasing

absolute risk aversion. In fact, we note that the exponential, the power and
the logarithmic utilities are considered to be important in applications. We
can also obtain the same result even if the demand follows the distribution
in the class of truncated distribution with support [0, Dmax], where Anax
is an upper limit of demand.
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A NOTE ON RISK AVERSE NEWSBOY PROBLEM 189

Calculation of expected utility
Given a utility function U (•), the calculations of the expected utility and

the corresponding optimal order quantity Q* are numerically carried out.
Following Lau [8], we have the distribution function for the random variable
Y (Q) as follows;

(y<-(C-V)Q),

l-G{Hi(y)) + G{H2(y));
{-(C-V)Q<y<{R-C)Q),

1; {(R-C)Q<y),

where,

f x (R — C + S)Q — y
H\ [y) = , (30)

Its probability density function is

= dPv{y>Y}/dy
g(H1{y))/S]

g (#! (y))/S + g (H2 (y))/(R - V);
(-(C-V)Q<y<(R-C)Q),

0; ((R-C)Q<y).

(32)

Figure 1 shows the behavior of ƒ (y) for fixed order quantities, when the
demand follows the truncated normal distribution;

(33)

where

A= — — exp I —2— I « ^ j (34)
j 0 v 2 TT er \ 2 <J y

and where /i and a are the constant parameters, respectively. It it obvious
that the distribution of Y (Q) is truncated at the point of (R — C) Q and is

r(n-c) Q
unsymmetrical. Eq. (32) clearly satisfies / ƒ (y) dy = 1.

J - o o
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f(y)

0 . 0 0 0 8

0.0006-

0.0004-

0.0002-

5000 10000 15000 20000

R = 2000 [$], C - 1200 [$]> V = 900 [$], 5 = 200 [$ J,]
E [D ] = 15[units], Var[D ] = 2.52 j

Figure 1. - Behavior of ƒ (y) for Fixed Order Quantities (Truncated Normal Distribution).

Thus the problem defined in Eq. (15) is presented by

r(R-c) Q
Lax ƒ
>o J-c

max
Q>0

U(y)f(y)dy,

s.t. Y(Q) = (R-V + S) min (Q, D)-SD-(C- V) Q,
R > C > V > 0.

(35)

If U (•) is well-defined on Y (Q), we can obtain the maximum expected
utility and the optimal order quantity by carrying out the numerical
intégration.

Approximation procedure of logarithmic utility
In the previous discussion we assumed that the utility function U(-) is well-

defined over the range of Y (Q). However, since Y (Q) G (—oo, (R-C) Q)
from D G [0, oo) and Eq. (16), the most common utility fonctions are
undefined for Y (Q) < 0. Thus, it is necessary to append a concave segment
to U (•) in the range of (—oo, tu] for a approximation point UJ (> 0).
Especially, we focus on the logarithmic utility fonction whose absolute
risk aversion measure is monotonically decreasing. Ziemba [14] defined the
approximated logarithmic utility in the context of portfolio sélection problem
by using the following linear segment;
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U(y)

• Logarithmic utility function

Second order approximated utility function

w

w : Approximation point
Figure 2. - Schematic Illustration of Approximation.

log y;
= { y

(y >
- +log U)- 1; (y <

(36)

On the other hand, we consider the second order Taylor approximation to
guarantee the concavity of the utility function as follows;

log y\
U(y)={ -y*

(y > o/),

a;2
(37)

Figure 2 shows the schematic illustration to represent the concept of the
second order approximation procedure given in Eq. (37). The approximated
functions given by Eqs. (36) and (37) are continuous and monotonically
increasing with respect to the profit. Further, note that the value of expected
utility dépends on the approximation point u. This f act tells us that the
choice of approximation point présents the manager's préférences to the risk
in some degree.

Numerical example
Tables 1 and 2 present the dependence of the approximation point and the

model parameters of demand for the optimal order quantity, respectively.
Moreover, we compare the risk averse optimal order quantity <3* with the
risk neutral one Q*. Data set is as follows: R = 2 000 [$], C = 1 200 [$],
V = 900 [$] and S = 200 [$]. The demand is supposed to follow the
truncated normal distribution with /x = 15 and a2 = 2.52.
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TABLE 1

Optimal Order Quantity for Varions Approximation Points

0.001

0.010

0.100

1.000

10.000

Risk Neutral Ql

16.80

Risk Averse Q*

First Order

10.00

13.10

15.30

16.20

16.40

Second Order

5.66

5.70

5.80

10.90

15.60

In Table 1, we find that the risk neutral optimal order quantity Q* is 16.80
[units], which is always larger than Q*, and that the optimal order quantity Q*
becomes small as the approximation point approaches to zero (as the property
of the approximated utility approaches to one of the logarithmic utility). Also
the second order approximation makes Q* smaller than one in the first order
quantity. This means that the first order approximation overestimates the
order quantity comparing with one by the second order approximation. In
other words, the manager using the second order approximation is more risk
averse than using the first order one. Hence the manager should apply the
second order approximation method with a relatively small approximation
point in order to evaluate the logarithmic utility fonction accurately.

In Table 2, we find that Q* is always smaller than Q* for the set of (//, a).
Especially, note that Q* and Q* become small and large, respectively, as
a becomes large. This resuit means that the risk averse manager should not

TABLE 2

Optimal Order Quantity for Model Parameters

Model Parameter

M

10.0

10.0

15.0

15.0

20.0

20.0

a

2.0

3.0

2.0

3.0

2.0

4.0

Risk Neutral Q*

11.5

12.2

16.5

17.2

21.5

22.9

Risk Averse Q*

First Order

10.0

4.6

16.2

14.5

21.3

18.9

Second Order

41 •

3.9

15.9

5.8

21.3

7.6

Recherche opérationnelle/Opérations Research



A NOTE ON RISK AVERSE NEWSBOY PROBLEM 193

order too much quantities under uncertainty. On the other hand, the risk neu-
tral manager makes the order quantity increase as fj, and/or a increase. Thus,
if he or she does not prefer to high-risk-high-return, we conclude that the
ordinary risk neutral criterion in the newsboy problem is very questionable.

4. ALTERNATIVE OPTIMIZATION OBJECTIVE

Upper and lower bounds
In practical situations, it is often useful for the manager to know some

candidates for the optimal order quantity rather than a unique order quantity.
In order to carry out such a flexible décision making, it seems to be important
to provide the range of the order quantities which the manager should choice.
In this section, we consider the order quantities maximizing the upper and
lower bounds of expected utility function, and dérive the interval consisting
of them. We apply Ben-Tal and Hochman's bounds [3, 4] as upper and
lower bounds. The upper and lower bounds are well known to be more tight
than Jensen's and Madansky's bounds, respectively (see [3]).

Let us define the mean, the mean absolute déviation and the probability
as follows;

= E\Y(Q)-n(Q)\,

(40)

Then, for a concave utility function U (*) and the class of distributions
of Y (Q) with support [a, 6], we have

B(Q)<EU(Y(Q))<A(Q), (41)

where

(42)

vol. 28, n° 2, 1994



194 T. DOHI, A. WATANABE, S. OSAKI

( 4 3 >

Note that the upper bound above is independent of the support [a, &].
On the other hand, if a and/or b are infinité, the finite lower bound for
an arbitrary distribution of Y (Q) can be obtained under the additional
restriction on U (•) as follows;
(B-l) Existence and finiteness of lim U (y)/y for y G [a, oo].

y—»oo

(B-2) Existence and finiteness of lim U (y)/y for y G [-00, b],

(B-3) Existence and finiteness of lim U (y)/y for y G [-00, 00].
y—> riz 00

Since we assumed D G [0, 00) in the previous section, the utility
function must satisfy the condition (B-2) to guarantee the finite lower
bound for Y (Q) E (—00, (R — C) Q\. For the approximated logarithmic
utility in Eq. (37), its lower bound is not finite (although it is finite for
the first order approximated logarithmic utility). The exponential utility
U (y) = -a exp (—y/a) (a > 0; constant) does not also satisfy (B-2). Thus
we have to make a décision by using the only upper bound of expected
utility, if the three conditions above are not satisfied.

As a special case, let us consider the case of D G [0, -Dmax], where Dmajc

is a constant. In a similar fashion to Eq. (32), we have the corresponding
probability density function of Y (Q) to £> G [0, Anax] as follows;

= dPr{y > Y}/dy

(g(H2(y))/(R-V); (Case 1),

! (Hi (y))/S + g (H2 (y))/(R - V); (Case 2), (44)

g(Hl(y))/S] (Case 3),

0; (otherwise),

where
(Case 1); 0 < £>max < Q or - ( C - V ) Q <y < (R-C + S)Q-SDmdbX

(when Q < £>max < (R-V + S) Q/S).
(Case 2); (R - C + S) Q - 5D m a x < y < (R - C) Q (when Q <

Anax < (R-V + S) Q/S) and -(C - V) Q < y < (R - C) Q (when
(R-C + S) Q/S < Anax).
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A NOTE ON RISK AVERSE NEWSBOY PROBLEM 195

(Case 3); (R - C + S) Q - SAnax < y < -{C - V) Q (when
(R-C + S) Q/S < ZW).

Thus, specifying the density function #(•), we can obtain the optimal order
quantity for the direct expected utility maximization from Eqs. (35) and (44)
by carrying out the numerical intégration. It is, however, remarked that there
are some problems on the overflow of computer and on the long time required
in the calculation to solve Eq. (35). These facts motivâtes to introducé the
upper and lower bound criteria in the risk averse newsboy problem.

Schmeiser and Deutsch distribution

A versatile distribution family so-called S-D distribution (Schmeiser-
Deutsch distribution) is well-known to be useful in some practical inventory
calculations. Schmeiser and Deutsch [12] developed a probability distribution
with the p. d. f. and c. d. f. as follows;

9(D) =
Xi-D

A2

(1-A3)/A3

/A2A3, (45)
(Ai - A2 A

A3 < D < Ai + A2 (1 - A 4 ) H

G(D)=i

A 4 -

(Ai - A2 A
As < Z> < Ai),

A 4 -

(46)

where Ai and A4 are the mode and the percentile of the S-D distribution,
and À2 and A3 are the shape parameters, respectively (see [7, 12]).

If the demand follows the S-D distribution and D e [O, Dmax] the
relationship of Ai — A2 A43 = 0 and Ai + A2 (1 — A ^ 3 = Dm3LX are satisfied
(see [12]). Then we have the corresponding mean and the partial moments
as follows;

E [D] = Ai +
A3

(47)
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EQ [D] =

A2

A3
A3

A2 A2

A2

A3

where

R-V

(48)

(49)

(Ai < Q).

Thus we get \i (Q), a (Q) and @ (Q) as follows.

(1) Mean fi (Q):

li(Q) = {R-V + S) {EQ [D] + Q(l-G (Q))}

-SE[D]-(C-V)Q,

where EQ [D] and E [D] are given by Eqs. (47) and (48).

(2) Mean absolute déviation a (Q):

(2-1) Case of 0 < £)m a x < Q;

a (Q) = {R-V) {£ (Q) K (0, Ç, (Q)) - J (0, £ (Q))

+ J (£ (Q), Z W ) - £ (Q) # (C (Q), Anax)}, (50)

(51)

Dg(D)dD, (52)

K{i,j) = j g(D)dD,

respectively.

(2-2) Case of Q < Dm a x <(R-V + S) Q/S;

(53)
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<*(Q)=<

(R-V) {£ (Q) K (0, £ (Q)) - J (0, £ (Q))
+ J(t(Q),Q)-t(Q)K(t(Q),Q)}
+ S{<I> (Q) K (Q, I W ) - J (Q,

where

+ S{4> (g) ÜT (Q, <̂  (Q)) -J(Q,<f> (Q))
+ J {<t> (Q), Anax) -<I>{Q)K (<f> (Q),

S)Q-SDmax<n(Q)<(R-C)Q),

S)Q-fi(Q)

(2-3) Case of (Ü - V + S) Q/S < Dmax;

(54)

(55)

+ 5 {0 (Q) ir (Q, 0 (g)) - J (g, 4> (Q))
+ J(<j> ( g ) , D m a x ) -<j>{Q)K (<f> (Q), D m a x ) } ;

- C + 5) Q - 5

+ s{(p (g) A- (g, z?max) - J (g, z?max)
+ J (0 (g), Dmax) -4>{Q)K (<f> (Q), Dmax)};

(56)
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f(y)
0.0006:

0.0005

0.0004

0.0003

0.0002

0.0001

Order Quantity = S

Order Quantity = 15

Order Quantity = 25

- 1 -5000 5000 10000 15000 20000 '

R = 2000 [$], C=1200 [$], K=900[$],S =200 [$],
Ai = 10.00, A2=74.1788, A3 = 1.6644, A4=0.30

Figure 3. - Behavior of ƒ (y) for Fixed Order Quantity (S-D Distribution).

(3) Probability /? (Q):

(3-1) Case of 0 < Dmax < Q;

= l-G(H2(n(Q))).

(3-2) Case of Q < Dmax < (R-V + S) Q/S;

(57)

P(Q) =

l-G(H2(n(Q)));

S)Q-SDm!LX),

((R-C <(R- C) Q).

(58)

(3-3) Case of {R - V + S) Q/S < Z)max;

G (JET! (M (Q)));
((R-C + S)Q- SDm!lx

(59)
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OBJECTIVE

FUNCTION

-6000

-8000

-10000

-12000

-14009-

E M Q )]

R = 2000 [$], C = 1200 [$], V = 900[$], S = 200 [$], a = 10000,
X i = 10.00, X2 = 74.1788, A3 = 1.6644, XA = 0.30

Figure 4. - Behavior of A (Q), B (Q) and EU (Y{Q)).

Optimal interval
From Eqs. (49)-(59), we can analytically obtain the upper and lower

bounds of expected utility function in Eqs. (42) and (43). Hence, the
problem is to get the following order quantities;

(60)a

mzx (61)

Unfortunately, it is difficult to analytically examine the concavity of A (Q)
and B (Q) for Q > 0. Figure 4 numerically illustrâtes the concavity of the
bounds and présents that the interval [Q*B, Q*A] includes the risk averse
optimal order quantity Q*, where the parameters are same as the case
of Figure 3 and the exponential utility function with the risk sensitivity
parameter a is assumed. We simply call [Q*B, Q*A] optimal interval

By applying the result of Ben-Tal and Hochman [4] directly, we have the
following useful result on the optimal interval without the proof.

PROPOSITION A: If a utility function U (Q, D) satisfies
(i) U (Q, *) is concave for Q > 0,
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(ii) U (•, D) is strictly concave for D G [0, Anax]

(iii) dU (Y (Ql))/dQl is concave,

then

Q*B<Q*a< Q*A. (62)

In particular, it is diffîcult to check whether the condition (iii) is always
saisfied. Thus, we show that the inequalities of Eq. (62) are satisfied for
various parameters in the next discussion.

Numerical example

It is interesting to examine the sensitivity of the upper and lower bounds
for the risk sensitive parameter a, when the exponential utility function and
the numerical data in Figure 4 are assumed. Table 3 shows the dependence
of a in the optimal order quantities and their associated évaluation functions.
It is clear that Q* is always included in the optimal interval. Also, as
a increases, Q^, Q^ and Q\ are nondecreasing and the optimal interval
becomes more tight. This resuit tells us that the number of feasible order
quantities including [Q^, Q\] increases as the manager becomes more risk
averse. Table 4 présents the dependence of the approximation point in the
optimal order quantities when the logarithmic utility function is adopted.
The data set is same as the case above. Hère the second order approximation
is used. We have that the most optimal order quantities are insensitive to LO.
In other words, the arbitrary parameter determined by the manager is almost
independent of the optimal order quantity and the optimal interval.

TABLE 3

Optimal Order Quantity's Interval (Exponential Utility)

a

50

100

1000

10000

50000

100000

Risk Neutral

Ql

31.1

Lower Bound B (Q)

Q*B

7.8

7.9

7.9

16.3

25.6

28.1

5max

-2.85 x 1021

-3.97 x lO 1 1

-2184.35

-5795.79

^2545.50

-91677.40

Risk Averse EU (Y (Q))

Q:

I$

8.0

9.7

19.2

26.1

28.4

EUm^

-2.49 x 1019

-6.10 x 109

-402.86

-5255.56

^2157.30

-91373.30

Upper Bound A (Q)

QA

15.2

15.2

15.2

20.3

27.7

29.3

A
^ m a x

-1.23 xlO"3 0

-1.05 x 10"14

-12.33

-4966.57

-12067.70

-91358.90
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TABLE 4

Optimal Order Quantity 's Interval (Logarithmic Utility)

0.01

0.10

1.00

10.00

100.00

1000.00

Risk Neutral

Qn

31.1

Lower Bound B (Q)

QB

7.9

7.9

7.9

7.9

7.9

11.3

^ m a x

-5.68 x 109

-3.97 x 1011

-218435

-2413.12

-5795.79

-^2545.50

Risk Averse EU (Y (Q))

Ql

9.3

9.3

9.3

9.3

9.4

11.3

£!7max

-6.71 x 108

-6.71 x 106

-6.73 x 104

-680.93

-0.56

8.08

Upper Bound A (Q)

QA

17.2

17.2

17.2

17.2

17.2

17.2

A

8.77

8.77

8.77

8.77

8.77

8.77

Thus, the numerical examples above illustrate that the inequalities of
Eq. (62) are satisfied in some situations and that the optimal interval consists
of the range of rather practical order quantities. This resuit shows that the
alternative criterion proposed hère is of practical use. In fact, the calculations
to get Q*B and Q*A are rather easier than one to do Q* and the problem on
the overflow of computer did not happen in our calculations.

5. CONCLUSION

In this paper we examined the analytical properties of the expected utility
function for the risk averse manager facing the single-period newsboy
problem. In addition» we considered the approximation procedure of the
expected utility function in this problem, and altematively proposed the upper
and lower bound criteria. The mathematical results which we developed in
this paper are rather straightforward but are systematically arranged. These
are valid from the financial theoretical standpoint as well as useful for
the practioner in evaluating the inventory risk. In numerical examples, the
sensitivity analyses were carried out and some interesting and significant
insight for the newsboy problem were given.

In future, the multi-item newsboy problem should be considered in the
context of this paper. Then, the resuit will never be simple as one for the
single-item. Also, the problems having the more complex model structure
such that Lau and his co-authors [9, 10] discussed is desired to analyze.
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