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SHORT NOTE

MARKOVIAN ASSIGNMENT DECISION PROCESS (*)

by S. GEETHA C) and K. P. K. NAIR (*)

Communicated by S. OSAKI

Abstract. — A finite-state, discrete-time Markovian décision process, in which, each action in
each state is a feasible solution to a state dependent assignment problème is considered, The
objective is to maximize the additive rewards realized by the assignments over an infinité time
horizon. In the undiscounted case, the average gain per transition and in the discounted case, the
discounted total gain respectively, are maximized. Properties of optimal solutions in the two cases
are characterized andfinite algorithms are presented.

Keywords : Markov décision processes; assignment problem; average gain; discounted reward;
policy itération; algorithm; optimal solution.

Résumé. — Nous considérons un processus de décision markovien, à états finis, à temps discrets,
dans lequel chaque action dans chaque état est une solution réalisable d'un problème d'affectation
à états dépendants. L'objectif est de maximiser le profit additif dû aux affectations sur un horizon
temporel infini. On maximise le gain moyen par transition dans le cas où il n'y a pas d'actualisation,
et le gain total actualisé en présence d'actualisation. Pour ces deux cas,, nous caractérisons les
propriétés des solutions optimales, et nous présentons des algorithmes finis.

Mots clés : Processus de décision markovien; problème d'affectation; gain moyen; profit
actualisé; itération sur politique; algorithme; solution optimale.

1. INTRODUCTION

The fmite-state, discrete-time Markovian décision process has been devel-
oped by Howard [1]. Hère, a dynamic System is observed periodically at time
points * = 0,1,2, . . ., and at each time point, it will be seen in any state z,
z=l,25 . . ., N of the set S. While in state z, there is a finite set Kt of alternati-
ves of actions available for controlling the system. If action keKt is taken
while in state i, the System moves to state j in the next step with probability
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pk
tj giving rise to a reward of r£. The séquence of rewards are additive and

the sum, if discounted or the average, if undiscounted can be optimized by
the policy itération method of Howard [1] or by linear programming as
shown by Wolfe and Dantzig [12] and Derman [3]. Optimal policies in these
cases are in pure and stationary forms. Also, the optimal value in each of
the two cases are unique; however, the value in the discounted case is
dependent on the starting state.

The stochastic games of Shapley [4] may be viewed as a generalization of
the above décision process to the context of two-person zero-sum games.
Similarly, the work of Aggarwal, Chandrasekaran and Nair [5] is a generaliz-
ation to the context of ratio rewards that has several interesting applications.
The ratio Markov décision processes, without and with discounting, have
been further generalized to the context of games by the same authors [6,7].

In the present work, we generalize the basic Markov décision process stated
above to the context of the well known assignment problem in mathematical
prograrnming. Here, while in state z, the décision involves selecting a feasible
solution of a state dependent assignment problem and after reaüzing a reward
dependent on the feasible solution selected, the system moves to state j
with a probability that is determined by the feasible solution selected for
implementation. Characterizations of an optimal solution to this Markovian
décision process, generalized to the context of assignment problem, and flnite
convergent algorithms for both the undiscounted and discounted cases are
presented.

2. DESCRIPTION OF THE MARKOVIAN ASSIGNMENT DECISION PROCESS

A fïnite state Markovian assignment décision process (MADP) is a general-
ization of the well known fïnite state, flnite action space, Markovian décision
process to the context of the assignment problem of mathematical program-
ming. In this generalization, associated with each state ze S, there is an
assignment problem At and the reward matrix of size nt x ni associated with
Ai is denoted by R^ {rf; q, /= 1,2, . . ., nt}. Also related to each element rf
is a transition probability vector pf= {pu,pf2, . - . ,pfj, - . . >ƒ>?#}• Now, define
xf a zero-one décision variable associated with each element of Rt such that

l ,V ? ; x?! = 0 or l,V(*,/) (1)

Thus, a zero-one vector x( obeying (1) is a feasible solution to Ai and let the
set of all feasible solutions to Ah denoted by such vectors, be represented
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by X*v The number of such feasible solutions of At is finite and let this set be
Kt. For each keKt, the vector associated with it be x\. The transition
probability vector pfl associated with the feasible solution

xt = {x\l ; q, l = 1,2, . . ., nt} G Xt is computed as follows

- I 1 / ^ ^ 7 = 1 , 2 , . ..,N\ for i = l , 2 JV. (2)
ni q l J

For keKi9 the transition probability vector associated with x\ is denoted by

P\-
Now, given the assignments begin in a specified state ie S at time period

t = 0, the évolution of MADP may be represented by

* = 0 , l , 2 , . . . , (3)

where z't is the state occupied at step or period /, keKit is the feasible solution
of the assignment problem Ai% implemented, r\t is the reward associated with
keKit given by £ Yjrtxt an<^ P% x<à t n e transition probability vector whose

q l

éléments are given by — ̂  YjPttj
xt ^or 7 = ^ 2 9 . . . ,iV. Thus, (3) reveals a

ni q l

séquence of rewards r£, / = 0,1,2 . . . Here, two cases are of interest; in one
we consider that the future rewards are discounted by a factor P(O^P<1)
per period and in the other the rewards are not discounted. If discounting is
applied, the relevant objective is maximization of the total discounted reward.
If no discounting is applied, obviously, the total reward is unbounded over
the infinité time periods and therefore, we maximize the limiting average
reward or gain rate per transition. Assuming that the underlying Markov
chain is a single ergodic one, the average gain rate would be unique for all
starting states. In the discounted case, the total discounted reward will be
dependent on the starting state.

3. CHARACTERIZATION OF OPTIMAL POLICEES

In this section, we establish certain properties of optimal policies in the
two cases with and without discounting and characterize an optimal policy
in each case respectively. A policy is a sélection of a feasible solution of the
assignment problem in each of the states in S. This characterization would
be helpful in developing the respective algorithms.

vol. 26, n° 4, 1992
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Firstly, we note that the structure of the MADP is identical to the
Markovian décision process of Howard [1]. This follows from the fact that
while in state i; there is a finite set Kt of alternatives of feasible solutions
to At and any choice keKt can be implemeiited and the associated reward
and transition probability vector are rk

t and p\. The fact that these are not
explicitly known is of no conséquence as far as the properties of optimal
solutions in the discounted and undiscounted cases are concerned, though it
may cause sortie changes in the algorithmic steps. In view of the above, the
following theorem holds and the proof is straight forward.

THEOREM 1: In the discounted and undiscounted MADP, there exist stationry
and pure optimal policies.

In the theorem, stationarity means that at every time the System is in a
particular state, the same action (feasible solution to the assignment problem)
îs applicable for implementation. Also, purity implies that mixture of feasible
solutions of the assignment problem in the state is not applied. Thus,
Theorem 1 is a direct generalization of the properties used by Howard [1]
and later proved rigorously by Blackwell [8],

Let Pf£(/= 1,2, . . . ,JV) be the total discounted reward if the System is
started in state i under a stationary policy x = (x1,x2, . . .,JC£} . . .,xN). Then,
Vf1's uniquely satisfy the relation

+P E

THEOREM 2: A policy x* = (x*? x*, . • -, xf, . . ., x$) is optimal and the associ-
ated Vf for f = 1,2, . . ., TV, are maximal, in the discounted case, if and only if

N

E Pi Vf, Ï = 1 , 2 , . • .,N (5)

and

(6)
q l L j=l

with maximum attained at xfeX^

The validity of theorem 2 is clear from the structural similarity of the
current problem to the problem considered by Howard [1] and Blackwell [8].
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Thus, Theorem 2 provides a useful characterization of an optimal policy in
the discounted case.

As stated earlier, in the undiscounted case, we assume that the imderlying
Markov chain is an ergodic chain. Hère the objective is to maximize the
limiting average gain rate per transition and it is independent of the starting
state.

För a given policy x - (xu x2i . . ., xb . . ., xN), we have

N

**' + *? = E I>?'*?'+ E / W > i=l,2, . . . , * (7)
q i j = i

In the above, x>£'s may be called relative values dependent on the starting
state as in the Markov décision process of Howard [1].

THEOREM 3: A policy x* = (xf, xf, . . ., xf, . . ., x%) is optimal and the associ-
ated gain rate g* is maximal, in the undiscounted case, if and only if9

N

I Pijvh 1 = 1 , 2 , . ..,N (8)

f r ii
x i e X t l q l L 7 = 1 J J

(9)

wzï/z f/ï£ maximum attained at xf e Xt.
The validity of Theorem 3 follows similar to that of Theorem 2. Now,

Theorems 2 and 3 respectively lead to the development of the algorithms for
Computing optimal policies in the respective cases.

4. ALGORITHMS

The algorithms for the respective cases are direct generalizations of those
given by Howard [1], to the context of the assignment problem and as such
their validation is straight forward and therefore, are not included here.
Basically, each algorithm involves repeated application of two steps, one of
solving a system of équations (value détermination) and the other of solving
a set of assignment problems (policy improvement) until convergence is
realized. Algorithms for the discounted and undiscounted cases are given
below.
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Algorithm I (Discounted Casé)

Step 0: (Initialization)

Set k = 09 V\k) = 0 for i = l , 2 , . . .,7V. Go to Step 2.

Step 1: (Value détermination)

Solve the System

1 = 1 , 2 , . . . ,AT,

to obtain the unique solution V?\ i= 1,2, . . .,7V. Go to Step 2.

S*ep 2: (Poîicy improvement)

Solve the TV assignment problems for i = 1,2, . . ., TV, where the reward
matrix of the z-th problem is as follows:

N
f 1

and let the optimal solution be denoted by xf] and the optimal values be Gf.
If xf) = xf~1) or Gf=FÎfc) for ail i and fe^l, terminate; m this case,
x = {xjfc), f = 1,2, . . .,TV} is the optimal policy with values Vf\ i = 1,2, . . ., N,

Otherwise, go to Step 1 with xjk), i= 1,2, . . .9N, setting h = k+ 1.

Algorithm II {Undiscounted Case)

Step 0: (Initialization)

Set fc=0, ^fc) = 0 for /= 1,2, . . .,7V. Go to Step 2.

Ste/? 1: (Value détermination)

By setting i$)==0, for the remaining TV variables, g and v^\
i = l , 2 , . . . , TV- 1, solve the System,

I I IW>^k> i=l,2, . . .,7V.

Go to Step 2.

Step 2: (Policy Improvement)

Solve the TV assignment problems for i= 1,2, . . . ,7V, where the reward
matrix of the z-th problem is as follows:

# , / = l , 2 , . . . , « ,
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and let the optimal solution be denoted by x\k). Let the relative values be vik)

and the gain rate be g{k). If xf^xf'^ for all i or tfQ = tfk-» for jfc^l,
terminate; in this case, x={x{f\i=l929 . . ,,N} is the optimal policy with
the optimal gain rate g(k). Otherwise, go to Step 1 with xik\ 1=1,2, . . .,N,
setting k = k+l.

Validation of the algorithms

The validation of the algorithms follows analogous to those of the algo-
rithms of Howard [1], The only différence is in the policy improvement
opération which involves solving a set of assignment problems instead of
finding the maximum of a set of linearly defined quantities in each of the
states.

Each algorithm is fmite since there are only a finite number of policies in
the System and no policy is repeated in the algorithms. Also, the opération
in each itération is polynomial of Q(Nn3).

5. CONCLUSION

In this paper, the well known Markov décision process has been generalized
to the context of assignment problem of mathematical programming. The
algorithms presented for both discounted and undiscounted cases are finite
and the efforts required in each itération is polynomical of 0(Nn3). The work
reveals that the Markov décision process is amenable for generalization to
any kind of décision process so long as the process applicable to each state
has a well defined structure. Further work in this direction would be of
interest both from practical and theoretical points of view. As already known
in the case of the basic Markov décision processes, one may develop linear
programming algorithms [3,9] for the above cases as well.
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