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M/G/1 WITH EXCEPTIONAL SERVICE AND ARRIVAL RATE (*)

by M. KRAKOWSKI (X)

Abstract. — We modify the model M/G/l by (a) providing pioneer customers {initiators of a
busy period) with exceptional service; and (b) by having an exceptional arrivai rate when the server
idles. The regimen is FCFS (first come first served) and exhaustive {a busy server turns idle if and
only if the had is exhausted). We dérive so-called omni-equations for virtual and true delay and
express them is terms o f a delay in M/G/l and a model-specific variable. We dérive the queue size
from the delay using the Poisson operator, as we call it. P. D. Welch (1964) allows exceptional
service but no exceptional arrivais, and dérives no compositions. We think our treatment is simpler
and easier to extend once we overcome the hurdle of new notation. The special arrivai rate of
pioneer s forces us to carefully distinguish virtual from true delay s.

Keywords : M/G/l family, exceptional service and arrivais; balanced processes; omni-equation;
composition; Poisson operator.

Resumé. - Nous modifions le modèle MjG/l de la façon suivante : (a) accorder aux clients
pionniers (c'est-à-dire initiateurs d'une période de service) un service exceptionnel; (b) avoir un taux
d'arrivée exceptionnel quand le serveur est inoccupé. Le régime est FCFS {«first come first
served », premier arrivé premier servi). Nous présentons les équations dites omni-èquations pour
les délais virtuels et véritables, et les exprimons en termes de délai en M/G/l et d'une variable
spécifique au modèle. Nous déduisons la taille de la file d'attente à partir du délai, par utilisation
de ce que nous appelons l'opérateur de Poisson. P. D. Welch (1964) permet un service exceptionnel,
mais pas d'arrivées exceptionnelles, et ne présente aucune composition. Nous pensons que notre
traitement est plus simple et plus facile à généraliser une fois dépassé l'obstacle d'une notation
nouvelle. Le taux spécial d'arrivée des pionniers nous oblige à distinguer soigneusement les délais
virtuels et les délais véritables.

Mots clés : Famille M/G/l , service exceptionnel; arrivées exceptionnelles; processus équilibrés;
omni-équation; composition; opérateur de Poisson.
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100 M. KRAKOWSKI

BALANCED PROCESSES AND OMNI-TRANSFORMS

DÉFINITION: The omni-transform (Krakowski, 1984, 1987) of Zis the expect-
ation Ey\f(Z) of an arbitrary well-behaved function v|/(Z). "Well-behaved"
means that ail opérations needcd in context are valid, in particular that
Ey\f(Z) and is\|/(Z) are finite. Good behavior dépends thus on Z, on \|/(Z),
on our model-and on our rigor. The inverse of 2s\|/(Z) is (generic) Z itself,
just as the inverse of E exp( — sZ), a special case of ii\|/(Z), can be thought
of as Z rather than the distribution of Z.

Thus, the omni-equation Ety (A) = a E^ (B + Q + (1 - a) E v|/ (D) says that A
is distributed like the mixture of (2?+ Ç) and D weighted a and 1 - a in turn.
Omni-transforms allow us great freedom in choosing \j/ and provide a handy
notation for sums and mixtures of random variables (and thus for some tree
structures). In particular, the relation between the distribution of virtual
waiting time and the distribution of queue size become clearer. Still, any
omni-equation in independent random variables can be specialized to an
équation in Laplace transforms (or characteristic functions or generating
functions) by the simple device of setting \|/ (B + Q = \|/ (B) \|/ (Q,

DÉFINITION: We call a random process Z balanced if EdZ = 0, Le. if its
expected fluctuation over a "random" dt vanishes. The balance condition is
weaker than stationarity. [We do not defme "random dt" rigorously. We can
initiate the intervals dt by a Poisson source independent of all the modePs
processes.]

The Omni-Method

Under wide conditions if the process Z is balanced than so is an arbitrary
function v|/(Z). The essence of the omni-method is to analyze and balance
\|/(Z) rather than just Z. Not surprisingly, the conservation method and
omni-method go well together. Though one often balances exp( — s 2) and
exp ( — itZ) and zN the idea of balancing \|/(Z) seems recent (Krakowski,
1984).

We start with the omni-equation for regular M/G/l in integrated form
(July 1986):

M/G/l £ \KM) = ( 1 - P ) \ K 0 ) + P E \ K M + #JC) (1.1)

u being virtual delay; 01 x residue of service time x\ and p = X/\i. The
operator E makes it immaterial whether both instances of u are the same
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M/G/l WITH EXCEPTIONAL SERVICE AND ARRIVAL RATE 101

process or equivalent processes; unless said otherwise all variables in an
omni-equation are generic and independent; both instances of u are mutually
independent and we say they are free copies of a generic delay u. [We can
write: E^(ux) — (1 — p) \|/(ö) + pE\|; (&2-b^x) with i. i.d. ux and u2 but we
think (1.1) is rnore readable and more esthetic.]

Specializing ty(u) to M, U2, uk or exp ( — su) we get successive moments of u
and its LST, If \|/(&)=1 for Q^u^t, and \Jf(&) = 0 otherwise, we get the
convoiution équation

gf) (1.2)

The probability that a r. v. satisfïes a set of inequalities is, as known, the
expectation of an indicator. But we need not explicitly specify this indicator
in order to write down the corresponding convoiution: we just write
E^f^ — Pr^^t). The distinction between probabilistic and analytic proce-
dures is now blurred; omni-equations become convoiution équations by letting

Omm-Convention

Omni-equation, Le. équations with such terms as Ety(Z) or EZk^(Z)7 are
easily told by sight. The omni-convention mentally applies the expectation
operator E to each side of an omni-equation. (We retain E if ambiguity
threatens.) This convention is akin to the summation convention for matrices
and tensors. The Omni-Convention turns (1.1) into

Equation (i » 1), or (1.1 a), states: The process u is a mixture of 0, weighted
1 — p> and of "a clone of u plus $x*\ weighter p. We can refer to (1.1 d) or
(1.1), as well as (1.2), as a convoiution équation.

True or virtual customers and continuous observers find stochastically
equivalent states in all models with a steady poissonian arrivai rate (Wolff,
1982).
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102 M. KRAKOWSKÏ

A GENERAL COMPOSITION LEMMA

LEMMA: Let 0 < a < 1 and let the independent rondom variables £/^0, Z^O
and g^O satisfy the two équations (mind the omni-convention f)

(2.1)

(2.2)

Such équations, which state a mixture property, occur of ten in M/G/l family
when service time x is transposed into residual service M x. Then the composition

vKZ) = v|/(£/+£) (2-3)

holds which says that Z is distributed like the sum of U and g (or that generic
Z is the sum of generic U and generic g). Only the r.v. A enters both (2.1)
and (2.2) but does not explicitly enter (2.3).

Proof: Since (2.1) and (2.2) are convolutions it is plausible to attempt the
dérivation of (2.3) by specializing \|/(U) = e's ü. Thus (2.1) and (2.2) become

U Ee'sA (2 Aa)
A (2,2a)

Since a < 1 we have 1 — <xEe~sU>0, and therefore (2Aa) and (2.2a) imply

(2.4)
A} (2.5)

It follows that

Ee-sZ = Ee-(U+9) (2.6)

which says, as does (2.3), that Z is distributed like the sum of U and g.
Thus (2.6) is equivalent to (2.3).

Note: Equation (2.3) holds for the basic multiple vacation model if
OL=p = Xf\i, Z=w = virtual delay, t/=Mi{ = virtual delay in regular M/G/l,
g = â$v = residual vacation v; and A = M x = residual service; (2.2) occurs also
in M/G/l with Initial Quorum ("Heyman model", Krakowski, July 1986 and
November 1986) and other models. It explains much of compositions' ubiq-
uity in the M/G/l family.
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M/G/1 WITH EXCEPTIONAL SERVICE AND ARRIVAL RATE 103

If U=uR, virtual delay in a reguiar M/G/1, and A = Mx and a = p then
(2.1) becomes

(2.7)

and the composition (2.3) becomes

(2.8)

Indeed, (2.1) can always be interpreted as an omni-equation for a reguiar
M/G/1.

POSITIVE DELAY IN M/G/1 WITH EXCEPTIONAL SERVICE AND ARRIVAL RATE

We now balance \|/(w) for a modifîed M/G/1 whose pioneers (initiators of
a busy period) receive exceptional service x0 instead of the reguiar x; and
whose arrivai rate is Xo instead of the reguiar X when server idles. (We keep x
and X free of subscripts when server works to stress their regularity.) Service
is exhaustive and customers' service and delay become known when they join
the queue.

The virtual delay u is a state variable since it is defined at each time
instant, unlike an arriver's prospective delay wai defined at arrivai instants,
or a departer's (into service) rétrospective delay wd, defined at departure
instants. Though we balance state variables, we relate virtual delay to true
delay, not a state variable. The reason for defining virtual delay is to have a
balanced state variable with the same or related distribution as true delay.

The expected fluctuation Edty(u) during a random dt has several com-
ponents:

(a) aging when server works adds

A busy server works off his load at rate du^ = -dt; P^^=\-P0 = Pr (server
busy). The asterisk in subscript position says that the server works.

(b) Arriving pioneers add

(c) Arriving non-pioneers add
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104 M. KRAKOWSKI

(d) In an exhaustive model a departure causes no finite change in dty (u)
as it occurs when service residue is down to zero.

The changes (a) through (d) must sum to zero for a balanced \|/ (u) :

^(u^] = 0 (3.1)

With \|/(u) — u, p0 = Xox0, and p^Xx, we get from (3.1)

Po =
 1 - P and P* = ^ (3.2)
1 + Po-p 1 + Po-P

The process we have balanced, \j/(w), does not enter (3.1) though i|/(w*)
does. This is common; thus Little's theorem results from balancing "aggregate
sojourn of ail incumbents", a variable absent in the theorem's statement
(Krakowski, 1973).

The renewal équation (Krakowski, Sep. 1984, 1987) sates that

x^(^x) (3.3)

where ^ x = residue of service x (remaining service time of JC).

Outline of Proof: We balance v|/(iS), S being an incumbent's remaining
service. Note that dt = - dS. Aging add Edty (S) |aging = - Ety (M x) dt,
Renewals, of rate 1/jc, add £dv|/(S)|renewal = £[^/(x)-^|/(0)]/ic. The two contri-
butions sum to zero and yield (3.3). (Krakowski, September 1984 and 1987.)

"Shifted" by u^, the positive virtual delay, (3.3) becomes

(3.3 a)

With the aid of (3.3) and (3.3 a) équation (3.1) becomes

P* V K ) = ̂ Po Po ¥ {» *o) + P* PV K + » x) (3. ï a)

Defming <p = \|/' we typographically integrate (3.1 a):

P*<p(uJ = Popo<p(<%x) + P*py(u* + <%x) (3Ab)

Dividing throughout by P^ we get

cp (!/„) = (Po po/PJ <p 0» x) + p<p (u* + @x) (3.1c)

Letting <p (. ) = 1 we fînd Po po/P* = 1 — p, thus confirming (3.2). We rewrite
(3.1 c), while reverting to \|/ in place of the equally gênerai cp, as
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M/G/l WITH EXCEPTIONAL SERVICE AND ARRIVAL RATE 105

which is the integrated form of (3.1). We thus have a convolution relation
for the virtual delay of non-pioneers; the delay of pioneers is, of course, zéro.

The arguments x0 and x in the differential équation (3.1) are replaced in
the integrated équation (3.4) by Mx0 and fflx. In omni-equations service
residue tends to enter integrated équations while service itself tends to go
with differential équations; the use of the renewal équation makes this clear.
LST (Laplace-Stieltjes Transform) équations are also often formally (but not
perforce numerically) simplified when transposed from service-form to resid-
ue-form. But the idea of integrating an omni-equation seems to lack so far a
spécifie counterpart in LST équations.

From (2.8) with g = fflxQ, Z=u^ and U=uR we get the composition

which solves, in omni-form, for positive delay u^ if the corresponding virtual
delay (Le. with same X, p, and x) for regular M/G/l is known.

The gênerai virtual delay u is a mixture of 0 and u^ with weights Po and

= Po *(0)+ *»•*(«*) (3-6)

From (3.5) and (3.6) follows the virtual delay in the extended Welch problem

) = Po

with Po = (1 - p)/(l + po - p) and P# = p/(l + Po - p) from (3.2).

Example 1 : We get successive moments of »„, from v|/ (w )̂ = u$. in (3.5).
For k= 1

(3.8)
1-p

Example 2: With v|/(w) = e~s" in (3.4) we find the Laplace Transform of

Ee~su*= — (3.9)
\-pEe~smx

We specialize (3.4) by letting

^(u^ + 3lx) = £e (u^).<£(0tx) (3.10)
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106 M. KRAKOWSKI

This turns (3.4) into

^K) = (l-p)
and

(i-p^(^)
* 1 —p JSP (dix)

££ (ë%x) can stand for exp (-sfflx) or exp (s $x) or exp (-is$x). In other
contexts we do likewise with generating functions.

Example 3: We find a convolution équation for the cdf of u^ by setting
Ey\f(u^) = Pr(u^t) in (3.4) [Le. \K"*)=1 if «*S* and \|/(w*) = 0 if w ^ / ] .
Then

(3-13)

We go on to find w, a customer's delay. If the arrivai rate, as in our model,
is not steady the virtual delay and true delay have different distributions.

DELAY OF CUSTOMERS IN M/G/1 WITH EXCEPTIONAL SERVICE AND ARRIVALS

Let na0 = fraction of arrivais into an empty System, and na^ = fraction of
arrivais into a busy System. Clearly

*«o =/o/(/o +ƒ*) and na* =fj(fo + ƒ*) (4.1)

where /o^^o^o 1S t n e arrivai rate while server idles, and f^ = lkP^ is the
arrivai rate when server works. From (3.2) and (4.1) we have

rcû0 = M l - p ) / ^ P + M l - p ) ] and 7cfl# = Xp/[Xp + Xo(l-p)] (4.2)

The prospective delay wa of an arrivai is a mixture of 0 and wa^, the positive
prospective delay, with weights no = naO and n^ = na^:

In our model virtual non-pioneers and true non-pioneers find stochastically
equivalent states, in particular equivalent delays. This key property is stated
as

^ K = * (M^) (4.4)
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M/G/l WITH EXCEPTIONAL SERVICE AND ARRIVAL RATE 107

Of course, both virtual and true pioneers find the System empty. In other
variants of M/G/l, e. g. in the initial quorum problem (also known as Hey-
man's N-Policy; cf. Krakowski, July 1986: Novemer 1986) property (4.4)
may also play a key role.

It often pays to know which among the spans virtual delay, true delay,
load, and clearing time are identical or equivalent or related: Always? If
server works ?
If wR and M x0 are known then équations (3.6) and (4.4) yield a solution
for wfl!|s:

*to*) = *(w* + #*o) (4.5)

From (4.4) and (4.5) we have the solution for wa

7c0 and 7t# are as in (4.2). The équations for wa and w, (4.6)-and (3.7), differ
but in their weights. If À-o == X, then no = Po and n^-P^ and ty(u) = ty(wa);
virtual and true customers fmd stochastically equivalent views, and we have
Welch's model with exceptional service but steady source. If also xo = x then
our model is a regular M/G/l.

In the next section the rétrospective delay wd is more suitable for analysis
than the prospective delay wa. Let nd0 = probability that a customer departing
the System leaves it empty; let nd+ = 1 — nd0. We have na0 = nd0: a customer is
as likely to find the server idle as to leave him idle (since the transitions
0-> 1 and 1 ->0 are equally frequent); likewise naitl = nd^: a customer is as
likely to find the server busy as to leave him busy (jumps j -•.ƒ +1 being as
frequent as j + 1 -»y for j ^ 1). Thus

7^ = n^ - n^ (4.7)

Since, as easily seen, in our model

* (wrf) = v|i (wa) and \|/ (wdj = v|/ (wam) (4.8)

équations (4.5) and (4.6) become

* ( ^ ) = *(wJt + «x 0 ) (4.9)

ty(wJ = noty(0) + n^(wR + alxo) (4.10)
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108 M. KRAKOWSKI

POISSON OPERATOR AND QUEUE SIZE

Consider a random time interval Z and an independent Poisson source of
rate a.

DÉFINITION: The Poisson operator ^ c acting on Z, ^ a Z, is the number of
events generated during Z by a poissonian source of intensity a. We can
view ^ o as an independent "Poisson clock" of rate a which assigns a non-
negative integer, its count, to time intervals. The basic properties of ^ c are

(Gross and Harris 1985, Sect. 5.1) (5.1)

(b) For disjoint intervais A and B, 0>C(A + B) = 0>
GA + 0>(SB and hence

(A + *)) = * (&* A + ^ a 5); clearly, ^ c 0 = 0

If \|/ (Z) = a\|/ (̂ 4) + Pvj/ (.6), 4̂ and B being independent time-spans, then

p^O, a+p=l.

In words: If Z is a mix (lottery) of independent time-spans A and B then
0>aZ is a like-weighted mix of ^ a ^ and ^ a £ .

^CTZ is a well behaved random variable if Z is; hence an arbitrary function
cp(^aZ) is a special case of the gênerai omni-function \|/(Z); and E<^{^OZ)
is thus the omni-transform of ^CTZ. This observation, along with (b) and (c)
above, enables us to transpose omni-equations for Z into omni-equations for
^CTZ. We thus have

THEOREM: An omni-equation in independent tinte-spam stays valid if each
span is formally subjected to the same Poisson operator ^ o .

Example 1 : Number of Poisson Events During Service and Service Residue

The équation of a renewal process generated by the r.v. x is (5.2) or
(5.2a) below:

\Kx)-\K0) = i^ ' (#x) (3.3) = (5.2)
y\f (x)->\f (0) = x \ïm [y\f(@x + dt)-y\t(@x)]/dt (5.2a)

Applying formally the Poisson operator £PX to each argument in ( 5 . 2 a) we

have

>xdt)-Ati&^Mx)]/dt (5 .3)
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M/G/1 WITH EXCEPTIONAL SERVICE AND ARRIVAL RATE 109

Let kà = 0>xx and hd = 0>xfflx\ (5.3) becomes

\|/ (k) - v|/ (0) = x Hm [\|/ (h + &x di) - \|/ (h)]/dt (5.4)

Now, \|/ (@x di) is, within 0. {di)2, a mixture of 1 weighted X dt (i. e. probability
of one event during di), and 0 weighted \—\dt (i.e. probability of no event
during dt):

(5.5)

Shifting (5. 5) by h we have

^(h + 0>xdt) = \dt>\f(h+l) + (l-Xdt)>\f(h) (5.5 a)

Equations (5.4) and (5.5 a) imply, with p = X x,

*(*)-*(0) = p[*(*+l)-*(*)] (5.6)

Thus \|/ (Jk) = zk => Ezk - 1 = p [z. Ezh] and

1-^*- (5.7)

[ l ]

= p, as it should; \|/(*:) = k2^Ek2 = p[2h+ 1] and

Fk2 1

2k 2
(5.8)

Example 2: Transposing Delay in Regular M/G/1 into Queue Size

What makes M/G/1 so tractable is that (Krakowski, 1974; Gross and
Harris, 1985)

M/G/1 v[/ (ju) - \|r (wa) - x|/ (wd) (5.9)
M/G/1 ^(n) = ̂ (qa)^(qd) (5.10)

where wa is the prospective delay of an arrivai and wd is the rétrospective
delay of a customer departing the queue for service; and where n = virtual
queue size, qa — queue size found by an arrivai, and qd = queue size seen by a
customer departing the queue for service. Hence the équation for delay wd in
M/G/1 is, from (1.1 a) and (5.2a)9

M/G/1 x|/ (wd) - (1 - p) v|/ (0) + py\f(wd + 0t x) (5.11)
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110 M. KRAKOWSKI

Applying formally the operator gPx throughout (5.3) we get

M/G/1 * ( ^ w J = ( l - p ) ^ ( ^ 0 ) + p ^ ( ^ w d + ̂ « x ) (5.12)

Equation (5.12) stays true if we replace 9X by any ^ c but it lacks interest if

As known, in regular M/G/1 a customer who départs his queue and enters
service leaves behind a queue sized ë?x wd = qd so that in view of (5.10)

M/G/1 ^ ( ^ ^ ) = vj/(^) = v|/(9o) = vl/(«) (5.13)

(5.13) and (5.12) imply an équation for virtual queue size

M/G/1 *(«) = (!-P)*(0) + P*(» + *) (5.14)

Of course, the queue sizes qd and qa can replace n in (5.14).

QUEUE SIZE IN M/G/1 WITH EXCEPTIONAL SERVICE AND ARRIVALS

Applying 0>x to both arguments in (4.9) we have

where qd^ is the queue size left behing by a non-pioneer entering service, so
that

Since ^(qd^)~^(^) w e have likewise

If «K and h0 are known, (5.16) solves for n^ the queue-size when server
works. To get the unconditioned queue size n we observe that for virtual
customers

»iK»«) (5-18)

and, from (5.18) and (5.17) we have, with Po and P^ given by (3.2),

,(nR + ho) (5.19)
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M/G/1 WÏTH EXCEPTIONAL SERVICE AND ARRIVAL RATE 111

For customers who départ the queue (and enterservice)

) = «o * (0) + rc* *l> (<?d*) (5.20)

and since ^(qd^) = ^(n^) we have, with n

ty(<ld) = no^(0) + n^(nR + ho) (5.21)

Thus n and #d are each a mixture of 0 and nR + h0 but with different weights.

Note: We can formally apply the Poisson operator 0>x throughout (4.10)
and thus immediately get (5.21); but since the arrivai rate is not steady the
interprétation of the transformed arguments is somewhat subtler. Take into
account that v|/ (<PO 0) = \|/ (0) whatever the value of a.

Using the Poisson operator to turn delay-equations into size-equations
may be new.
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