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AN EFFICIENT METHOD FOR OBTAINING SHARP BOUNDS
FOR NONLINEAR BOOLEAN PROGAMMING PROBLEMS (*)

by P. F. KöRNER O

Abstract. — It is well-known that the integrality condition for variables in Boolean programming
probîems can beformulated by quadratic equality constraints. The Lagrangian dual to the nonlinear
programming problem thus obtained is examined. We state an efficient methodfor obtaining sharp
bounds for the branch and bound process in solving the integer problem. The obtained results are
discussed on a Boolean quadratic optimization problem. Numerical results are presented.

Keywords : Boolean quadratic programming; Lagrange duality, branch and bound.

Résumé. — II est bien connu que les conditions d'intégrité des variables dans les problèmes de
programmation mathématiques booléens peuvent être formulés à l'aide de contraintes d'égalité
quadratiques. Nous examinons le dual lagrangien du problème de programmation non-linéaire ainsi
obtenu. Nous donnons une méthode efficace pour obtenir des bornes précises pour la résolution du
problème en nombres entiers par la méthode « branch and bound ». Nous analysons les résultats
obtenus sur un problème d'optimisation booléen quadratique, et présentons des résultats numériques.

1. INTRODUCTION

In the present paper probîems of the following form are considered:

(Q) /o (x) ~* m m subject to

y=l , . . . , m , xeRn,

with

fj(x) - / C j x + x V + ij, J = 0, 1, . . ., m,

where the matrices O are symmetrie for all ƒ
The problem (Q) is denoted by (QB) if we require, in addition, the variables

satisfy the condition xe{0, 1}".

(*) Received May 1988.
O MauthestraPe 13, VS-Schwenningen, D-7730, Germany.
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We use the branch and bound method for solving (QB). A good description
of this method is contained in [6], In this method it is favourable to use
sharp and simple computable bounds. In order to détermine the bounds, the
so-called real imbedding will be applied, i. e. a problem of the form (Q) has
to be solved at every node of the branch and bound tree. The optimal
objective function value of this problem will then be applied as a bound.

If the functions fj are convex for ail j , then there exist efficient algorithms
for solving (Q) (c/ [2]). In the nonconvex case many difficulties arise. How-
ever, the following relevant statement can be found in [6]:

"Linear 0-1 programs are often solved efficiently by linear-programming
based branch and bound algorithms. When such an approach is extended to
the quadratic case a difficulty arises as the continuous relaxation obtained
by replacing x ;e{0, 1} by X^G[O, 1] will usually be a nonconvex quadratic
programming problem. However, P. L. Hammer and A. A. Rubin (1970)
have shown that to any quadratic 0-1 program could be associated an
equivalent quadratic 0-1 program in 0-1 variables with a convex continuous
relaxation."

In this paper the idea of P. L. Hammer and A. A. Rubin will be generalized.

2. ANALYTIC INVESTIGATIONS

The following trivial équation describes a relationship between Boolean
and quadratic programming:

* ,e{0 , 1} o Xtixtl^xfx^O,!

Problem (Q) with the additional constraints (1) is denoted by (Q').
We obtain the following Lagrange function for (Q'):

L(x, u, v) : =x

with U : =diag(lO, b : =(b0, . . ., bm)T and

veV: = {(i>0, . , . ^ m ) r : v o = l 5 D > 0 , i = l 5 . . . , / w } .

The dual problem takes the form:

(D) <p (u, v) -> max, weR", veV,
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with

(p(w, v) : = inf{L(x, u, v) : xeRn}.

Let

dom cp : = {(w, v) : v e V, cp (w, u) > - oo }

and

W(u, v) : = {x : cp(w, z;) —L(x, «, u)} for (w, t;)

LEMMA 1: The following three conditions are equivalent:

a) (u, ï;)Gdom cp.

b) W(u9v)

( m \
c) The matrix I ^ Vj C J+ U I is positive semidefînite, and the system:

is solvable with respect to x,

The proof of this lemma is obvious and may be omitted. Now we maximize
the special function cp with known algorithms {cf. e. g. [1] and [2], Let, for
w* e Rn and v*eV the inequality be satisfied

cp(w, a)^(p(«*, X7*) for all w and ue V. (2)

If there exists a vector X ' G { 0 , 1}" with fj(x')S0, j=l, . . ., m, then there
exists a bound r with

cp (u, v)^r for all u and z; e F.

We now consider the following problem:

/ j W -> min subject to the constraints (1),

l 7 = 1 , . . ., m.

The Lagrange function takes the form

Lj(x9ü): ~fj(x) + xTUx-uTx= :f){x) (3)

vol. 26, n° 1, 1992
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and we obtain the following known resuit:

LEMMA 2: a) fj{x)=f){x) for ail u and for ail ie{0, 1 } \
There always exists a vector u" in such a way that the following statements

are true:
b) ƒ" is convex.

c ) / f ( ( l / 2 ) e ) < 0 ( e : =(1, . . . , l ) r ) .
That means, with the help of transformation (3) we can transform every

problem (QB) into an equivalent problem (QÉ') with convex fonctions, which
fulfîls the Slater condition.

3. ON THE LAGRANGE DUAL PROBLEM

Now we examine the problem (D).

THEOREM 3: Let u* and v* be defined according to (2). Then the following
statements are true:

a) There exists always a x'e W(u*, v*) with O^x'f^e.
b) If the functions fp y = 0, . . ., m, are convex and (Q) fulfils fulfils the

Slater condition {with a xe(0, l)")> then there exists a x'eW(u*, v*) with

Proof: We give the proof only for statement a). Statement b) can be proved
in an analogous manner.

The function h defined via

h(x): = L(x,u*9v*)

is convex. Now we consider the problem

h (x) —> min subject to xf — x^ 0,
(H)

i=[, . . . , n.

The constraints of (H) are convex and satisfy the Slater condition. Thus
in problem (H) no duality gap occurs. The objective function of the dual
problem to (H) is denoted by q. From the optimality of (u*, v*) we obtain:

q(u)<.q (0) = (p (M*, v*) for all u ̂  0.

No duality gap occurs. Therefore, we obtain the result.

Q.E.D.

Recherche opérationnelle/Opérations Research



SHARP BOUNDS FOR NONLINEAR BOOLEAN PROBLEMS 117

The main resuit of the paper foliows:

COROLLARY 4. Let (w*, v*) be defined according to (2). Under the assumption
of the positive semidefiniteness of the matrix:

^

the value (p(w*, v*) is the best possible boundfor the optimal objective function
value o/(QB).

If we have computed the bound (p(u*, v*) then, with the assumption
vf > 0 for all j \ it is in gênerai impossible to split the vector
w* (M* = u° + . . . + um) in such a way that the matrices

O+ —113(11* : =diag(«/)), j=l, . . ., m

and C° + U° are positive semidefmite.

The next example proves this fact. Let m— 1, v%= 1,

-

That means, in order to obtain tight constraints, we have to solve the
following problems:

(Dj) q>j(u)-+max

with

<p»: =mf{fj(x):xeR"}

[ /Jvia(3)] ,7=l , . . . , m .

Numerical problems arising in the solution process of (D^) are discussed
in [9].

vol. 26, n° 1, 1992



118 P. F. KÖRNER

4. A BRANCH AND BOUND ALGORITHM

We use the following branch and bound algorithm for solving (QB).

Algorithm

SO: Solve problem (D) and set ƒ (x) : = L(xy w*, z?*). We use this function
for obtaining bounds.

SI: Solve the problems (D^), y= l , . . ., m, and set f)(x) : =Lj(x, (wJ)*).
We use these functions for checking feasibility.

S2: Sort the variables in an appropriate manner (cf. [8]).

S3: Solve the following problem with the branch and bound method:

ƒ (x) -• min subject to xe {0, 1}".

Check the feasibility of this point with respect to the constraints f] at every
branch and bound node.

An efficient branch and bound algorithm for solving the nonrestricted
quadratic integer programming problem is discussed in [8], This algorithm
uses the real imbedding, L e, at every step a problem of the form:

ƒ (x) -> min

is to be solved. If we use a special Cholesky décomposition for solving, then
we need this décomposition only at the beginning of the branch and bound
process (cf. [8]).

The constraints are checked in the following way: We ask if there exist
vectors xJ with fj(xj)^0, j=l, . . ., m. Using the Cholesky décomposition
from [8], we need this décomposition only at the beginning of the branch
and bound process.

5. NUMERICAL RESULTS

The éléments of the matrices O and the vectors pj for test have been
randomly chosen in iniform distribution from the interval ( — 5,10). We have
put bj : = \0n for all y. The tables contain the average value of 10 examples.
The program is written in SIMULA and run on an IBM 3031 computer.

Recherche opérationnelle/Opérations Research



SHARP BOUNDS FOR NONLINEAR BOOLEAN PROBLEMS 119

m n

5 10
10 15
25 30

First
bound

873.4
5,763.0

20,379.0

Optimal
value

980.1
6,129.4

24,208.5

Number
of b and b

nodes

95.0
261.8
780.3

Time
(sec.)

14.7
26.3

531.7

The same problems are solved with the algorithm described in [5].

m n

5 10
10 15
25 30

Number
of b and b

nodes

287.3
891.3

1,208.6

Time

18.7
41.7

718.3

Now we have used the following algorithm. At every branch and bound
node we have solved a problem of type (D), and the corresponding optimal
value is used as a bound.

m n

5 10
10 15
25 30

Number
of b and b

nodes

51.3
143.7
511.9

Time

20.1
35.0

735.1

We need further time for comparing the present method with other known
methods.

6. CONCLUDING REMARKS ON THE GENERAL NONLINEAR CASE

Now we consider the nonlinear problem of type (Q), where all functions ƒ}
are genera! nonlinear functions. In order to obtain sharp bounds for the
corresponding Boolean problem, it is favourable to maximize the correspond-
ing function (p. But unfortunately, most of the results for the quadratic case
are not true for the nonlinear case. Especially, Theorem 3 does not hold in
the nonlinear case, as the following example shows. Let

(E) ƒ (x) -> min subject to xf — xt = i = 1, 2,

where ƒ (x1)=f (x2)<f (x) for all x with x^x1 and x#x 2 . Let (p be appropri-
ately deflned. If we set

x1 : = (0.5(1+^/2); 0.5) and x2 :-(0.5; 0.5(1 +

vol. 26, n° 1, 1992



120 P. F. KÖRNER

then we have

ƒ O1) = ƒ O2) = 9 (0) ̂  q> (M) for ail M.

The optimality of 0 is easy to show. The set W(0) contains only two éléments.
If we define two subgradients with these éléments, then the sum of these
subgradients is zero. But W(0)= {x1, x2} does not contain any vector x'
with O^x'i^e. For the gênerai nonlinear case we need further numerical
investigations.
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