Calcul des idéaux d'un ordonné fini
RAIRO - Operations Research - Recherche Opérationnelle, Tome 25 (1991) no. 3, pp. 265-275.
@article{RO_1991__25_3_265_0,
     author = {Bordat, J.-P.},
     title = {Calcul des id\'eaux d'un ordonn\'e fini},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {265--275},
     publisher = {EDP-Sciences},
     volume = {25},
     number = {3},
     year = {1991},
     zbl = {0733.90038},
     mrnumber = {1128468},
     language = {fr},
     url = {http://www.numdam.org/item/RO_1991__25_3_265_0/}
}
TY  - JOUR
AU  - Bordat, J.-P.
TI  - Calcul des idéaux d'un ordonné fini
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1991
DA  - 1991///
SP  - 265
EP  - 275
VL  - 25
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/RO_1991__25_3_265_0/
UR  - https://zbmath.org/?q=an%3A0733.90038
UR  - https://www.ams.org/mathscinet-getitem?mr=1128468
LA  - fr
ID  - RO_1991__25_3_265_0
ER  - 
Bordat, J.-P. Calcul des idéaux d'un ordonné fini. RAIRO - Operations Research - Recherche Opérationnelle, Tome 25 (1991) no. 3, pp. 265-275. http://www.numdam.org/item/RO_1991__25_3_265_0/

1. J. P. Bordat, Efficient Polynomial Algorithms for Distributive Lattices, accepté pour publication par Discrete Appl. Math. | MR 1113538 | Zbl 0733.06007

2. V. Bouchitte et M. Habib, The Calculation of Invariants for Ordered Sets, Algorithms and Order, I. RIVAL éd., Kluwer Acad. Publ., Dordrecht, 1989, p. 231-279. | MR 1037785

3. C. J. Colbourn et W. R. Pulleyblank, Minimizing Setups in Ordered Sets with Fixed Width, Order, 1985, 1, p. 225-229. | MR 779387 | Zbl 0557.06002

4. R. P. Dilworth, A Decomposition Theorem for Partially Ordered Sets, Ann. of Math., 1950, 51, p. 161-166. | MR 32578 | Zbl 0038.02003

5. G. Gratzer, General lattice Theory, Academic Press, 1978. | MR 509213 | Zbl 0436.06001

6. E. L. Lawler, Efficient Implementation of Dynamic Programming Algorithms for Sequencing Problems, Rep. BW106/79, Stichting Matematisch Centrum, Amsterdam, 1979. | Zbl 0416.90036

7. E. L. Lawler, J. K. Lenstra et A. H. G. Rinnooy Khan, Recent Developments in Deterministic Sequencing and Scheduling: A Survey, M. A. H. DEMPSTER et al., éd., Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, p. 35-73. | MR 663575 | Zbl 0482.68035

8. R. H. Mohring, Scheduling Problems with a Singular Solution, Discrete Appl. Math., 1982, 16, p.225-239. | MR 686310 | Zbl 0489.90056

9. R. H. Mohring, Computationally Tractable Classes of Ordered Sets, Algorithms and Order, I. RIVAL éd., Kluwer Acad. Publ., Dordrecht, 1989, p.105-113. | MR 1037783

10. G. L. Nemhauser et L. E. Trotter, Vertex Packings: Structural Properties and Algorithms, Math. Progr., 1975, 8, p. 232-248. | MR 366738 | Zbl 0314.90059

11. J. C. Picard et M. Queyranne, Structure of All Minimum Cuts in a Network and Applications, Math. Progr. Study, 1980, 13, p. 8-16. | MR 592081 | Zbl 0442.90093

12. W. Poguntke, Order-Theoretic Aspects of Scheduling, Combinatorics and Ordered sets (Arcata, Calif.), 1985, p. 1-32, Contemp. Math., 57, Amer. Math. Soc., Providence, R. I., 1986. | MR 856231 | Zbl 0595.06002

13. J. S. Provan et M. O. Ball, The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected, SIAM J. Comput., 1983, 12, p. 777-788. | MR 721012 | Zbl 0524.68041

14. L. Schrageet K. R. Baker, Dynamic Programming Solution for Sequencing Problems with Precedence Constraints. Oper. Res., 1978, 26, p. 444-449. | Zbl 0383.90054

15. G. Steiner, Single Machine Scheduling with Precedence Constraints of Dimension 2, Math. Oper. Res., 1984, 9, p.248-259. | MR 742260 | Zbl 0541.90054

16. G. Steiner, An Algorithm to Generate the Ideals of a Partial Order, Oper. Res. Letters, 1986, 5, p.317-320. | MR 875784 | Zbl 0608.90075

17. G. Steiner, On Computing the Information Theoretic Bound for Sorting: Counting the Linear Extensions of Posets; Res. Report n° 87459-OR, McMaster University, Hamilton, Ontario, Canada, 1987.