
RAIRO. RECHERCHE OPÉRATIONNELLE

ROSSELLA PETRESCHI

BRUNO SIMEONE
Experimental comparison of 2-satisfiability
algorithms
RAIRO. Recherche opérationnelle, tome 25, no 3 (1991),
p. 241-264
<http://www.numdam.org/item?id=RO_1991__25_3_241_0>

© AFCET, 1991, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Recherche opérationnelle »
implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1991__25_3_241_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Recherche opérationnelle/Opérations Research
(vol. 25, n° 3, 1991, p. 241 à 264)

EXPERIMENTAL COMPARISON
OF 2-SATISFIABILITY ALGORITHMS (*)

by Rossella PETRESCHI^) and Bruno SIMEONE (2)

Abstract. — We report on the results of an expérimental study in which we have compared the
performance of four algorithms f or 2-SATISFIABILITY on 400 randomly generated test problems
with up to 2000 variables and 8000 clauses {half of these problems were known a priori to be
satisfïable). The four algorithms are: (1) the "sériai" Guess and Deduce algorithm by Deming; (2)
the "parallel" or "dovetailing" Guess and Deduce algorithm by Even, Itai, and Shamir; (3) our
Switching algorithm; (4) the Strong Components algorithm by Aspvall, Plass, and Tarjan. When
the test problems are sampled from a uniform distribution, we have observed the following
phenomenon: all the strong components of the implication graph are singletons, except for one (in
the unsatisfïable case) or two (in the satisfïable case) "megacomponents".

In order to eliminate these and other related anomalies, we have built another instance generator
which gives rise to strong components with binomially distributed sizes. An interesting outcome of
our experiments is that, under both probability models, the sériai Guess and Deduce algorithm
turns out to be the fastest one, in spite of its nonlinear worst-case complexity; whereas the Strong
Components algorithm, whose worst-case complexity is linear, turns out to be the slowest one.

Keywords : 2-satisfiability; algorithms; graphs.

Resumé. — Nous rapportons les résultats d'une étude expérimentale où nous avons comparé les
performances de quatre algorithmes pour la 2-SATISFAISABILITE («2-SATISFAISABILITÉ»)
appliqués à 400 problèmes tests engendrés aléatoirement. Ces problèmes ont jusqu 'à 2 000 variables
et 8 000 clauses (la moitié de ces problèmes étaient a priori satisfaisable). Les quatre algorithmes
sont : (1) l'algorithme «Deviner et Déduire» (Guess and Deduce) sériel de Deming; (2) l'algorithme
«Deviner et Déduire» parallèle de Even, Itai et Shamir; (3) notre propre algorithme d'aiguillage
(Switching); (4) l'algorithme des composantes fortes de Apvall, Plass et Tarjan. Lorsque les
problèmes tests sont tirés aléatoirement à partir d'une loi uniforme, nous avons observé le phénomène
suivant : toutes les composantes fortes du graphe des implications sont des singletons, excepté une
« mègacomposante » ou deux dans les cas insatisfaisable et satisfaisable respectivement.

Pour éliminer ces anomalies et quelques autres, nous avons construit un autre générateur qui
donne des composantes fortes avec une taille suivant la loi binomiale. Une conséquence intéressante
de nos expériences est que, avec les deux modèles probabilistes, l'algorithme « Deviner et Déduire »
sériel s'est montré le plus rapide, malgré sa complexité non linéaire dans le pire cas; tandis que
l'algorithme des composantes fortes, dont la complexité dans le pire cas est linéaire, s'est montré
le plus lent.

Mots clés : 2-satisfaisabilité: algorithmes; graphes.

(*) Received August 1988.
(1) Department of Mathematics, "La Sapienza" University, Roma, Italy.
(2) Department of Statistics "La Sapienza" University, Roma, Italy.

Recherche opérationnelle/Opérations Research, 0399-0559/91/03 241 24/$ 4.40
© AFCET-Gauthier-Villars

2 4 2 R. PETRESCHI, B. SIMEONE

1. INTRODUCTION

Let 9 = Cx U C2 U • • • U Cm be a boolean expression in conjunctive nor-
mal form, where each clause C, is a disjunction of literals and each literal ^
is either a variable xt or its complement x\ (1 ^i^n).

The SATISFIABILITY problem consists in determining whether such an
expression cp is true for some assignment of boolean values to the variables
x u . . . - • * „ .

Cook [3] has shown that SATISFIABILITY is complete in polynomial
time, even if the expression is restricted to contain at most three literals per
clause. However, this is a tightest possible restriction on the number of
variables in a clause because SATISFIABILITY with only two literals per
clause (2-SATISFIABILITY or 2-SAT for short) is solvable in polynomial
time, as Cook pointed out [3].

In the present paper, we shall deal only with 2-SATISFIABILITY. Simeone
[12, 13] pointed out the close connection between the satisfiability of a
quadratic boolean expression (i. e. one having two literals per clause) and the
König-Egervary (KE) property of graphs. As a conséquence, any algorithm
for testing the KE property may be used to solve 2-SAT.

Two algorithms for testing the KE property have been proposed by Deming
[5] and by Gavril [7]. Actually, they can be viewed as a "sequential" and a
"dovetailing" version, respectively, of a basic "guess and deduce" algorithm.
When specialized to solve 2-SAT, they are seen to have O(mn) and O(m)
time-complexity, respectively, in the worst case.

It should be mentioned that the 2-SAT specialization of Gavrü's algorithm
turns out to be very similar to an algorithm for 2-SAT outlined by Even,
Itai and Shamir in an earlier paper [6],

Aspvall, Plass, Tarjan [2] and Petreschi, Simeone [10] present two graph-
theoretic algorithms, whose complexities are 0(n + m) and 0(nm), respec-
tively.

In this paper we report on expérimental results about the expected time of
the algorithms in [2, 5, 7, 10]. We chose not to test other classical methods
for SATISFIABILITY, such as the Davis-Putnam procedure [4] or the
consensus method [11], whose complexities are indeed polynomial in the
2-SAT case, but of higher degree.

Recherche opérationnelle/Opérations Research

2-SATISFIABILITY ALGORITHMS 9- 243

2. PRELIMINARY DEFINITIONS AND PROPERTIES

In the present section we introducé some preliminary concepts related to
quadratic boolean expressions cp. For convenience, we shall use "0" and " 1 "
instead of "FALSE" and "TRUE", respectively.

DÉFINITION 1: A variable x in cp is said to bsforced to the value a (a = 0,1),
iff either the expression is unsatisfiable or the variable x has the value a in
all solutions.

Without loss of generality, we may assume from now on that
(i) no linear clauses Ç appear in <p;

(ii) whenever the clause Ç U ?1 is present in cp, the clauses Ç [Jr\, Ç U Tl',
Ç' U ri', as well as other occurrences of Ç U r|, must be absent.

DÉFINITION 2: A boolean expression cp satisfying (i) and (ii) will be called
irreducible.

DÉFINITION 3: A boolean expression cp is called pure if every clause has at
least one uncomplemented variable. A pure expression is always satisfîable,
since (1...1) is obviously a solution to the équation <p= 1.

DÉFINITION 4: A switch on the variable x in cp consists in replacing x by its
complement x' and vice versa, wherever they appear.

THEO REM 5: [10] A boolean expression is satisfîable if it can be transformed
into a pure one by a switch on some set S of variables,

Next we introducé two graphs associated with (p.

DÉFINITION 6: [10] The clause-graph associated with cp is the undirected
graph G = (V,E) where:

V={xu . . .,x„;x;, . . . , < } and

E={(^r\), for each clause Ç U n in (p } U { < xi9 x\ > 11= 1, . . ., n } (*).

The edges of G are classifîed into positive, négative, mixed and null edges
according to whether they have the forai {x^Xj}, (x'i9Xj}9 {x^x'j} or
(xhxl), respectively.

(*) Unordered pairs are denoted by (x,y), while ordered pairs are denoted by (x,y).

vol. 25, n° 3, 1991

244 R. PETRESCHI, B. SIMEONE

Figure 1. — The clause-graph G associated with *F.

Figure 1 shows the clause-graph G associated with the following expression:

¥ = (xx U x2) (x[U x4) {x'2 U x3) (x'2 U x'à iA U x j .

DÉFINITION 7; [2] The implication-graph associated with cp is the digraph
D = (V,A) where:

V is defined as above and

A = {< Ç', T| >5 < T]', Ç > for each clause Ç U r| in q>}

< T|', Ç) is called the mirror edge of (Ç', rj).

The digraph D is isomorphic to the digraph D~ obtained from D by
reversing the orientations of all the edges and complementing the names of
all the vertices.

Figure 2 shows the digraph D associated with *F.

Figure 2. - The implication graph D associated with T.

Recherche opérationnelle/Opérations Research

2-SATISFIABILITY ALGORITHMS 2 4 5

DÉFINITION 8: [10] An alternating tree rooted at x\ is any subgraph of G
which is a tree r(x-) rooted at x\ and has the following properties:

(1) x\ is the root;

(2) if Xj is a vertex of T(x[)9 then its father in T(x$ is x'f,

(3) if x'j is a vertex of T(x^), then its father is a vertex xr of T(x'{), such
that < xr, x'j > is a mixed edge of G.

(4) if je,, is a vertex of r(xï), and < xj9 x'r > is a mixed edge of G, then JK£ is
a vertex of T{x\),

Figure 3. — An alternating tree of G.

For the clause-graph G of figure 1, figure 3 shows an alternating tree rooted

a t * ; .

DÉFINITION 9: The join of two vertices Ç and r\ of T{x[) is their common
ancestor which is farthest from the root JCJ.

DÉFINITION 10: A strongly connected component (or strong component, for
short) of a digraph is a maximal set C of vertices such that for any two
vertices Ç, ri e C, there exists a circuit through Ç and r\.

A graph is said to be strongly connected if it has only one strongly
connected component.

The strongly connected components of the digraph D of figure 2 are
{1,4,2'}, {2,1',4'}, {3}, {3'}.

vol. 25, n" 3, 1991

2 4 6 R. PETRESCHI, B. SIMEONE

3. ALGORITHMS

In order to make this paper self-contained, we shall briefly describe the
four algorithms in [5, 7, 10, 2], henceforth referred to as L (Labelling), AL
(Alternate Labelling), S (Switching), SC (Srong Components), respectively.

Algorithm L

The idea of the algorithm is to guess the value of an arbitrary literal Ç in
some solution and to deduce the possible conséquences of this guess on
other variables appearing in the expression. Initially, all clauses are declared
unscanned. An arbitrary literal Ç is selected and Ç and Ç receive the labels 0
and 1, respectively. The labelling is extended to as many literals as possible
by repeated applications of the following elementary step.

Step: Take an arbitrary unscanned clause Ç U r\ such that Ç has the label
0, and assign to r\ and rf the labels 0 and 1 respectively, making sure that T]
has not previously received the label 1. Déclare the clause Ç U T\ scanned.

Three exclusive cases may occur:

1. During the exécution of some step, a conflict occurs because one
attempts to assign the label 0 to a literal r\ which has already the label 1.
That means that the initial guess on the value of the starting literal Ç was
wrong. Then all labels are erased, Ç and Ç are assigned this time the labels 1
and 0, and the labelling procedure starts again. If a new conflict occurs, the
algorithm stops and the expression is unsatisfiable.

2. No conflict occurs and all literals finally have a label. Then by assigning
to each literal the value corresponding to its label, one gets a truth assignment.

3. No conflict occurs but the labelling procedure "gets stuck" and some
literals remain unlabelled. In this case we say that a blocking occurs. This
may happen only when, for every unscanned term, literals appearing in the
term are either unlabelled or have the label 0. But this allows us to ignore,
from now on, the labelled literals and to work only on the reduced expression
involving only the unlabelled literals.

Clearly, the reduced expression is consistent if and only if the previous
one is such. Then a guess is made on an arbitrary unlabelled literal œ, and
the labelling procedure starts again on the reduced expression.

The algorithm ends when all literals have been labelled.

Recherche opérationnelle/Opérations Research

2-SATISFIABILITY ALGORITHMS 2 4 7

Algorithm AL

The basic idea of this algorithm is the same as in algorithm L, but the
conséquences of two alternative guesses on a starting literal Ç are derived in
"parallel", rather than in series. One keeps track of these conséquences by a
"red" labelling (corresponding to the guess Ç= 1) and by a "green" labelling
(corresponding to the guess Ç = 0).

Initially all the clauses of the expression are declared "red-unscanned" and
"green-unscanned"; then an arbitrary literal Ç is chosen for receiving the red
label 1 and the green label 0. Of course Ç must then receive the red label 0
and the green label 1.

The two labellings are extended as long as. possible by executing the
following step alternately for the red labelling and for the green one:

Step: An arbitrary unscanned clause Ç U T\ such that label (Q = 0 is consi-
dered and the labels 1 and 0 are assigned to T] and r\\ respectively, provided
that a conflict with previous labellings (if any) of r| and rf does not arise.
Now clause Ç U rj is declared (red- or green-) scanned.

If the exécution of the above step results, say, in a red conflict, then the
red labelling is interrupted.

The expression is not satisfïable when both labellings end up in a conflict.
If at least one labelling (the red labelling, say) does not generate any

conflict and all literals are red-labelled, then the expression is satisfïable and
the red labelling yields and explicit solution.

It may happen that a labelling, the red one, say, "gets stuck": no conflict
has occurred, but there are still literals having no red label. This is possible
only when, for each red-unscanned clause, the literals that appear in the
clause are either red-unlabelled or have red label 0. In this case the red labels
are taken for granted and both the red and the green labellings are restarted
on the reduced expression involving only the red-unlabelled literals.

As an example, the table AL summarizes the steps of the algorithm with
référence to the expression *F.

Algorithm S

The idea of the algorithm consists in trying to transform the expression
into a pure one, if possible, by a séquence of switches.

The algorithm works on the associated graph G. An endpoint x[of a
négative edge x[x'r is selected and the alternating tree T(x[) is grown. As
soon as a new vertex xh of T(x'i) is generated, one checks whether there is in

vol. 25, n° 3, 1991

248 R. PETRESCHI, B. SIMEONE

TABLE AL

Step Red-scanned Green-scanned
clause

Red labels
clause Green labels

0,

1.
2

3.

4

5

6

Labelling completed

None None

x\ U

Stuck

; 2

(guess)

x4=l; x4 =

x4 = 0; xf
A=l

(conflict)
x3 = 0; x ' 3 =l

(guess)

; 2

(guess)

x 4 = l ; JC; =

x 3 = l ; x'3 =
(guess)

G any positive edge < xh, xk) linking xh to a previously generated vertex xk

of T(xri). If this is the case, the variable xp corresponding to the join of xh

and xk, must be forced to 1 [10].
After forcing the join, one forces as many variables as possible, by emplo-

ying the two following rules:
(1) If Ç is forced to 1, then Ç is forced to 0.
(2) If Ç. is forced to 0 and { Q, ̂) is an edge in G, then ^ is forced to 1.
If during this process a conflict is generated the algorithm stops pointing

out that the expression is not satisfiable. Otherwise one obtains a reduced
expression and a new cycle begins. If the construction of T(xJ) has been
completed without detecting any positive edge between veftices of r(x;), a
switch is performed on all the variables in T(x$. In this way one obtains an
equivalent expression and a new cycle begins. The procedure is iterated un til
either a pure expression is obtained or all variables are forced. In both cases
a solution of the original expression can be found by inspecting the list of
the forced variables and the list of the switched ones.

As example, if wz analyze the alternating tree of figure 3, rooted at x'4, we
see that xx and x2 are linked by a positive edge. Hence the join x4 must be
forced to 1 and consequently x'A is forced to 0. According to rule 2, x'2 must
be forced to 1 and x[to 0.

An interesting feature of Algorithm S is that it does not need to scan all
the edges in order to yield a certificate of satisfïability, provided that the
input includes also the list of all négative edges (see Table VI).

Recherche opérationnelle/Opérations Research

2-SATISFIABILTTY ALGORITHMS 249

Algorithm SC

This algorithm rests on the following key result:

THEOREMII: [2]The expression cp is satisfiable iff in D no vertex xt is in the
same strong component as its complement x\,

The algorithm works on D and générâtes the strong components SC of D
in reverse topological order [14]. The isomorphism between D and D~ implies
that every strong component^C of D has a mirror component SC consisting
of the subgraph induced ^y^he compléments of the vertices in SC. Hence
Theorem 11 can be restated as follows: "An expression q> is satisfiable iff in
D no strong component coincides with its mirror component". The gênerai
step of the algorithm consists in processing the strong components of D as
follows:

For each strong component SC, one of the following cases occur:
(a) SC is already labelled. The algorithm analyzes another component.
(b) SC = SC\ The algorithm stops. By Theorem 11, the expression is not

satisfiable.
(c) SC is not labelled yet. The algorithm assigns the label 1 to SC and the

label 0 to SC'.
Let us call SC1 a predecessor of SC2 (SC2 a successor of SCJ when an

edge leads from a vertex in SC1 to a vertex in SC2. It is easy to prove that
every component labelled 1 has only 1-labelled components as successors and
every component labelled 0 has only O-labelled components as predecessors.
Thus if we assign to each vertex the value of the component containing it
we get a solution to cp.

As an example, we consider again *P and the associated digraph of figure
2. Tarjan's algorithm for finding the strong components yields the spanning
arborescence of figure 4; then the strongly connected components of D are
{x2 x\ x\}, { x3} and their mirror components.

It should be noticed that all the four algorithms, whenever cp is satisfiable,
output a solution of the équation cp = 1.

4. EXPERIMENTAL RESULTS I: UNIFORM DISTRIBUTION

4 .1. Expérimental design

In order to compare the performance of the four algorithms outlined in
Sec. 3, we have tested them on 400 randomly generated problems with up to
2000 variables and 8 000 clauses. The expressions given as input to the

vol. 25, n° 3, 1991

250 R. PETRESCHI, B. SIMEONE

Figure 4. - Spanning arborescence associated with the graph of figure 2.

algorithms presented in Sect. 3, are generated by a routine that outputs a
pair of m-arrays A and B representing the m clauses of a quadratie boolean
expression cp in n variables.

In our first set of experiments, the expressions have been generated accor-
ding to a uniform probability distribution model and, whenever we sample
from a finite set, we always assume a uniform probability distribution over
such set.

Since we restrict ourselves to irreducible expressions, the number of clauses

in cp is at most (I. Actually, given two integers n and m I 1 ^ m ^ I 1), m

pairs of indexes (ixJi),. . ., (imjm), where ih<jh for all h, are randomly drawn

without répétitions out of all possible I) such pairs. In all our experiments,

we have chosen m = 4«. For each pair (ihj'h) an integer r, 1 ^ r ^ 4 , is randomly
chosen to teil whether the corresponding clause has the form xih U xjh9

xih U Xjh> xth U x'jh, x'ih U x'jh.

The striking phenomenon that we have empirically observed is that the
expressions which were randomly generated by the above procedure were

Recherche opérationnelle/Opérations Research

2-SATISFIABILITY ALGORITHMS 251

always unsatisfiable when m = 4n and were unsatisfiable with a single excep-
tion when m^\.5n. This is in accordance with the probabilisitic results in
[8].

Therefore, in order to generate unsatisfiable expressions, we have just used
the above model. On the other hand, we wanted to explore the performance
of the four algorithms also on satisfiable expressions. In order to obtain
expressions known a priori to be satisfiable, we have modified the above
generator so as to get only pure expressions (to this aim, it is enough to let
the random integer r range from 1 to 3). Next, an integer k is randomly
selected in the interval [0, n] and k randomly chosen variables are switched.

In such a way an irreducible quadratic boolean expression is generated
and one solution of the corresponding expression is obtained by setting all
the switched variables equal to 0 and all the other variables equal to 1.

In our experiments, both in the unsatisfiable and in the satisfiable case,
test problems with «=100, 200, . . .,2000 variables and m = 4n clauses were
generated. For each problem size, a sample of 5 test problems has been
generated and the average CPU time has been estimated from such a sample.

4 .2. Performance indicators

All algorithms

TIME CPU time in 10"6 sec IBM 3090. The CPU time refers
only to the actual solution of the expression and does not
include génération time.

Labelling and Alternate Labelling

LABEL No. of labelled variables
BLOCK No. of blockings
CONFL No. of conflicts
FORCE No. of detected forced variables

Switching:

TREE No. of alternating trees generated
EDGE No. of edges scanned
SWITCH No. of switched trees
FORCE No. of detected forced variables

Strong components:

STRONG No. of strong components generated

vol. 25, n° 3, 1991

252 R. PETRESCHI, B. SIMEONE

100 200 300 400 500 600 700 800 900 1000 1100 1 200 1300 1 400 1500 1 600 1 700 1 800 1 900 2000

Figure 5.

• L

O AL

-• S

o H 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1 600 1 700 1800 1 900 2000

Figure 6.

The results of our experiments are shown in figures 5, 6, 7, 8 and in Tables
i, n, in, iv, v, vi, VIL

Recherche opérationnelle/Opérations Research

2-SATISFIABILITY ALGORITHMS 253

100 200 300 400 500 600 700 800 900 1 000 1100 1200 1 300 1 400 1500 1 èOO 1 700 1 800 1 900 2000

Figure 7.

-m-

O

-•-

-o

L

AL

S

SC

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Figure 8.

vol. 25, n° 3, 1991

2 5 4 R. PETRESCHI, B. SIMEONE

TABLE I

Satisfiable
UNIFORM DISTRIBUTION BINOMIAL DISTRIBUTION

Var.

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

TIMEL

643.6
1298.0
1731.0
2490.4
3018.4
3571.2
4135.0
5097.0
5718.4
5882.6
6567.8
6860.0
7888.6
8550.8
8737.4
9559.2
9941.8

10658.4
11094,8
11856.0

TIMEAL

1698.2
2863.0
4701.0
4998,2
6460.6
7535.0
9105.0

12275.8
11879.4
12646.6
13383.8
18865.0
16625.6
17967.4
18798.0
20061,6
21097.2
27126.2
23845.2
30153.8

TIMES

2283.8
3255.2
4425.6
5431.4
8574.2
8871.6

10963.2
10665.8
16366.6
20731.0
16853.6
21280.4
21108.2
23324.8
31500.2
24754.8
29217.6
31786.0
41690.6
41516.4

TIMESC

2365.8
4321.6
6473.4
8688.8

10822.8
13074.6
15205.2
17368.8
19674.4
21805.8
24021.2
26280.8
28390.6
30625.6
33002.8
35157.2
37480.8
39794.6
41907.4
44371.0

TIMEL

647.2
1316.2
1974.6
2763.4
3276.8
4280.4
4855.6
6051.8
6298.4
6561.2
7262.2
8613.8
9454.2
9084.0
9612.4
9588.0

11032.2
11209.2
11564.6
14123.2

TIMEAL

1424.0
3262.4
4799.8
6623.8
7614.0
9228.6

10716.0
12368.0
15238.0
15605.4
17954.8
20867.2
21910.4
24387.6
22650.8
27017.4
28722.2
31690.6
31499.4
33743.4

TIMES

1939.0
3851.2
6372.0
8146.6

10300.4
11152.2
13255.8
14803.6
16971.0
19931.0
20687.0
25653.0
25842.2
25797.8
28440.2
32204.2
37017.8
41873.2
41784.2
40849.6

TIMESC

2159.6
3921.8
5874.2
8045.6

10064.0
11915.0
14074.0
15839.6
17986.2
19968.6
22212.6
24003.6
26488*6
27952.4
29886.6
32294.4
34327.4
36648.4
38454.8
41090.4

TABLE II

Unsatisfiable
UNIFORM DISTRIBUTION BINOMIAL DISTRIBUTION

Var.

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

TIMEL

240.0
365.6
264.2
348.4
451.8
419.4
703.6
515.4
674.6
746.6
849.4
811.2
859.0
627.4
969.2
812.2
857.4
911.8
976.2
716.8

TIMEAL

285.4
412.8
291.2
397.8
518.6
462.8
784.6
520.0
702.0
813.2
888.2
859.0
744.2
713.8
986.4
875.5
986.0
782.8
1084.
727.4

TIMES

388.2
335.4
473.2
737.2
610.2
591.2
722.6
915.6
832.8

1010.4
853.2
761.8
861.4

1058.2
978.2
1042.8
1517.6
1493.2
1294.8
1166.4

TIMESC

2963.8
5494.6
8223.6

10940.2
13666.4
16363.8
19127.4
21736.8
24533.2
27409.0
30014.8
33221.0
35733.8
38811.4
41669.2
44789.8
47690.6
50326.2
53532.6
56622.8

TIMEL

240.8
473.8
446.2
716.2
818.4

1193.0
489.6

1210.2
1251.0
1351.2
1759.2
2109.6
2130.8
1610.8
1929.4
1725.2
2228.4
1476.2
2646.4
1637.2

TIMEAL

307.8
557.4
580.6

1093.4
835.0

1495.2
540.8

1387.2
1281.4
1499.0
2053.8
2256.4
2655.4
1832.6
2113.4
1654.4
2207.6
1681.4
2997.4
1870.0

TIMES

368.0
443.0
855.8

1656.6
1484.2
2319.0

997.2
3292.4
1530.8
1121.2
2953.0
2301.6
3171.6
3400.0
2980.2
2664.2
3678.6
2153.6
3301.4
7364.4

TIMESC

2972.0
5519.4
8083.2
9546.6

13137.4
14722.2
18573.8
20649.0
23407.6
25879.2
28334.6
31192.4
32524.6
36842.8
41442.4
41927.2
45115.2
47901.4
50900.4
52532.0

Recherche opérationnelle/Opérations Research

2-SATISFIABILITY ALGORITHMS

TABLE III

UNIFORM DISTRIBUTION BINOMIAL DISTRIBUTION

255

Var.

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Satisfiable

LABELL

105.5
225.8
303.4
437.4
529.2
625.4
722.0
891.2
997.6

1029.8
1151.6
1203.2
1376.6
1490.8
1520.2
1676.4
1736.4
1858.6
1946.6
2079.0

LABELS

149.8
269.6
426.2
473.0
605.4
709.8
857.2

1103.4
1116.8
1191.0
1245.6
1693.6
1557.8
i679.8
1751.6
1871.4
1967.4
2413.8
2231.4
2692.2

Unsatisfiable

LABEL].

49.0
78.2
55.8
73,0
99.8
86.8

148.6
102.2
133.6
150.0
168.8
166.0
167.2
134.6
193.8
165.4
190.0
181.6
199.0
137.4

- LABELS

49.0
78.2
55.8
73.0
99.8
86.8

148.6
102!2
133.6
150.0
168.8
166.0
139.4
134.6
193.8
165.4
190.0
146.4
199.0
137.4

Satisfiable

LABELL

108.8
233.6
352.2
488.0
577.8
752.0
850.4

1044.2
1093.2
1162.0
1264.6
1502.4
1651.4
1606.8
1693.0
1697.4
1938.8
1973.8
2048.6
2443.2

LABELS

129.2
297.4
447.2
608.2
714.8
849.6
994.8

1133.2
1367.6
1443.2
1261.0
1878.6
1977.0
2163.2
2087.0
2415.0
2564.2
2771.6
2811.0
3024.6

Unsatisfiable

LABELL

51.6
99.4
95.0

144.8
150.6
218.6

96.8
244.6
225.2
245.4
338.0
389.6
402.2
321.6
363.6
327.8
385.0
292.8
503.0
299.2

LABEL

51.6
99.4
95.0

158.4
150.6
228.8

96,8
244.6
225.2
258.2
344.4
391.4
421.4
321.6
363.6
287.8
385.0
292.8
503.0
295.0

TABLE IV

UNIFORM DISTRIBUTION BINOMIAL DISTRIBUTION

Satisfiable Unsatisfiable Satisfiable Unsatisfiable

BLOCK CONFL BLOCK CONFL
Var. L A L L A L L A L L A L

BLOCK CONFL BLOCK CONFL
L AL L AL L AL L AL

1.4 2.2 0.0 0.0 2.0 2.0
1.4 2.4 0.0 0.0 2.0 2.0
2.2 3.0 0.2 0.2 2.2 2.2
1.8 3.2 0.4 0.4 2.0 2.4
2.2 3.6 0.0 0.0 2.0 2.0
1.6 3.2 0.2 0.2 2.0 2.2
2.4 3.4 0.0 0.0 2,0 2.0
2.2 3.2 0.0 0.0 2.0 2.0
1.2 3.0 0.0 0.0 2.0 2.0
1.4 3.4 0.2 0.2 2,0 2.0
2.0 2,4 0.2 0,2 2.0 2.2
3.6 4.6 0.2 0.2 2,0 2.0
2.8 3,2 0.4 0.4 2.2 2.2
1.8 4.0 0.0 0.0 2.0 2.0
2.4 3.8 0.0 0.0 2.0 2.0
1.4 3.0 0.2 0.2 2.2 2.0
3.2 4.0 0.0 0.0 2.0 2.0

1800 74.8 142.6 0.4 1.0 0.2 0.2 2.0 2.0 11.8 16.2 2.8 4.0 0.0 0.0 2.0 2.0
1900 74.8 147,8 0.6 1.0 0.0 0.0 2.0 2.0 8.8 10.0 2.0 3.2 0.0 0.0 2.0 2.0
2000 74.8 161.2 0.4 1.0 0.0 0.0 2.0 2.0 11.2 14.2 2.4 4.4 0.2 0.2 2.2 2.0

vol. 25, n° 3, 1991

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700

5.8
16.2
19.0
25.2
36.4
38.2
51.0
62.6
65.6
74.8
78.4
90.4
74.8
74.8
74.8
74.8
74.8

6.6
19.2
21.6
29.8
43.8
43.4
60.4
75.2
75.6
86.4
90.8
102.8
112.8
118.8
129.8
138.2
145.6

0.2
0.6
0.2
1.0
0,6
0.6
0.2
1.0
0.6
0.4
0.8
0.2
0.6
0.6
0.2
0.8
0.4

0.8
1.0
1.0
1.0
1.0
1.0
1.0
0.8
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.0

2.0
2.0
2.0
2.0
2,0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

1.2
3.0
3.4
5.2
4.8
4.2
5,0
4.8
4.2
4.0
7.0
8.6
8.4
7.6
6.0
7.0
9.4

1.2
3.2
3.8
6.0
5.2
4.6
6.0
5.0
7.0
6.0

12.0
10.8
10.8
8.2
6.4
8.6

12.0

256 R. PETRESCHI, B. SIMEONE

TABLE V

UNIFORM DISTRIBUTION BINOMIAL DISTRIBUTION

Var.

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Satisfiable

L

18.4
72.4
57.0

369.0
180.6
336.4
128.2
577.4
492.2
183.6
601.6

0.2
706.6
769.0
273.2
1159.
622.2
658.0
695.8
733.8

FORCE
AL

75.4
179.8
222.6
369.0
454.6
554.4
637.0
577.0
820.4
911.4

1004.2
870.2

1178.8
1275.2
1362.4
1454.6
1547.8
1313.8
1744.6
1463.4

S

92.8
180.4
222.4
369.0
454.8
554.4
637.0
721.2
820.4
911.8

1005.0
875.2

1178.8
1275.4
1362.4
1454.6
1547.8
1649.4
1744.8
1829.4

Unsatisfiable

L

24.4
42.0
32.2
38.2
62.2
47.0
79.8
47.2
54.8
65.2
68.6
80.2
62.8
84.0
86.8
85.2
126.
82.8
98.8
57.4

FORCE
AL

29.2
50.0
39.6
44.6
63.4
53.2
86.4
73.2
83.2
84.8

108.4
113.6
85.4
84.0

139.8
107.2
126.8
89.2

108.4
88.8

S

20.4
22.6
37.4
60.4
46.2
48.4
46.6
74.8
58.2
80.2
52.2
62.2
46.8
69.4
75.4
68.6

109.6
112.6
102.2

82.2

Satisfiable

L

51.0
98.2

164.8
173.8
289.4
404.0
409.2
535.8
397.4
322.4
472.2
591.6
755.4
454.8
518.4
451.0
692.2
687.6
469.6
756.4

FORCE
AL

100.0
142.8
277.8
333.8
451.2
546.6
620.4
730.0
738.6
849.0
860.6

1018.8
1032.4
1084.8
1328.0
1126.2
1211.8
1162.0
1669.8
1498.8

S

100.0
183.2
289.8
375.2
478.8
579.2
681.0
775.0
869.0
964.0

1027.4
1154.0
1237.0
1350.6
1456.8
1528.2
1615.8
1711.2
1811.8
1912.4

Unsatisfiable

FORCE
L

32.6
57.4
67.6
53.0
58.4
46.2
54.6

142.0
78.4
66.8

141.8
145.0
156.4
197.6
148.2
167.8
121.6
165.4
244.2
136.2

AL

35.6
60.0
67.6

107.4
108.4
172.4
68.2

160.8
155.6
174.2

260.0
251.6
251.2
230.8
213.8
213.2
291.2
182.0
297.2
182.2

S

25.2
36.8
66.6

112.0
87.6

152.6
47.2

179.6
88.6
93.0

169.0
167.6
200.0
177 6
156.8
163.4
264.6
132.4
114.8
298.8

TABLE VI

UNIFORM DISTRIBUTION BINOMIAL DISTRIBUTION

Satisfiable Unsatisfiable Satisfiable Unsatisfiable

Var.TREE EDGE SWITCH TREE EDGE SWITCH TREE EDGE SWITCH TREE EDGE SWITCH

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

3
2.2
3.4
4.6
5.6
4
10.2
6.6
9.2
9.4

11
13
9.6

10.4
5.8
8.6

15.6
12.8
12.6
15.4

118.2
133
220
106.6
402.8
243.4
379.6
174
873

1318.8
582.8

1396.6
865.4
992.2

2018.8
940.4

1356.2
1548.6
2817.2
2631.6

2
1.2
2.4

3.6
4.6
3
9.2
5.6
8.2
8.4

10
12.2
8.6
9.4

14.8
7.6

14.6
11.8
7.2

14.4

1.4
1.4
0.6
2.6
2.2
3.8
2.6
2
1.4
2.6
3.8
3.4
4.4
6.8
7.6
3.6
3
5.2
4.2
4.2

22
28.4
61.4
108.8
141.6
158.6
109.2
138.8
159
63.8

241.4
161.4
227.2
285.2
256.6
231.8
192.6
377.4
419
419

0.4
0.2
0
0.6
1.2
2.8
1.6
0.8
0.4
1.2
2.8
2.4
3.2
5.6
6.6
2.4
2
4.2
2.8
2.8

3.6
12
16
23.4
20.8
21.8
25.2
32.6
26.6
32.4
36.4
44.2
47
38
40.6
51
59.8
67
60.2
63.8

55
276
472.4
581.4
757
648.4
813
897.8

1032.6
1328.4
1322.8
1939
1818.4
1501
1726.2
2209.2
2886.2
3437.8
3240.2
2845.2

1.6
8.4

12
19.4
16.6
18.2
20
26.6
21.8
26.8
31.6
36.2
39.4
32.8
34.2
44.6
49.6
59
53
56

1.4
1.4
1.6

2.6
2.1
3.8
2.6
1.8
1.4
2.6
3.8
3.4
4.4
6.8
7.6
3.6
3.4
3
5.2
4.2

2.2
28.4
61.4

108.8
141.6
158.6
109
138.8
159

63.8
241.4
161.4
227.2
285.2
256.6
231.8
238
192.6
377,4
419

0.4
0.4
0.4
1.6
1.0
2.8
1.6
1
0.4
1.6
2.6
2.4
3.2
5.6
7
2.4
2.4
2
4.2
2.8

Recherche opérationnelle/Opérations Research

2-SATISFIABILITY ALGORITHMS

TABLE VII

UNIFORM DISTRIBUTION BINOMIAL DISTRIBUTION

257

Var.

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Satisfiable
STRONG

31.6
72.4
96.4
130.8
175.6
191.2
253.6
289.6
294.4
336.4
369.6
394.4
444.8
465.6
530.4
560.4
582.8
588.0
610.8
677.2

Unsatisfiable
STRONG

3.8
8.2

11.4
14.8
17.4
25.8
22.4
37.0
38.6
130.
42.6
45.8
50.8
61.4
57.4
63.0
65.2
74.2
68.4
78.4

Satisfiable
STRONG

8.0
40.8
63.6
92.8
91.6
92.0

147.6
125.2
140.0
37.4

212.0
193.2
202.0
223.6
148.0
265.2
299.6
322.8
286.4
348.0

Unsatisfiable
STRONG

L2
1.8
2.4

14.4
7.0

15.2
8.4

11.6
13.4
16.4
17.2
14.6
30.4
20.0

4.6
25.2
22.6
17.4
23.0
35.4

4 • 3. Analysis of the results

(1) The first, and perhaps the most important, observation is that 2-
SATISFIABILITY is a well-solved problem: even the slowest algorithm took
only 44 ms (on a IBM 3090) to solve the largest problem (2000 variables
and 8000 clauses)!

(2) In the satisfiable case, our experiments show a clear-cut ranking of the
four algorithms with respect to running times: L is unquestionably the fastest,
followed by AL, S, and SC (seefig. 5).

(3) In the unsatisfiable case, the running times of L, AL, and S are roughly
comparable, while the running time of SC is by far larger; except for SC,
the running times were much smaller in the unsatisfiable case than in the
satisfiable one (see fig. 6, where the SC-graph is oversized and hence is not
shown).

(4) In the satisfiable case, the running times of SC and L grow quite
regularly with the problem size. In f act, they are very well fitted by a straight
line: actually we found that TIMEL = 5.94 n and TIMESC = 21.99 n, the squared
corrélation coefficients being R\ — 0.999 and f£fc=l, respectively. On the
other hand, the graph of the running times of AL and S as a function of n

vol. 25, n° 3, 1991

2 5 8 R. PETRESCHI, B. SIMEONE

is more irregular, but anyhow lies between two straight lines corresponding
to Land SC (seefig.5).

In the unsatisfïable case, the behaviour of SC is as regular as in the
satisflable case. The other three algorithms, instead, behave very irregularly,
and exhibit frequent nonmonotonicities (see fig. 6). At any rate, their com-
plexity turns out to be sublinear: actually, the best fit among the eleven
functional forms supported by the statistical package SPSS/PC was found
to be TIMEL = 22.39/*049 with 7^=0.844; TIMEAL = 33.6l n0A4 with
R2

AL=^0.803; TIMES= 37.04 n0 4 6 with Rj = 0.845, respectively. Thus, roughly
speaking, the running times are proportional to the square root of n. Further-
more, the running times of L and^4L are seen to be highly correlated.

In conclusion, the expérimental average complexity of both L and S is
lower than their worst-case complexity, and in any case is bounded above
by a linear function of n.

(5) In the satisfïable case the vast majority of the variables turned out to
be forced.

Let us analyze how variable forcing is propagated in both graph models.
To this purpose, it is convenient to introducé some définitions.

DÉFINITION 12: In the implication graph, a literal r| is reachable from the
literal Ç if there is a directed path from r| to Ç.

In the clause graph, r| is reachable from Ç if there is an even alternating
path with endpoints Ç and T\ and ending with a matching edge.

In either graph, we dénote by C(Q the set of literals that are reachable
from Ç and their compléments. Notice that whenever Ç is forced to 0, all
literals in C (Q are also forced.

Under the uniform probability distribution model, the set C(Q turned out
to be usually quite large: this explains the large percentage of forced variables,
as well as the unsatisfïability of almost all rendomly generated quadratic
expressions.

From Table III, one can see that S has the ability to detect almost all
forced variables (91% of all variables). AL detects slightly less forced variables,
while L recognizes on the average only 40% of all variables to be forced. SC
as such does not recognize forced variables.

(6) A direct comparison between L and AL shows that the latter algorithm,
in spite of its O (m) worst-case complexity, is more than twice slower than
the former one, whose worst-case complexity is O{mn),

Recherche opérationnelle/Opérations Research

2-SATISFIABILITY ALGORITHMS 259

The point is that L "capitalizes on luck", while AL follows a more
"pessimistic" approach and is less affected by random factors, which may
increase its running time in the worst-case, but may also decrease it on the
average. Actually, for L to reach its O(mri) worst-case complexity, the
following events must take place:

(1) Every time a guess is made, it is always the wrong one;

(2) Every time a wrong guess is made, the resulting conflict is detected
very late;

(3) Every time a conflict takes place, the alternating guess results in a very
early blocking.

However, under the uniform model, things do not go that way:

(1) A guess is successful in about 50% of the cases;

(2) Every time a wrong guess is made, the resulting conflict is detected
rather early, since a conflict is due to "local obstructions" [13];

(3) Every time a conflict takes place, a certain literal Ç is recognized as
being forced; as a conséquence, a large set C(Q of literals must be forced
[see (5)].

A typical history of the behaviour of the two algorithms is shown in test
No. 3 with 2000 variables. Algorithm L frnds a conflict right after 65
variables have been labelled. The opposite guess ends up with a blocking
after labelling 1 839 variables (which, of course, must be forced). From this
point on, a séquence of 136 blockings follows, such that between any two of
them only one or two variables are labelled. On the other hand, in Algorithm
AL a "red" conflict occurs after 65 variables have been labelled. At this
moment the red labelling is discontinued, while the green one goes on until
1839 variables (as before) are labelled. From now on, 154 red or green
blockings take place; almost always between any two of them only one
variable (occasionally two) is labelled.

After each such blocking, AL wastes time by performing both opposite
guesses, while L always makes a right one. At the end, 2065 variables are
labelled by L and 2 240 by AL.

This explains only in part the différence between the running times of L
and AL (29 878 and 59 116 p,s, respectively). The rest is due to the overhead
for the alternate use of two labellings.

(7) An analysis of the behavior of Algorithm SC shows that its running
time is actually proportional to n, whatever the input structure is. As a matter
on fact, in the satisfiable case, SC must necessarily generate all strong

vol. 25, n° 3, 1991

2 6 0 R. PETRESCHI, B. SIMEONE

components., It turus out that there are always two large (mirror) strong
components; the remaining ones are (mirror) singletons.

For example, in the above mentioned test problem with 2000 variables,
the two large components include 1 658 nodes each, while the remaining 684
components are singletons. In the unsatisfiable case, the two large components
collapse into a single component including more than half vertices of the
implication graph. Clearly this is the component containing a pair of mirror
literals. Hence, also in the unsatisfiable case a large percentage of nodes must
be gençrated and thus the running time does not differ too much from the
time required in the satisfiable case.

(8) The running time of Algorithm S strongly dépends on the number of
switching opérations, even though in our implementation switching is done
"virtually", i. e. by keeping track of commuted variables. It is interesting to
point out that in the unsatisfiable case no switching at all is required in
âbout 80% of the tçst problems. When this happens, S is usually faster than
L.

5. EXPERIMENTAL RESULTS II: BINOMIAL DISTRIBUTION

5 .1 . Drawbacks of uniform distribution

As mentioned in the previous section, in all our experiments with the
uniform probability model, in the satisfiable case, we have observed a number
of peculiar phenomena:

•— All strong components of the implication digraph turned out to be
singletons, with the exception of two mirror "megacomponents" (only one
in thé unsatisfiable case).

.—" The number of conflicts detected by L was always either 0 or 1, while
m AL wa& almost always 1.

— The number of forcing trees in S was always one.
An analysis of these phenomena suggests that there is a big "continent"

of literals which are reachable from each other, surrounded by an "archpelag"
of unreachable literals.

A theóretical explanation of these phenomena can be found in the works
of Hansen, Jaumard, Minoux [8] and Karp [9].

In view of the above facts, we have come to the conclusion that the
uniform probability model is not the best one for the purpose of the expér-
imental évaluation of 2-SAT algorithms.

Recherche opérationnelle/Opérations Research

2-SATÏSFIABILITY ALGORITHMS 261

Thus we have looked for a different probability model which would ensure
more balanced sizes of the strong components.

5 .2. Binomial generator

The basic idea is to generate directly the strong components and then to
link them. Let us start with the generator of satisfiable expressions. As we
have seen, in this case Algorithm SC can label the strong components so
that: (i) if some component gets the label 0, then its disjoint mirror component
gets the label 1, and vice-versa; (ii) no edge goes from a component labelled
1 to a component labelled 0.

Hence one can partition the vertex set of the implication graph into two
"halves" So and Sx such that Ç e So => Ç e S1 and no edge goes from Sx to
So. Each strong component must be contained either in So or in Slr The
generator consists of the following steps:

(1) Generate So by complementing a random set of variables; let ,S1 be
the complement of So.

(2) Generate at random a partition { Cu . . ,5Cp} of *S0.
(3) Introducé in each Ch a random hamiltonian circuit, so as to make Ck

a strong component.
(4) Generate at random m~ n + s edges (where s is the numbèr of singleton

components) so that

(a) each such edge has probability 1/2 of having both its endpoints in So

and probability 1/2 of going from So to Sx;

(b) if Ct, CJES0, i<j and an edge goes from Q to Cp then its orientation
is reversed.

(5) Complete the graph by adding, for each edge, its mirror edge.
Clearly, the distribution of the sizes of the strong components produced

by this generator is binomial.
In order to obtain a generator of instances that are unsatisfïable with

probability close to 1, we have modified Step 4 so as to allow also for èdges
going back from Sx to So.

Let p and g= 1 -p be the probability that an edge goes from So to Ŝ and
from S± to So, respectively. The obvious idea is to choose p = q= 1/2. How-
ever, we have empirically found that this choice gives rise to a megacom-
ponent, similarly to the uniform case. In order to avoid megacomponents
while still achieving unsatisfiability with probability close to 1, we have
chosen/> = 5/7, ?=2/7.

vol. 25, n° 3, 1991

2 6 2 R. PETRESCHI, B. SIMEONE

5.3 . Analysis of the results

In order to obtain a direct comparison between the results obtained with
the two generators, we have adopted the same expérimental plan for both
probability rnodels.

An analysis of the outcomes of 100 satisfiable and 100 unsatisfiable test
problems, which were randomly generated according to the binomial model,
leads to the following observations.

(1.) The running times are roughly of the same order of magnitude as in
the uniform model. However, while we have observed an increase in the
running times of L (about 10% in the satisfiable case and 97% in the
unsatisfiable case, resp.), AL (about 18% in the satisfiable case and 104% in
the unsatisfiable case, resp.) and S (about 12% in the satisfiable case and
222% in the unsatisfiable case, resp.), we have observed a slight decrease in
the running time of SC (about 8% in the satisfiable case and 4% in the
unsatisfiable case, resp.).

(2.) In the satisfiable case, the ranking of the four algorithms is the same,
although the performances of AL, S and SC get closer to each othee (see
M 7).

(3.) In the unsatisfiable case, the big gap between SC and the other three
algorithms is confirmed. Once more the ranking is L, AL, S, and SC (see
M 8).

(4.) The growth of the running times as a function of the number of
variables follows the same pattern as in the uniform case. The only différences
we have observed are that in the satisfiable case, the growth-rate appears to
be more regular for all algorithms, while in the unsatisfiable case the growth
of SC is slightly more irreguiar.

(5.) In the satisfiable case, the percentage of forced variables is again quite
large, and actually even larger than in the uniform case. Also under the
binomial model S has the greatest ability to detect forced variables, followed
by AL and L.

(6/7.) No significant différence has been observed with respect to the
uniform case (see the corresponding points in Sec. 4).

(8.) The strong dependence of the running times of S on the number of
switching opérations is confirmed. Actually, for this very reason in the
unsatisfiable case S behaves less well than under the uniform model, since
now the nonoccurrence of switching opérations is quite rare.

Recherche opérationnelle/Opérations Research

2-SATISFIABIUTY ALGORITHMS 2 6 3

5*4. Advantages of binomial distribution

Our experiments confirm that, when one makes use of the binomial distri-
bution, many anomalies observed under the uniform model (see Sec. 5.1)
indeed disappear:

— The sizes of the strong components of the implication digraph are more
balanced, and in fact they are binomially distributed.

— The number of conflicts detected by L and AL is often greater than 1.

— The number of forcing trees in S is almost always larger than 1.

In this case, rather than a single big "continent" of forced literals, there
are several smaller continents, which is, of course, more natural.

6. CONCLUSIONS

The main conclusions of our expérimental work may be summarized as
follows:

1. 2-SAT is a well-solved problem. Instances with 2000 variables and 8000
clauses were solved in few tens of milliseconds on a mainframe. Hence, in
view of the linear growth of running times, solving 2-SAT problems with
several tens or hundreds of thousand variables and clauses does not constitute
a problem even within the limits of current technology.

2. There is an evident ranking of the four algorithms with respect to
running times, namely L, AL, S, and SC. It is worth emphasizing that the
fastest one, L, has a non-linear worst-case complexity. The above ranking
was independent of the probability model

3. The boolean expressions generated under the uniform probability model
exhibit strong and peculiar structural properties which affect the behavior of
the four algorithms. This led us to the conclusion that the uniform model is
not the ideal one for testing 2-SAT algorithms. Our binomial generator was
designed so as to elinünate the above anomalies, and our expérimental results
confirm that this goal has been attained.

In view of the above considérations, it is worth looking into the following
question which has an obvious relevance to the design of computational
experiments on genera! satisfiability: it is still true that higher order boolean
expressions generated under the uniform model tend to have a peculiar
structure which may affect the behavior of SAT algorithms?

vol. 25, n° 3, 1991

264 R. PETRESCHI, B. SIMEONE

ACKNOWLEDGEMENTS

We are grateful to Professors M.A.H. Dempster, J. Franco, and B. Jaumard for their valuable
suggestions; to Prof. M. Maravalle for carrying out the régressions; to Drs. A. Ciammetti, C.
Cavazzani, C. Campetto, and D. Alimonti for their assistance in writing, debugging, and running
the computer programs.

BIBLIOGRAPHIE

1. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

2. B. ASPVALL, M. F. PLASS and R. E. TARJAN, A Linear Time Algorithm for Testing
the Thrue of Certain Quantifïed Boolean Formulas, Inf Proc. Lett., 1979, 8,
pp. 121-123.

3. S. COOK, The Complexity of Theorem Proving Procedures, Proc. 3rd ACM Symp.
on Theory of Comput., 1971, pp. 151-158.

4. M. DAVIS and H. PUTNAM, A Computing Procedure for Qualification Theory,
J. of ACM, 1960, 7, pp. 201-215.

5. K. W. DEMING, Independence Numbers of Graphs— an Extension of the Konig-
Egervary Property, Discr. Math., 1979, 27, pp. 23-24.

6. S. EVEN, A. ITAI and A, SHAMIR, On the Complexity of Timetable and Multicomo-
dity flow Problems, SIAM J. Comput., 1976, 5, pp. 691-703.

7. F. GAVRIL, Testing for Equality Between Maximum Matching and Minimum
Node Covering, Inf. Proc. Lett., 1977, 6, pp. 199-202.

8. P. HANSEN, B. JAUMARD and M. MINOUX, A Linear Expected-Time Algorithm for
Deriving all Logical Conclusion Implied by a set of Boolean Inequalities, Math.
Prog., 1986,34, pp. 223-231.

9. R. M. KARP, The Transitive Closure of a Random Digraph, Rondom structures
and algorithms, 1990, i, pp. 73-93.

10. R. PETRESCHI and B. SIMÈONE, A Switching Algorithm for the Solution of Qua-
dratic Boolean Equations, Inf. Proc. Lett., 1980, 11, pp. 199-202.

11. W. V. QUINE, A Way to Simplifying Truth Functions. Amer. Math. Monthly,
1955, 52, pp. 627-631.

12. B. SIMEONE, Quadratic Zero-Uno Programming, Boolean Functions and Graphs,
Ph. D. Diss., Univ. of Waterloo, Ontario, 1979.

13. B. SIMEONE, Consistency of Quadratic Boolean Equations and the Konig-Egervary
Property for Graphs, Ann. Discr. Math., 1985, 25, pp. 281-290.

14. R. E. TARJAN, Depth First Search and Linear Graph Algorithms, Siam. J. Comput.,
1972, 1, (2), pp. 146-160.

Recherche opérationnelle/Opérations Research

