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A NOTE ON CHECKING SCHEDULES WITH FINITE HORIZON (*)

by Bruno VISCOLÂNI (*)

Abstract. — This communication anaiyzes the problem of determining an optimum checking
schedule over afinite horizon, for an equipment subject tofailure, in order to minimize the expected
cost due to inspections and failure. We refer to a known formulation of the problem, discussing
the correctness of its proposed solution^ and exhibiting some misunderstood aspects of it.

Keywords : Reliability; inspection sehedules; calculus of variations.

Résumé. — Cette communication analyse le problème qui consiste à déterminer une politique
d'inspection optimale pour un équipement sujet à panne sur un horizon fini. Le critère d'optimalité
est de minimiser le coût espère des inspections et de la panne éventuelle. Nous considérons une
formulation connue du problème, discutons la correction de la solution proposée et montrons des
aspects mal compris de ce modèle.

Mots clés : Fiabilité; politiques d'inspection; calcul des variations.

1. INTRODUCTION

In [7] J. B. Keiler proposes an approach to determining an "optimum
checking schedule for a System subject to random failures". His formulation
of the problem is a simple case in the calculus of variations. Thus it has
been proposed as an example of economie application in two more recent
textbooks ([6], p. 50; [2], p. 460), because of the interesting and easy interprét-
ation of its necessary conditions. Other authors [8; 3; 4; 5], which are inter-
ested in suboptimal inspection policies for application purposes, refer to the
same paper [7]. Kamien and Schwartz ([6], p. 50) and Guerraggio and Salsa
([2], p. 460) change the original infinité horizon problem into a fmite horizon
one, but fail to realize some conséquences on the existence of an optimal
solution.
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2. OPTIMUM CHECKING SCHEDULE PROBLEM

Let Z be the occurrence time of the flrst failure of a machine which starts
working at time 0. Z is a positive random variable with distribution F and
continuously differentiable p.d. f. ƒ The status (working or failed) of the
machine is inspected at some epochs, at a fixed cost cQ per each inspection,
without interfering with the machine running. L (X) is the loss from a failure,
where X is the time elapsed after the failure until an inspection detects it
and L is a positive and strictly increasing function. C is the total cost incurred
for checking and failure in the interval [0, Z + X], where Z+X is the epoch
of détection of the fïrst failure. A checking schedule S is defined as an
increasing séquence of positive time points:

S={yk:k>l}9 0<yk<yh + u k^L (1)

If the schedule S= {yk} is adopted, then y1 is the epoch of the first inspection,
y2 is the epoch of the second one, . . .

Then the problem may be stated as foliows:

P : détermine the checking schedule S= {yk}

which minimizes the expectation

\ \ (2)

where M is the number of inspections necessary to detect the failure.
Keiler [7] assumes that the checking schedule dépends on a smooth function

n (t), the number of checks per unit time.

Then, after setting

r (3)

he restâtes the problem P as the following infinité horizon problem in the
calculus of variations:

PK : min/(*(/))= f"[c0*(*) + £0/2*'(/))] ƒ (i)dt
Jo

s.t. x(0) = 0,
x'(r)>0,
no condition on x(t) when t -• oo.
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3. THE FINITE HORIZON CASE

Now, also finite horizon versions of the problem PK are worth studying,
as proposed in ([6], p. 50; [2], p. 460). However, some care must be taken
when reformulating PK with a finite horizon. In fact the problem may not
have an optimal solution in gênerai.

Following the authors of [6; 2], let us assume that L(x) = c1x, cx>0. The
relevant interval is [0, T], where T>0 is fixed and F(T)^ 1. The most natural
problem is then ([6], p. 50; [2], p. 460)

'•fP': min ƒ(*«) = [cox{t) + cj2x'{t)] f {t)dt,
Jo

s.t. x(0) = 0, x(J)free.

The Euler équation reads, after intégration, as follows:

ei ƒ «/(*' (O)2 = 2 c0 [a - F(0], 0 g ^ T, (4)

where a is an intégration constant [7; 6], Thus, it is necessary first that

(5)
because the first member of the équation (4) is non-negative. We notice that,
if ƒ (f) = 0 for some t<T, then also the second member of (4) must vanish
at t, so that a = F(t) and hence, by (5), F(t) = F(T\ Le. ƒ(0 = 0, t^t^T.
On the other hand, if/(f) = O and / 0 ) > 0 , for some f and s, 0<t<s<T,
then there does not exist any solution to (4) and the problem has not any
optimal solution.

A second necessary condition is the "transversalîty condition" [6; 2],

f(T)/(x'(T))2 = 0. (6)

Two cases are possible for it:
(i) f(T) = 0, then any solution of (4), with a = F(T\ satisfies (6) IOO;
(ii) f(T)^0, then no optimal solution exists.
In fact (ii) is the unique interesting case, in view of the typical distributions

considered in reliability theory ([!]; [9], pp. 353-358) and in view of the
independent choice of the parameter T. The different behavior of the finite
horizon problem, from the infinité horizon one, is due to the fact that the
cost of the inspections is not enough for bounding their frequency towards
the end of the relevant interval.
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4. UPPER BOUNDED FINAL STATE

Let us consider here the new finite horizon problem

P": min J (x (0) = f * [c0 x (t) + cjl x' (t)] f (t) dt,
Jo

s.t. x(0) = 0 x(T)SxT,

where xT > 0 is fixed and all the assumptions of Section 4 on problem P' stiil
hold.

The Euler équation is again (4), whereas the proper transversaüty condition,
corresponding to the terminal condition x(T)^xT, is now ([10], pp. 31-36):

f (T)/(x'(T))2^0, ( -0 iïx(T)<xT). (7)

lff(T)>0, as we should assume in gênerai, then an optimal solution must
satisfy the terminal condition as an equality:

x(T) = xT. (8)

On the other hand, f(T)>0 implies that f(t)>0, O^t^T, otherwise the
Euler équation would not admit any solution.

Then (4) has the solutions, in terms of x',

K (0 = [cx f (0/2 c0 (a - F{tW\ QSt^T, (9)

Let xa be the state function whose derivative is x'a and which vérifies
jcfl(O) = O. If there exists such an a>F(T) that (8) is satisfied, xa(T) = xT9

then xa(t) is the global minimum and it is unique. In fact the sufflcient
condition ([10], p. 43) that [cox(t) + cjlx' (t)] f (t), be convex as a function
of (x, x'), is satisfied. Notice that

x'a{t)<x'FiT){t)y 0£t<T9 (10)

for all a>F(T), so that we have the inequality

). (ii)

In the opposite, exceptional case that ƒ (T) = 0 and f(t)>0, Of±t<T, (7) is
satisfied by any solution of (4) with a = F(T), if it exists; again that solution
would be a global minimum of F'.
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Had we imposed the constraint

fixed, (12)

instead of x(T)SxT, we would have found a situation similar to the one just
discussed. Nevertheless, the problem, with the new constraint (12), is better
formulated and discussed in terms of the Optimal Control Theory and the
Maximum Principle.

Example 1: Let F(t)= 1 -e~x\ t^ö, where X>0 is fixed: then f (t) = Xe~u
9

^O, and Tmay be any positive number. The Euler équation has the solutions

ÇT
implies nc

Jo

for all a>\ — e XT = F(T), because ƒ (T) ̂ 0 . The transversality condition

»ayijJt = xT. We can see that, if 7*= 10, X, = 0.03, co=10, cl = l5

and x r =5 , then the optimal solution exists and has a = 0.262. If xT^5.5
approximately, and the remaining parameters are the same as above, then
no optimal solution exists.

Example 2: Let F(t) = Xt, O^f^AT1, where A,>0 is fixed: then
O ^ ^ " 1 and Tmust satisfy the condition T<\~1, The Euler équation has
the solutions

for all a>XT, because f(T)^0. An optimal solution exists iff
xT<{2c1 T/co)

1/2. The transversality condition is

When an optimal "density" n{t) exists, it dépends on the parameters xT, c0,
ct and T, but not on X. The optimal value of the objective functional is:

J* = X Cl { T2 + c0 x\ T/c, - (c0 x
2

T/2 Cl)
2/3 }/2 xT.

We can see that, if T— 10, co= 10, c1 = 15, then no optimal solution exists iff
xT^5.48 approximately.
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