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LOCATIONAL EQUILIBRIUM OF TWO FACILITIES ON A TREE (*)

by Horst A. EISELT (*) and Gilbert LAPORTE (2)

Abstract — This paper considers the location of two facilities on a tree In particular, conditions
for the existence of an equilibnum are derived and an efficient computational procedure is described
for fïnding such an equilibnum, if one exists Secondly, conditions for the so-called "first-entry
paradox" are examined in this, the f irst entrant to a market may not always have an advantage
over his opponent as commonly thought Relationships between the occurrence of this paradox and
the existence o f a Nash equilibnum are demonstrated

Keywords Locational equilibnum, Nash equilibnum, trees

Résume - Dans cet article, on considère la localisation de deux installations sur un arbre En
particulier, des conditions pour l'existence d'un équilibre y sont développées On y décrit de plus
une procédure efficace pour la détermination d'un tel équilibre lorsqu'il en existe un En deuxième
heu, on étudie les conditions d'existence du «paradoxe du premier joueur », selon lequel le premier
joueur ne possède pas nécessairement un avantage sur son adversaire On établit finalement des
relations entre l'existence de ce paradoxe et celle d'un équilibre de Nash

Mots clés Équilibre de localisation, équilibre de Nash, arbres

1. INTRODUCTION

Hotelling's [13] fundamental paper concernmg a spatial model with two
facilities has influenced and inspired a large number of researchers mterested
m compétitive location models. Hotelling's model was generalized as early
as 1937 by Lerner and Singer [17] and later by Smithies [25]. Recent introduc-
tions to the field and reiated surveys are those by Gabszewicz and Thisse
[10] and Eiselt and Laporte [5]; a taxonomy and research bibliography is
found in Eiselt et al, [8].

Traditionally, prices and/or locations of the given facilities have been the
décision variables in these models. The difficulties arising in models in which
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6 H. A. EISELT, G. LAPORTE

priées and locations are both determined have been demonstrated by a
number of authors, e. g., d'Aspremont et al [2]. Often, economists work with
two-stage models where location is determined in the first stage and priées
are found in the second stage. Such a two- stage model was originally
developed by Hotelling; some newer références are Osborne and Pitchik [20],
Capozza and Van Order [1] and Hurter and Lederer [16]. On the other hand,
other researchers frequently consider models with parametric priées and
discuss scénarios in more realistic contexts —e. g., Eaton and Lipsey [3],
Osborne and Pitchik [19] and Fujita and Thisse [9]. Following the latter
strand of research, we fix the price of the homogeneous good under considéra-
tion and use only the locations of the two facilities as variables. Both facilities
are assumed to be independently operated and their objective is assumed to
be the maximization of their respective sales.

Most traditional models locate facilities on a linear market, i.e, a line
segment, although there are some notable exceptions, such as Okabe and
Suzuki [18], Re Veile [24] and Eiselt and Laporte [6,7] who locate facilities in
the plane, on networks and on trees, respectively. In this study, both facilities
locate on vertices of a tree. Also, demand originates only at vertices and is
assumed to be totally inelastic with respect to distance or service le vel, i.e.
customers will satisfy their demands no matter how far or unattractive the
facility they buy from.

Formally, defïne a tree T=(V,E) with V^{vl,v2, . . .,vn} and edges etj

for vi9 VjS V. Let b^O dénote the demand at vertex vt. Furthermore, d^O
dénotes the distance between vt and v/9 this is the sum of direct distances of
all edges on the unique path from vt to vy Let now two facilities A and B be
given. With each facility we associate weights wA and wB^0 that indicate the
attractiveness of the facility. The spécifie interprétation of the weights dépends
on the example; in the case of shopping centers this could be floor space, for
libraries it could be the number of books, or it might be the number of
rooms if the facilities represent hotels. Suppose now that the attraction of a
customer to a facility is measured by an attraction function. In particular, a
customer at vertex vt is attracted to facility A at vA according to wA/dr

iA with
r ^ 1; if vt and vA coincide, i. e. if dr

iA^0, this expression must be interpreted
as an arbitrarily large number. This attraction function is a generalization of
the gravitational models used by Reilly [23], Huff [14] and Huff and
Jenks [15]. A customer will now patronize the facility he is more attracted
to. Clearly, for any given pair of locations of A and B, each customer at
vertex vt is either attracted more to A (in which case he will satisfy his entire
demand bt from A) or to B (he then buys only from B) or he is equally
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LOCATIONAL EQUILIBRIUM OF TWO FACILITIES ON A TREE 7

attracted to both facilities, in which case each of the two facilities will satisfy
half that customer's demand. Moreover, if we allow both facilities to locate
at the same vertex, say vi9 we can distinguish between the case where the
larger facility A captures the entire market ("winner takes all") in contrast
to the "proportional model", where customers at vt will buy [wAf(wA 4- wB)] b(

units from facility A and the remaining [wB/(wA + wB)] bt units from B.

Consequently, for any fixed pair of facility locations, each facility could
détermine the vertices whose customers it serves (or captures). Formally,
defme Vtj(A) and Vtj{B) as the sets of vertices captured by A and B,
respectively, given that A locates at vertex v{ and B locates at vertex vy

Vertices buying from both facilities are included in both sets. Vtj{A) and
Vij(B) are called market (or catchment) areas; the analog in Rm would be
the Voronoi set of a given point.

Naturally, for a given set of already located facilities, new facilities may
now locate in order to maximize their sales. Suppose now that it were possible
to relocate sequentially and repeatedly. The concept of sequential relocation
coupled with facilities that optimize on the basis of the current situation has
frequently been challenged. Indeed, if say, facility A were able to relocate
now, why would it do so on the basis of the current situation knowing that
facility B will relocate next and quite possibly negate the benefit that A
dérives from its planning? In short, why not anticipate B'$ move and react
accordingly? Such planning with foresight has successfully been applied in
the case of linear markets, e. g., Prescott and Visscher [22]. Suppose now
that it were known to all players that they will relocate in a spécifie séquence
with unknown relocation speeds. As it may not be desired to anticipate an
opponent's move some time in the (possibly distant) future, a possible short-
term objective is the maximisation of sales within the time interval where no
other facility relocates.

Finally, define a pure strategy locational Nash equüibrium as a pair of
locations (vf, vf), so that neither facility may gain by relocating unilaterally.
A formai characterization of such an equilibrium in the context of two-
person games is provided below in Définition 2.

The remainder of this paper is organized as follows. In Section 2, we
détermine equilibrium conditions for two facilities on a tree. In Section 3,
we analyze the equilibrium problem as a two-person constant-sum game. We
then study, in Section 4, the so-caled "First Entry Paradox" which states
that the first facility to enter in a sequential location procedure does not
necessarily have an advantage. The conclusion follows in Section 5.

vol. 25, n° 1, 1991



8 H. A. EISELT, G. LAPORTE

2. EQUILIBRIUM CONDITIONS FOR TWO FACILITIES ON A TREE

In this section, we investigate existence conditions for the equilibrium of
two facilities on a tree. To facilitate the discussion, we use the following
notation. Let vq dénote any vertex in the tree T. Deletion of vq and of all its
incident edges décomposes the tree into subtrees 7^,T| , . . .,Td(q), where
d(q) dénotes
Tlbcb(Tf)=

the degree of vg. Let the demand of any sub tree
bt (the demand of T is defmed in a similar fashion) and

suppose that the subtrees are ordered so that b(T\)^b (Tq
2)^ . . . ^b(Tq

d{q)).

VieTî

2 .1 . Facilities vvith equal weights

Assume first that the two facilities that are to be located on the tree may
share a vertex. Let one of the facilities, say A9 be located at vertex vq. Similar
to the resuit on the linear market, facility B will either locate adjacent .to vq

or also at vr If B locates adjacent to vq, it will do so in T\, as B captures
the demand of the subtree in which it is located and, by définition, T\ is the
largest such subtree. If vq happens to be a médian of T9 then b(T\)^b(T)/2,
as shown by Goldman and Witzgall [12]. If A and B both locate at a médian,
each facility captures b(T)/2, As the maximum demand either facility can get
by moving out of vq is b (T\), there is no incentive to relocate and hence a
Nash equilibrium has been reached. An example for such a case is shown in
figure 1 where vq = v6 is the unique médian; hère and in similar figures, the
numbers next to the vertices indicate their respective weights.

Figure 1. — Nash equilibrium for two facilities vvith equal weights
and locating at the unique médian of a tree.

Recherche opérationnelle/Opérations Research



LOCATIONAL EQUILIBRIUM OF TWO FACILITIES ON A TREE 9

The case of locating two equally weighted facilities at distinct vertices of a
tree is similar. Suppose again that facility A has already located at the médian
vq and, as above, the best B can do is locate next to vq in T\, Facility B
then satisfies a demand of b{T\) whereas A captures b(T)-b{T\)^b(T\).
Once more, neither facility can improve its position by relocating unilaterally
and thus a Nash equilibrium has again been reached

2 .2 . Facilities vvith unequal weights

Consider now the case where the two facilities have unequal weights. As
opposed to the equally weighted case where both facilities are drawn to each
other and their behavior is totally symmetrie, we have to distinguish between
the large and the small facility. For simplicity, consider fïrst the case of
unequally weighted facilities on a linear market. Eiselt [4] has shown that
the large facility will always locate arbitrarily close to the small facility thus
capturing almost the entire market. On the other hand, the smaller facility
will try to locate at a certain distance away from its larger competitor.
Formally, let the market extend from 0 to 1, let wA>wB and assume that
facility A is located at point xA. Without loss of generality assume xA^\/2.
Then facility B will locate at some point xB so that the left end of its market
area VAB(B) coincides with the left end of the market at "0". In gênerai, for
any two distinct locations of the facilities at xA and xB, VAB(B) is a non-
symmetric interval around xB, with the shorter end facing A whereas VAB (A)
is the complement of VAB (B), Usually VAB (A) is disconnected.

A similar argument is applicable to the location of two facilities at the
vertices of a tree. Here also, A will always locate at the same vertex as B or
adjacent to B, as there is nothing to gain by moving farther away. On the
other hand, B will move away from A but, based on the discrete structure of
the market, not necessarily so far that the end of its market coincides with a
leaf of the tree. This implies

LEMMA 1 ; If an equilibrium exists, then A and B are located at adjacent
vertices.

Figure 2 shows such a situation where a locational equilibrium exists. Here,
wA = 39 wB=\ and di}~ 1 for all etjeE. Note that wherever B locates, A will
locate next to it and B will then capture only the demand of the vertex where
it is located. Thus, if one of the facilities locates at v3 and the other at v5,
neither has an incentive to move out of this arrangement.

vol. 25, n° 1, 1991



10 H. A. EISELT, G LAPORTE

Figure 2. — Nash equilibrium for two facilities with unequal weights.

3. ANALYSIS OF THE EQUILIBRIUM PROBLEM AS A TWO-PERSON CONSTANT-
SUM GAME

In order to further analyze the situation, we will model the problem as a
two-person constant-sum game. For that purpose, construct a payoff matrix
P, so that the rows correspond to potential locations of facility B, the
columns correspond to potential locations of facility A and ptj = b^ (B) dénotes
the payoff of B if B locates at vt and A locates at Vj. Note that pü is not
defïned in contexts where A and B must locate at distinct vertices. Also note
that P is not symmetrie [ho we ver, if wA = wB, then Pij — b(T)—p^ First we
will outline a procedure for the détermination of P and then show how to
find equilibria (if they-existé provided that the matrix P is available.

For each given pair of locations of A and B, Vu (B) can be computed by
determining the attractions of A and B at each customer location and finding
the maximum. For each vertex, this is accomplished in 0(1) time. Since this
task has to be repeated for ail vertices, each element of the matrix P can be
found in O («) time. As there are O (n2) éléments, such a procedure requires
O(n3) time. It is summarized in the followning steps:

PROCEDURE PAYOFF MATRIX:

Begin
Pif. = 0, V ij; VtJ (B): = 0 , V vit v-s e V;
for i: = 1 to n do

for jr : = 1 to n do
for k : = 1 to n do

begin
if wjd;ft < wB/dr

jk then set Pij : =Pij + bk and Vtj (B) : = Vtj (B) U { vk};
if wjdr

ik = wB/dr
jk then set Pij : =Pij + bJ2 and Vu (B) : = Vi} (B) U { vk}

end
end

Recherche opérationnelle/Opérations Research



LOCATIONAL EQUILIBRIUM OF TWO FACILITIES ON A TREE 11

Knowledge of the entire matrix P is however not necessary. In order to find
an equilibrium, Lemma 1 can be invoked to limit the number of required
computations. As facilities will be adjacent at equilibrium, two possible
location configurations must be examined for each edge ei} : A locates at vt

and B at vj and vice versa. As there are n— 1 edges in T, 2(n— 1) pairs of
locations have to be investigated leading to an O (n2) algorithm. For this, it
suffices to relabel every edge eu by ei{l)j{l), where / = 1 , . . . . ,«—1. Then in
the above procedure, the first two "do" loops are replaced by "for / := 1 to
n— 1 do" and the instruction "set i: = i(l) a n d j : = y ( 0 " is inserted before the
first "if ' statement.

Suppose now that a payoff matrix P = (p^ is available. Then we can
formally define a locational Nash equilibrium as follows.

DÉFINITION 2: An element pt*j* is a Nash equilibrium if pt*j* ̂ pkj* for all k
and ppj*^pm for all /. Alternatively, if rt = min{ptj} for all i dénote the row

j

minima and cj~ma.x{pij\ for all y are the column maxima, then p^j* is a
i

Nash equilibrium if r^ — Cj*.

Similarly, a saddle point is definej as follows.

DÉFINITION 3: Let r- and Cj dénote the row minima and column maxima of
matrix P, respectively. Define rv — max {rt} and Cj , — min {Cj}. Then an ele-

i J

ment pVy is a saddle point in P:

Thèse définitions imply

LEMMA 4: If a pair of locations (v(, v3) defines a saddle point, then it is also
a Nash locational equilibrium.

The converse of Lemma 4 is however not true as shown in the example
displayed in figure 3, where wA = 3, wB = 2, du=\ for all etjeE. Clearly, as
rv = 6>5 = Cj,, P has no saddle point but the circled éléments in the payoff
matrix indicate locationat Nash equilibria.

3.1. Facilities must locate at distinct vertices

Consider now the case where the faciiities have to locate at distinct vertices.
In such a case, an equilibrium may or may not exist. Figure 3 pro vides an
example for the case in which equilibria do exist; (^3,^) and (vl9v3) are such
equilibria. On the other hand, an example for the case without an equilibrium
is shown in figure 4. Here, wA = 3, wB= 1, bt= 1 for all vte V and dtj= 1 or

vol. 25, n° 1, 1991



12 H A. EISELT, G LAPORTE
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Figure 3. — Existence of a Nash equilibrium when there is no saddie point.

Figure 4. — Tree in which no equilibrium exists.

ail e^eE, In the associated payoff matrix, rt= 1, i= 1, . . ., 11 and c = (Cj) = (5,
9/2, 4, 4, 3, 5/2, 3, 4, 4, 9/2, 5). As r^c,- for ail pip there is no equilibrium.

3.2. Facilities may share the same vertex

Let us now examine the model where it is possible for both facilities to
locate at the same vertex. As indicated above, we will distinguish between
the "proportional" and the "winner takes all" models. First consider the
proportional model. Hère, an equilibrium may or may not exist. Both possibi-
lities are shown in figures 5 and 6. In both examples, wA = 3, wB=l, d^—l

P:

"1

*2

"3

1/2

9

1

9

*2

2

9/4

1

9/4

^3

2

9

1/4

9

1/2

9/4

1/4

Figure 5. - Tree with one equilibrium.
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P: * 2

°J

«1

1/2

3

1

3

2

3/4

1

2

" 3

2

3

1/4

3

?
1/2

3/4

1/4

Figure 6. — Tree with no equilibriuni.

for all eijEE. Whereas the model in figure 5 has exactly one equilibrium with
both facilities locating at v2, the graph in figure 6 shows no equilibrium.

In our last model, both facilities may locate at the same vertex and if they
do, the larger of the two facilities will capture the entire market. Assume
now that there are at least two vertices with positive demands, say vt and vk.
Thenptj>0 andpü = 0 for all i^j; pkj>0 andpkk-0 for all k^j. This implies
that there exists at least one positive element in each column of P. Then by
construction, r; = 0 for all i and c,->0 for all j and hence no equilibrium can
exist in this case.

The above results are summarized in table I.

4. THE FIRST ENTRY PARADOX

The concept of the flrst entry paradox has recently been put forward by
Ghosh and Buchanan [11]. The basic idea behind the principle is that the
first facility to enter the market in a sequential location procedure has an
advantage as it can locate at a strategie site. Sometimes, however, facilities
locating later in the process may have "the last word" and capture a larger
share of the market than the facilities located earlier. Such a situation is
referred to as the fïrst entry paradox. Note that the paradox assumes a
completely symmetrie situation, Le. both facilities have access to the same
information, resources, etc. Clearly, this assumption is not satisfied in a
model where facility A has an obvious advantage by virtue of its larger weight
and thus larger attraction. This nécessitâtes a slightly different formulation to
the paradox. Defme V'AB (A) as the market area captured by facility A if A
locates before B and let VBA (A) be A 's market share if B locates first; the
définitions of V'AB(B) and VBA(B) are similar. Furthermore, define b'AB(A),

vol. 25,11° 1, 1991



14 H. A. EISELT, G. LAPORTE

TABLE I

Existence of equilibria

Faciliiy weights

Equal

Unequal

Proportional
model

Winner
takes

all

Facilities
may locate

at the
same vertex

Yes, aîways
(at médian)

Sometimes,
but not always

Never

Facilities
must locate
at different

vertices

Yes, always
(at médian

and adjacent
vertex)

Sometimes,
but

not always

^BA^), bAB(B), and bBA(B) as the demands associated with the respective
market areas. Then we can write

DÉFINITION 5: The first entry paradox is said to exist if bAB(A)<bBA(A)
[or êquivalently, if b'BA (B) < bAB (£)].

Suppose now that the two facilities locate sequentially. In anticipation of
their opponent's counterstrategy, the first facility to locate will employ a
maximin criterion. Thus, if facility B were to locate first, it would détermine
ri* = max{r/}. Then facility A détermines its best counterstrategy given by
the smallest element in row f* which is rf*; thus V'AB(B) = ri*. Similarly, if A
locates first it will choose column j * so that cr = mïn{cj}. Subsequently, B

j
optimizes resulting in a payoff of Cp for B, i, e. VAB (B) = Cj*. Hence, we can
write

LËMMA 6: The fïrst entry paradox occurs if and only ifr^KCj*.

For the following discussion it is useful to restate one of the fundamental
theorems in game theory (see, for example Owen [21]).

LEMMA 7: For any given payoff matrix P=

max min {ptj} ^min max {pi}}.

As above, we will distinguish between two cases.

Recherche opérationnelle/Opérations Research
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4.1. Facilities may share the same vertex

15

Lemma 7 holds as long as all éléments of P are defined, i. e. both facilities
are allowed to locate at the same vertex. In this case, m a x l r ^ g m i n j c , } ,

i J

meaning that the paradox always exists, except when the equality holds. This
is, however, precisely the case when the game has a saddle point. Thus we
can state

LEMMA 8: If both facilities may locate at the same vertex, then the first
entry paradox always occurs, except when the game has a saddle point.

Figures 5 and 6 illustrate Lemma 8. The example in figure 5 has a saddle
point and hence the paradox does not occur. On the other hand, for the
graph in figure 6, ri* = 3f4<2 = cr and thus, the paradox exists. Finally,

P: *z

%

CJ

*1 «ï. *3

0 2 2

9 0 9

1 1 0

9 2 9

0

0

0

Figure 7. — First entry paradox in a "winner takes all" model.

figure 7 shows an example of thé "winner takes all" model. Here wA = 3,
wB = 2, dtj= 1 for all e^eE. Whenever B locates first, his payoff will be zero
whereas if A locates first, B will be able to capture a demand of at least 2.

4.2. Facilities must locate at distinct vertices

Consider now the model where the facilities have to locate at distinct
vertices and where Lemma 6 does not apply. It is easy to show that the first
entry paradox never occurs for equally weighted facilities. As has been shown
elsewhere (see Eiselt and Laporte [7]), the first facility to locate, say A, would
do so at a médian of the tree, say vr Thus, bAB(B) = b(T\) and
bAB(A) = b(T)-b(Tf). By construction, b(T\)^b(T)/2, so that
b'AB (A) ̂  b (7)/2 ;> b'AB (B). Similarly, it can be shown that bAB (B) ̂  bAB (A) and
as there is total symmetry in this case, bAB (A) = b'AB (B) and bAB (B) = bAB (A),
so that bAB(B) = b'AB(A)^bAB(B) which contradicts the condition for the first
entry paradox.

vol. 25, n° 1, 1991



16 H. A. EISELT, G. LAPORTE

In the case of facilities with unequal weights, the paradox may or may not
occur. Examples for both cases are provided by the graphs in figures 3 and
4 above. In the tree in figure 3, B can obtain sales of 6 if it locates fîrst but
it is guaranteed sales of only 5 units if A is the first facility to locate; hère
the paradox does not occur. In figure 4, facility B will be guaranteed one
demand unit if B moves first whereas it will capture at least 5/2 units if A
moves first, indicating that the paradox does occur. The above results are
summarized in Table IL

TABLE II

Occurence of the fîrst entry paradox

Facility weights

Equal

Unequal

Proportional
model

Winner
takes all

Facilities
may locate

at the
same vertex

If and only if
ma.x{ri}<vmn{Cj}

i J

Facilities
must locate
at different

vertices

Never

Sometimes,
but

not always

Finally, we would like to offer a few remarks on the process that takes
place in case the first entry paradox exists. Clearly, in such a case neither
facility has an incentive to make the first move. The spécifie rules of the
game will then détermine the process that follows. If the market allows other
facilities to enter or customer demand is likely to change in the long run,
there may be an incentive for the two players to enter the market and secure
some profit now rather that take a chance and risk getting very little or
nothing at all later. This is actually another game whose solution dépends
on the tradeoffs in the spécifie scenario under considération.

5. CONCLUSION

In this paper, we have examined the existence of equilibria in a compétitive
duopoly model on a tree. Furthermore, conditions for the occurence of the
first entry paradox were developed. Future research could investigate equili-
bria and paradox situations in gênerai graphs as well as in trees with more
than two facilities.
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