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A NEW HEURISTIC FOR THE TRAVELING SALESMAN
PROBLEM (*)

by J. CARLIER (*) and P. VILLON C)

Abstract. — In this paper we present a new heuristic for the Traveling Salesman Problem. This
heuristic is based on a dynamic programming method Computing the best tour among an exponential
number of tours in polynomial time. Computational results illustrating the efficiency of the method
are presented.

Keywords : Traveling Salesman Problem ; Dynamic Programming Method ; Heuristic ; Neigh-
borhood Relation.

Résumé. — On présente dans cet article une nouvelle heuristique pour le problème du voyageur
de commerce. Cette heuristique est basée sur une méthode de programmation dynamique qui permet
de calculer le meilleur tour parmi un nombre exponentiel. Les résultats de calcul qui sont rapportés
illustrent l'efficacité de la méthode.

Mots clés : Problème du voyageur de commerce ; Méthode de Programmation Dynamique ;
Heuristique ; Relation de Voisinage.

1. INTRODUCTION

Exact methods for solving the Traveling Salesman Problem (TSP), like
polyhedral or branch and bound ones, can solve large-size problems if good
suboptimal tours are used for initialization [7, 9, 10]. So good heuristics to
provide these tours are necessary.

This paper présents a new heuristic for the TSP in the symmetrie case.
First, a neighborhood relation between permutations of a set of n éléments
is defîned. Each permutation is associated with a tour and is valued by its
cost. Using a dynamic programming method, the best neighbor of a given
permutation is computed in O(n2), The neighborhood relation is then
extended to tours and an O (n3) algorithm to compute the best neighbor of a
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given tour is obtained. Our heuristic consists in iteratively applying this
algorithm. Numerical results presented show the efficiency of the method.
Finally, more genera! neighborhood relations are considered and the previous
algorithm is generalized to compute the corresponding best neighbor.

This paper is organized as follows. In Section 2 and 3 we define neighbor-
hood relations and discuss their properties. Section 4 présents the heuristic
and its results. In Section 5, some generalizations are presented. Finally, some
ideas for future work are given in Section 6.

2. A NEIGHBORHOOD RELATION BETWEEN PERMUTATIONS

INTRODUCTION : With a permutation s = 0(1), s (2), . . .9s(n)) on a set / of
n éléments is associated the tour Ts = (s(l),s(2), . . .,s(ri), s(l)). So to a
relation between permutations corresponds a relation between tours. We
introducé in this section a neighborhood relation having some nice properties
presented below.

DÉFINITION: A permutation <J is a neighbor of a permutation s if there
exists an integer p such that:

1. O^p^n,

2. a (1) = s (i'i), . . ., a (p) = s (ip) with ix < i2 < . . . < ip and

This relation is not symmetrie, but it is reflexive. The subset
K={s(i1), s(i2), . . -,s(ip) } of / permits to associate a with s. We will say
that K transforms s to G. K and p are not uniquely defïned but it can be
easily verified that either ip = n or j \ = n. Moreover, K and KU{s(n)} are the
only subsets transforming s to the same permutation a.

PROPOSITION 1: The number ofneighbors of a permutation s is 2""1.

Proof: This number is equal to the number of subsets of I— {s {ri) }.
Q.E.D.

PROPOSITION 2: The diameter of the neighbor graph is smaller than [log2n],
where [x] means the upper integer part of the real number x.

Proof: By induction on n, we will prove that, for any couple of permutations
s and a, there exists a séquence of k = [log2 n] subsets of / transforming s
to o.

Recherche opérationnelle/Opérations Research
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Let us suppose it is true for any integer lgmgn—1 and set: n' =

(the restriction of a to the set ƒ), to — a/L.
Let us dénote co* the mirror permutation of os, By the inductive assumption,

there exists a séquence of k—l subsets JUJ2, • . - J ^ - I °f J (respectively
Lt,L2J. * .,i^fc-i of L) transforming s/J to x (respectively s/L to ©*). Let us
dénote It = / t U £*> ̂  = ^ U £25 * • •>4-i = ^ - i U 4 - i a n d 4 — J* Since the
intersection of / and L is empty, the séquence Iu . . ., Ik^ x transforms s to a
permutation 0' such that af/J-x and a'/!*"©*. Consequently, the séquence
7l5 /2J . . *, 4 transforms 5 to a,

Q.E.D.

GEOMETRICAL INTERPRÉTATION: In order to simplify the présentation of the
algorithme we suppose, without loss of generality, that /=={ 1,2, . , . « } and
s=(1,2, . . ,, n). An immédiate geometrical interprétation of the neighborhood
relation is that, when the nodes 1,2, . . ,,n are symbolically placed, in this
order on an horizontal Une, any vertical Une meets the tour T„ either at O or

Figure 1. — Symbolical représentation.

2 points (fig. 1). In particular, the vertical line going through i ( l< i<n )
meets the tour at another point also* We will say that T^ is a 2-links tour of
Ts, Consequently, for any z, Ta is obtained by Connecting two hamiltonian
paths starting from i and going respectively through {! , . . . , /} and
{ 1,ï-f 1 , . . . ,n } {fig> 1). This simple remark was used to build the procedure
BEL, presented below, that computes the best neighbor of the permutation
s. This method is known as the pyramidal method [7]. In this procedure,
S^{i<j) is the value of the best 2-links hamiltonian path going from i to j
through {1,2, . . . j} .

PROCEDURE BEL :
{ * W e suppose tha t the initial pe rmuta t ion is (1 ,2 , , . . , » ) * }

Begin
Sl% : = 0 ; S12 '"~v12 'y
Forjf: = 3 to n— 1 do
Begin

For / :=1 t07*-2do Syi^Sy^x + Vj-ij
{ * V is the valuation matrix of the edges * } ;
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End

Compute the best permutation by a backward procedure
End

This procedure is valid in the symmetrie case. It consists in looking for an
optimal path in a graph among the 2W™ 3 ones that correspond to permutations
starting from 1 and ending to n.

Optimal neighbor (value 8)

Figure 2. — Example (physical représentation}.

An example is given in figure 2. Five nodes 1, 2* 3, 4S 5 are on an axis
with respective abscis$ae4, I, ü5 3, 2. Let us remark that we have hère a
physical représentation of the problem which is different from a symbolical
one (see flg, 1),

The optimal path for this example was computed by the procedure BEL.
Figure 3 présents the associated graphe each node of which represents a
hamiltonian path, as it i$ explained for nodes (2, 3), (2, 4) and (3, 4).

SPACE ALLOCATION AND CÖMPLEXÏTY OF THE PROCEDURE BEL; If distances are
stored in a matrix F, the space complexity is O(n2). Otherwise, distances
have to be computed and the space complexity is O (n) since we need only
two arrays for the procedure BEL: Pred (n) for predecessors and Pot (n) for
potentials. Pred is constructed during the forward step and used during the
backward step. We can restrict the dimension of Pred to n becaüse only n
nodes in the graph have more than one predecessor.

Recherche opérationnelle/Opérations Research
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Figure 3. - Procedure BEL applied to the example (symbolical représentation).

3. THE NEIGHBORHOOD RELATION BETWEEN TOURS

INTRODUCTION: A drawback of the previous neighborhood relation is that
edges [1,2] and [l,n] belong to all of the tours. To avoid this, we defîne
below a neighborhood relation between tours by considering the n permuta-
tions associated with a tour.

DÉFINITION: A tour T is a neighbor of a tour T'if there exist two permuta-
tions s and a such that:

1 T= T T=T •

2. a is a neighbor of s.

The procedure BESTNEIGHBOR computes a such that Tc is the best
neigbor of Ts.

vol. 24, n° 3, 1990
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CT = FUNCTION BESTNEIGHBOR(s)
Begin

opt : = value (s) ;
a: = s;
For count = 1 to n do
Begin

neworder : = BEL (s) ;
If value (neworder) < opt then
Begin

<T : = neworder ;
opt : = value (neworder)

End
s : = circular permutation (s)
{ * the circular permutation is a unitary shift * }

End
End

The following proposition is easily proved.

PROPOSITION 3: If a tour T is a local minimum for the procedure
BESTNEIGHBOR, it is a local minimum for 2-OPT [8].

We recall that 2-OPT consists in exchanging two edges of a tour for other
two ones (seefïg. 4).

o
Figure 4. - 2-OPT exchanges.

The &-OPT procedure is based on k sequential exchanges [8].

4. THE HEURISTIC AND ITS RESULTS

Our heuristic consists in iteratively applying the algorithm computing the
best neighbor: it is a steepest descent. We dénote BELPERM this heuristic.

PROCEDURE BELPERM
Begin

initialize s ; seuil : = + oo ;
while value (s) < seuil do
Begin

seuil : = min (seuil, value (s)) ;
s : = BESTNEIGHBOR (s) ;

End
End

Recherche opérationnelle/Opérations Research
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Though simulated annealing [4] gives good results, it seems that the best
heuristic for the symmetrie TSP is the one of Lin and Kerninghan based on
fc-OPT procedure [8]. So we compared our heuristic to the latter one.

Given an initial tour To, the value of the final tour obtained with BELP-
ERM is slightly better than the one obtained by Lin and Kerninghan heuristic.
However, the former computational times are much greater than the latter
ones. So we suggest to use BELPERM not alone but coupled with the Lin
and Kerninghan procedure to unlock local minima.

The table 1 reports computational results. The examples corne from Pad-
berg and Hong [9] with 60 cities randomly distributed. The first column
reports the best cost obtained by a sophisticated version of Lin and Ker-
ninghan heuristic (in particular several initial tours are used). The correspond-
ing tour is generally optimal [9]. The second column reports the cost obtained
with the basic procedure described in [8]. The third column reports the cost
obtained with the BELPERM procedure.

TABLE I

Best fc-OPT

6,330
6,559
6,344
6,324
6,101
5,960
6,439
6,191
6,484
6,235

Basic fc-OPT

6,463
6,559
6,470
6,575
6,328
6,058
6,530
6,361
6,613
6,390

BELPERM

6,330
6,665
6,402
6,412
6,207
5,976
6,577
6,257
6,689
6,578

It appears that BELPERM is a very good heuristic but it needs more
refinements to be as efficiënt as the better methods. A cutting rule permits
to improve BELPERM. It consists in eliminating Bellman graph nodes (see
fig. 3) with a lower bound greater than the value of the best known tour.
The lower bound of a node is obtained by adding the number of unvisited
cities multiplied by the value of the smallest unused edge to its potential.
This improvement permits to obtain empirically O(n3) for BELPERM
(against O(n22) for Â>OPT [8]).

5. GENERALIZATION

Up to now, we have considered 2-links tours and proposed a method to
compute the best 2-links tour in O(n3). This method can be generalized to
compute 2/7-links tours in O(np+1). Of course, for 2p^n, these results permit
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to obtain an exact method for the TSP, but which cannot be applied without
pruning many nodes of the corresponding dynamic programming state-graph.

More promising is the case />=2 because the complexity then remains
manageable; O(n4) for the dynamic programming method.

The nodes of the Ar-th step of the corresponding state graph are of three
types;

— type 1 ; (ktix), (i2,i3) with i2< ?3 < fe and it <k;

— type 2: (i\X (*2* '3) with i2<i3^k and ix^k and ke{iui2,i$};

— type 3: 0\5i2) w*th ix<i2Sk*

For instance, in type ls (kjx) and (i2>h) correspond to two paths going
through {1,2,. . , ,£} exactly once»

When p = 2, we have the following impressive proposition:

PROPOSITION 4; The diameter of the corresponding A-links graph is less ihan
p>g2«]/2].

Proof; This foilows from the fact that two nodes of the 2-lmks graph
joined by a path of length 2 are neighbors in the 4-links graph.

Q.E.D.

Preliminary numerical experiments show that this method is very time
consuming but always better than basic fe-OPT*

6, CONCLUSION AND FUTURE WOHK

öur method has very nice theoretical properties. In particular the diameter
of the neighbor graph is [log2 fl]. From a practical point of view it works
very well. Ho wever the computational time is important* So this method can
be used to unlock local minima of other heuristics.

At the moment the best version of Lin and Kerninghan gives better results,
but many improvements are possible. For instance cutting the Bellman graph
by using lower bounds, setting a subset of edges, using generalizations, etc.
Moreover this method is easily generalized to the asymmetrie case for which
heuristics are not so good. Consequently this approach is very promising for
the asymmetrie case.
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