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DISCRIMINATION BETWEEN NONSTATIONARY
AND NEARLY NONSTATIONARY PROCESSES,

AND ITS EFFECT ON FORECASTING (*)

by Oliver D. ANDERSON (*) and Jan G. De GOOIJER (2)

Abstract. - We present theoretical and empirical évidence to show that the structure, for the
observed sériai dependence between the values of a series réalisation, is quite sensitive to the
distinction between a near-nonstationary model and a just nonstationary approximation to
it. Reliable discrimination between the two may well be possible then, in practice, and this implies
that improved modelling, as judgedby increased forecasting effectiveness, can perhaps be achieved.

We study exact and approximate measures of sériai covariance and sériai corrélation, respectively,
for a wide class of non-explosive linear time processes, including the ARMA and A RIMA models,

Keywords : Forecasting misspecifled models; identifying time series; sériai corrélation distribu-
tional properties.

Résumé. — Nous présentons des arguments théoriques et empiriques qui montrent que la
structure, pour la dépendance sérielle observée entre les valeurs d'une suite de réalisations^ est très
sensible à la distinction entre un modèle approximativement non stationnaire et une approximation
exactement non stationnaire de ce dernier. Une discrimination fiable entre les deux est donc possible,
en pratique. Ceci entraîne qu'une modélisation améliorée {l'amélioration étant jugée par une
efficacité accrue de la prévision) pourrait être réalisée.

Nous étudions des mesures exactes ou approximatives de covariance et de corrélation sérielles
pour une large classe de processus temporels linéaires non explosifs, qui incluent les modèles ARMA
et ARIMA.

1. INTRODUCTION

Consider any time series of length n^2, {zl9 . . . , z n } with mean
z = (z1+ . . . +zn)/n (where n dénotes the latest observation available to the
analyst), and let the associated generating process {Zj be defined by the
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68 O. D. ANDERSON, J. G. DE GOOIJER

linear model

Here B is the backshift operator such that Bj ƒ(/) = f(i—j), for any ƒ( . )
and all integers i and j ; {A^} is a white noise séquence of uncorrelated but
identically distributed zero-mean random variables, all with variance a2 say;
and cpl5 . . ., <pp, a, \|/ls . . ., \|/d, ö1; . . ., Qq are real parameters satisfying the
conditions (2) to (5) that follow:

0 < a < 1; (2)

and, defining Ç as a complex variable,

*(Ç) = ( l -q> 1Ç-. . . -q>,Ç') (3)

has all its zéros outside the unit circle,

¥(0=(i-vKC-...-^O (4)

has all its zéros on the unit circle, and

© ( 0 = 0 - e ^ - . . . - ^ (5)

has none of its zéros within the unit circle.
Evidently (1) can be written more concisely as

(6)

and we will be frequently interested in cases where ot= 1, namely

(7)

which we refer to as the ARUMA (p, d, q) class of all homogeneous nonsta-
tionary models. Of course, when ¥{B)~(\ —B)d, the ARUMA process redu-
ces to the ARIMA model of Box and Jenkins. In models such as (6),
O (B) *F (oc B) is referred to as the autoregressive operator of the process.

For our time series, we define the fc-th sériai covariance by

^ n — k

4%=- I (^-i)(z i + f e-z) (*=0, 1, . . . , n - l ) . (8)
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NONSTATIONARY AND NEARLY NONSTATIONARY PROCESSES 69

Then the sériai corrélation, at lag A:, is given as r^a = c{£jc{$a when
k=l, . . . , n - l . For a stationary model, such as (6) with a < 1, where
E[Zi]( = \ia, say) exists and is not dependent on i, we have these sample
quantities corresponding to the theoretical autocovariances and autocorréla-
tions, {ykf0}

 a nd {Pk,a} respectively, which are defined by

and

Pk, a ~ Ik, ct/To, ar

In cases where d > 0 and a= 1, E[Zt] no longer exists and so we defïne

p fc i l= lim (yk,Jy0,a)
a S l

as yfe x is not then defined for any k. Note that pfc ls so defined, always exists
and is unique for any model (7).

When d=0, (7) reduces to the stationary ARMA (p, q) model whose
theoretical autocovariances and autocorrélations will always be denoted by
{yfc} and {pfc}, respectively. Similarly, the corresponding sample quantities are
then written as ck

n) and rj^.

Note that for *F (a E) = (1 - a B)

(
 2)yk)a-ay f e+ l j a (9)

from which it follows that

r f - 1 ) ^ - a ^ i i > « + (l + a 2 )^ ) «-af i - i l i . (10)

and when a needs to be estimated

Relations analogous to (9), (10) and (11) can easily be obtained for other
possible *F (ot B\ and we believe that the degree of approximation involved is
frequently small.

Finally, as an approximation to it [rj^j, we will use the quantity ££n) defined
by E[c{^IE[c{S]X for any stationary ARMA (p + d,q) model, and as
lim E[c{

k
n\ | (6)]/iT[c(

o
n)

a | (6)], for any homogeneous nonstationary model (7).
a s l

vol. 24, n° 1, 1990



7 0 O. D. ANDERSON, J. G. DE GOOIJER

2. BACKGROUND

The motivation for the study which we shall describe in this paper dérives
from remarks made by Box and Jenkins in their book (1976) and earlier
publications, and substantiated by the subséquent practice of both themselves
and many other practitioners working in the time domain. These are that,
when faced with a situation in which a series réalisation could perhaps be
modelled by a linear ARIMA process, having an autoregressive operator
factor (1 — cp B) with <p apparently a little less, but not much less than unity (3),
then a recommended prudent strategy is to replace the (1 - cp B) in the model
by the "differencing" operator (1 -B) — which, when applied to an observed
réalisation, has the effect of transforming the raw series to its séquence of
first différences.

Such statements are supported by arguments that the (1 — tpB) case causes
forecasts for future values of a time series to be tied to the mean value, z, of
the past observations, whereas the (l—B) choice allows future prédictions to
wander freely from wherever the series has got to at its last observed point.
See figure 1.

—• (b) wanders freely

(a) pulled back to mean of past

Figure 1. — Schematic représentation of forecasts from a series modelled
with factor (a) (1 - cp B) and (b) (1 - B).

As commented by Anderson (1975, p. 122), when cp is near to unity, there
is not a very marked différence, in practice, between the behaviour of short
term forecasts obtained from the two choices. For, as cp gets closer to 1,
although there is still a mathematical tendency for the future values of the
series to revert to the mean of their past, the pull towards this mean becomes

(3) The sort of largest value for 1 — 9 = 6, say, with which we are concerned dépends marginally
on the rest of the model but very heavily on the series length n. For shorter n, e can be larger,
the maximum E (n) being roughly inversely proportional to n.
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NONSTATIONARY AND NEARLY NONSTATIONARY PROCESSES 71

weaker and the behaviour approaches that of an unconstrained meander
around the latest local le vel.

Also, of course, there are good reasons for avoiding unnecessary differenc-
ing, which tends to increase the residual variance of the random shock
component that is achieved by the Box-Jenkins modelling (and so leads to
unnecessarily high predicted forecast error variances), and which frequently
gives rise to problems in estimating the (overdifferenced) model's parameters.
Such considérations have led many other analysts to oppose routine differenc-
ing.

However, we intend here to give fresh arguments which question the logic
of what we will call the "play-safe" strategy of automatically replacing a
possible (1 — <pi?) autoregressive factor, with cp near 1, by (l — B). We believe
our studies indicate that when we généralise these ideas, for the purpose of
distinguishing between "nearly nonstationary" ARMA models of the form
(6), with a less than but not much less than 1, and homogeneous nonstation-
ary ARUMA models of the form (7), then we obtain insight and methodologi-
cal extensions that can lead to much swifter, simpler and cheaper model
identification, for certain types of series, which will consequently often give
improved modelling and an expectation of better forecasts in practice.

3. DISCRÏMINATING BETWEEN A CHOICE OF (1 -<p* B) AND (l-B)

If one knows that the series was in f act generated by a model with (p = cp*,
and not cp = 1, it would appear intuitively obvious that the cp* choice should
be modelled, if optimum forecasts are required. However, evidently in prac-
tice, the right model is never known, and the "play-safe" strategy would then
seem to be based on two implicit assumptions:

(i) It is not possible to discriminate between cp* and 1.

(ii) Due to this, it is wiser to choose cp — 1, as resulting costs from forecast
errors are then expected to be smaller in the long run.

To focus attention, we first considered the pair of models

(1 - .95 B) Z( = (1 - .74 B) At (12)

(l~B)Zi=(l-.SB)Ai (13)

and simulated 100 réalisations, each of length n— 100, from them. The model
for each réalisation was chosen at random from the two choices and was
unknown until after the subséquent analysis had been completed.

vol. 24, n° 1, 1990



7 2 O. D. ANDERSON, J. G. DE GOOIJER

We looked at (12) and (13) because Wichern (1973) had previously fitted
an ARMA (1, 1) to a simulated réalisation of 100 terms from (13) and come
up with model (12), which he claimed was indistinguishable from the true
model, given the series length considered —a point with which we feel that
most practitioners would agree.

Our discrimination experiment (described in Anderson and De Gooijer
1979), however, although only based on some very approximate theory
(Anderson 1977 a), gave us a success rate of 4:1, which we offer as sample
évidence to réfute (i).

If we next consider table I which shows the possible choices that the analyst
can make, given the true model options, we can easily demonstrate that
(from a population viewpoint) the costs, in terms of mean square forecast
errors, associated with the two possible types of misspecification are indeed
not symmetrie and that the expected costs, incurred by mistaking cp — 1 for
(p = .95 (the case ringed), are greater than those from picking cp=l, when
<p = .95 in fact. This is discussed in the next section.

TABLE I

Possible choices open to analyst given the true model.

Model picked by analyst

.95
True model cp =

= .95 i

Assuming that our discrimination procedure has a long run efficiency of
80% correctly specified series (which we believe is not unreasonable, given
our greater current insight), it can thus be shown that the approach leads to
a rather unspectacular improvement in forecasting performance at all leads.
For instance, at lead-ten, a réduction of 1.2% in mean square forecast error
is expected.

However, this analysis is not quite relevant to the problem in practice, as
we are actually only interested in the fïrst column of table I. For, if we
choose <p — 1, we are then just doing the same as someone employing the
"play-safe" strategy — and we are evidently only concerned with the different
identifications achieved from our discrimination. That is, we are just interested
in those particular réalisations which are identified as stationary.

But the calculation does provide us with some a priori reason for believing
that discrimination may, in fact, lead to improved expectations for mean
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NONSTATIONARY AND NEARLY NONSTATIONARY PROCESSES 73

square forecast error. This is because, we now know that the ringed error is
expected to be a little less than 4 times as costly as the unringed one. Also,
in our discrimination paper, we noted that 84 of the simulations gave clear
eut identification — the remaining 16 cases being doubtful. For these 84, we
were in fact correct 85% of the time (and, with our greater insight, we feel
this could be nearer to 90% now), but we were not at all successful in the
doubtful cases (7 right and 9 wrong). It would therefore seem sensible to
propose the use of the "play-safe" choice whenever (p= 1 is indicated or the
situation does not appear clear eut, and to only go for <p —.95 when this
possibility is strongly suggested, This might then be expected to yield an
improved forecasting strategy — that will réfute assumption (ii).

However, it does seem difficult to ever fully justify this belief theoretically,
as what is really relevant, of course, is not the whole population of series
réalisations from the two models, but just those cases where the analyst
(using our proposed discrimination) will correctly piek out the model q> = .95
(instead of playing safe with q>= 1) and incorrectly mistake what is, in fact,
cp= i for cp = .95. So we would need to look at the forecasting characteristics
associated with sub-populations which will be hard to pin down mathemati-
cally, being those which cause the analyst to think he is dealing with the
<p = .95 case. (Incidentally, again a priori, these réalisations would appear to
be ones for which the forecasts obtained from using the two factors are not
too desperately different, as one might expect the latest local level not to be
very far from the realisation's mean, for otherwise the stationary model
would be unlikely to have been identified with conviction.)

We therefore propose, instead, to conduct a second discrimination exper-
iment where, this time, réalisations of 100 length-120 series will be simulated,
at random, from models (12) and (13). Again we will use the first 100 terms
of each (in isolation) for discriminating, but then restrict our attention to
just those cases where cp = .95 is strongly indicated. For these cases we will
identify, estimate and verify an ARIMA (p+l, d, q) fit, as appropriate, and
also the "play-safe" ARIMA (p9 d+ 1, q) fit (/?, d and q not necessarily being
the same for both models). The two fits will then be used to predict the next
20 terms of the series, already simulated, and hence the actual sample aver-
aged square forecast errors for the two cases can be computed and compared.

It is believed that this second experiment may result in significantly better
forecasts for our strategy. Although, even if this should not be so, we feel
that the généralisations of our approach from (l — B) to *¥(£) models (and
their close stationary approximations) will still be found extremely useful.

vol. 24, n° 1, 1990



74 O. D. ANDERSON, J. G. DE GOOIJER

To complete this section, we conjecture the situation where our forecasting
experiment, as described above, proves successful. Then, of course, it will be
necessary to take the discrimination approach out of the controlled but
unrealistic environment of simulation experiments and try it on real series.

The problem which then arises is that, since gains in forecasting perform-
ance are not expected to be dramatic, any improvements which we report
are likely to be summarily dismissed, by sceptics, as resulting from our
having just selected data that support our proposed procedure. Likewise, any
contrary study refuting our claims can be similarly disregarded, and the only
way that individual analysts may be persuaded of the approach's usefulness
would seem to come from their giving it an impartial trial and fmding that
it works.

However, we do believe from our expérience that anyone trying the idea will
definitely find it useful for discrimination and, hopefully, also for forecasting.

Finally, it should be pointed out that our approach contains an element
of subjectivity — although this does not appear crucial Typically, everyone
should score between, say, 75% and 85% correct in the basic discrimination.
Some completely objective (modifïed) method could easily be devised, but it
would involve extra computation and we think it would score rather worse
than 80% right — that is, less than we can get from immédiate visual inspec-
tion. There is, in conséquence, little motivation, at present, for us to remove
the small degree of subjectivity.

4. FORECASTING MISSPECIFÏED MODELS

An obvious question arises as to whether being able to distinguish between
models (12) and (13) with 80% certainty leads to improved forecasts — and
the answer to this is not immediately apparent. For it could happen that the
occasional wrong inference of a stationary model, when the actual process
was (13), caused losses which more than cancelled the gains from now being
able to frequently identify (12) correctly.

Throughout what follows in this section, we will assume that we are dealing
with some spécifie process of interest, {Zj, which is generated from a
particular white noise process, {A^, according to either model (12) or (13),
but that this model (whichever it is) has been misspecifïed as the incorrect
one.

It is well-known that, when the correct model is used to form forecasts,
the one-step ahead forecast errors have a variance of G2. However, the
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expected magnitudes of the errors arising from forecasting (12) by (13) are
not the same as those occurring when forecasting (13) by (12). In the fïrst
case, the lead-1 forecast error variance is simply shown to be 1.00123 a2;
whereas, in the second, it is infinité — and this might be considered as sufficient
reason for always preferring model (13).

However, in gênerai, an actually observed series will possess an overall
level significantly different from zero, so the raw data needs to be mean-
corrected, before fitting a model. So, in practice, one is interested in models
such as (12) and (13) where zi is replaced by 'zi = zi—'z> with J t h e mean of
the observed series from which forecasts are to be obtained.

We then get, for the case of misspecifying (12) by (13),

and

Fntl=zn-.San

where Fnj dénotes the forecast made at lead-j from time n. So the forecast
error, E„tl = Zn+1-Fntli is given by

with variance Vn + i = 1.001 23 a2 as before, when n is fairly large-in particu-
lar, for n= 100. (Indeed, the analysis is unchanged on replacing Zt by Z£.)

However, when (13) is mistaken for (12), the same argument leads to

Enil = .05Zn + AH+1-.06an9 (13a)

and Zn replacing Zn means that this evidently now has fïnite variance. In
fact, noting that (1 ~B)Zt = (1 ~B)Zh {At) is seen not to change, given
model (13), when Zt is replaced by Zv Thus, we have

. . . +Bn~2}(\ - .

vol. 24, n° 1, 1990



O. D. ANDERSON, J. G. DE GOOIJER76

So (13 a) yields

and this then gives K100,i = 1.00292 a2.
We conclude that mistaken identification of the nonstationary model as

stationary will indeed be the more costly misspecification; but, given equal
chances of having each of the two models, our discrimination method shouid
result in an average lead-1 forecast error variance of something like a2 x

as opposed to

(80+ 10(1.001 23+ 1.002 92)}/100= 1.00042

(1 +1.001 23)/2= 1.00062

which is obtained when playing safe.
Of course, this différence would often be negligible in practice — although

the cost of implementation will usually be even less. However, for longer
leads, the gain could become more substantial. For instance, lead-10 forecast
error variances are given in table II.

TABLE II

Ratios of lead-10 forecast error variances to driving shock variances (er2)

Model used for

Forecasting

12

13

Actual model of process

12

1.2726

1.3500

13

1.5452

1.36

So, perfect discrimination would give an average lead-10 forecast error
variance/a2 of (1.2726+1.36)/2= 1.3163, as opposed to
(1.3500+1.36)/2= 1.3550 from "playing safe". An improvement of nearly
3%; whilst, in the lead-1 case, these would be 1 and 1.000 6 respectively, a
decrease of only .06%.

Our discrimination shouid give an average lead-10 forecast error variance
ratio of something like

.4(1.2726+1.36) + .l (1.5452+1.3500)= 1.3426

Recherche opérationnelle/Opérations Research
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a gain of .92% as opposed to only .02% for lead-1.

Finally, dénote lead-y forecasts of model r using model s by Fntj(r9 s), with
error variance written as V„tj(r, s). Then

Fn,j(r, s:rïs)= Vm,s(r, r) + Var{FH,j(r, r ) - F , , , ( r , J ) } ,

since the différence between Z„ + i and F^jCr, r) is clearly uncorrelated with
FnJ(r,r)-Fn,j(r,s).So

lim {VH9j(r9 s: r / s)~ Vn,}{r, r)} = Yar{Z„- .8^}
J - * 00

which, for r=12 and 13 respectively, approaches .4923 a2 and 1.1614a2

from below. Thus the average absolute gain from our discrimination is
expected to be as shown in table III.

TABLE III

L e a d

D e c r e a s e . . . .

Average absolute decrease in forecast error variance
that might be expected from 80% correct discrimination.

1

.0002 a 2

10

.0124 a 2 .080 8 <r2

Note that, if the reader does not wish (as a routine procedure) to mean-
correct series whose means are not significant, it is quite straight-forward to
extend the analysis of this section to cover such cases. The results do not
change substântially.

5. THEORETICAL RESULTS

(Throughout this section formulae hold for 0 ̂  k < n- 1)

For any ARMA (p, q) model, given by (7) with ¥ ( £ ) = 1, we get that

E[nc^]=-2\n
2{n~k)lk-kny0-2k £ (n-j)yj

fc-1 n-k-1 n-k

j - Z j
7 = 1 7 = 1 7 = 1

vol. 24, n° 1, 1990



78 O. D. ANDERSON, J. G. DE GOOIJER

Again, for any ARIMA (p, 1, q) process, obtained by putting x¥(B) = (l - B)
in (7), we have that

1 T t " 1

fc-2 n-k-2

1-2 - ,

7 = 1 J

where the {yk} refer to the ARMA (/?, q) that results from taking first
différences. Finally, for any ARIMA (p, d, q) with d > 1, we fmd that

4 n ) = ( « - k)(n2 -2nk-k2 - 1)1 {n{n2 - 1)}. (16)

These formulae are all derived in Anderson (1979 a).

Extending the ideas to gênerai ARUMA models, Anderson (1979 b) showed
that:

(à) For (7) with ¥ (B) = (1 + B\

E™ = (-\f{\-kln) + R{Kn) (17)

where R(k, n) is known and is of order n~2 or less.

(b) For \F(i?) = (12 2? cos G> + B2) in (7), to the same degree of appro-
ximation,

i-j h l i fCIfl) COS fC GO. I l o J

(c) i$° formulae corresponding to all other ARUMA models can be easily
written down and in every case, provided Y (B) ̂  1 or (1 — B)d, the É^ pattern
"touches" the lines ±(l—k/n).

Similar results can be obtained for the variability of the sampled variances
and covariances from all these models - see Andeson and De Gooijer (1983,
1988). For instance, corresponding to (14), which can be written in the form

n - l

•k J Lt

Recherche opérationnelle/Opérations Research
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we have, for the ARMA model, that

n - l

where the gt j are all known.

From formulae given in Anderson (1979 è, p. 290), we can then obtain
approximate expressions for the means, \ariances and covariances of the
sériai corrélations for ARUM A models. Alternatively, given a particular
process, the moments and distributions for these sériais can be obtained
(to any required degree of accuracy), either "approximately" by empirical
simulation (for instance, see Anderson and De Gooijer 1987) or "exactly"
by computation, using the numerical intégration approach due to Imhof
(1961). Attempts made several years ago to obtain analytic expressions via
Saddlepoint methods (folio wing Daniels 1956) have ho wever (for the present)
been abandoned in favour of the other approaches, which, from a pragmatic
point of view at any rate, appear to be préférable.

Note that (14) updates an earlier formula given by Kendall (1954), who
used an alternative définition to (8) for the sériai covariance.

It has also been suggested that explicit expressions, like (14), are of limited
value since, for any particular model, it would be as easy to compute
E[nc{k]] from the quickly derived formula of a matrix product trace [see
Anderson 1979 a, équation (19)]. However, although we sympathise with this
view to some extent, we believe our explicit formulae throw considerably
more light, than do the intermediate trace results, on how the expected sériai
covariances behave for gênerai models, lengths n and lags k, and they also
avoid the need for rather elaborate programming before cheap numerical
results can be achieved.

6. DISCRIMINATION PROCEDURE

For models (12) and (13), the sériai corrélation functions obtained from
sample réalisations of length 100 are typically fairly smooth with a characteris-
tic shape that follows a séquence of decreasing terms which starts off positive,
changes to négative and reaches a minimum before increasing again towards
zero, although sampling error does frequently introducé a certain raggedness
into this fundamental pattern. This basic shape can be considered as that of
the E[r{

k
i00)] (or £[rj£°0)]), given the particular generating process and series

vol. 24, n° 1, 1990



80 O. D. ANDERSON, J. G. DE GOOIJER

length, since Anderson and De Gooijer (1987) have shown that these r(
k
100)

distributions are not very different from Gaussian ones.

It is suggested that 2$° is quite a reasonable approximation to the corre-
sponding expected sériai corrélation, for many homogeneous nonstationary or
nearly nonstationary stationary models, and so the theoretical characteristic
patterns for our two models, (12) and (13), are assumed to be approxitnately
known from (14) and (15). In particular, these shapes cross the axes at, say,
points k12,n and &13n, respectively, where fei2,ioo== 20.46 and fc13100 = 28.90.

The feature we concentrate on, when dealing with an appropriate series, is
where (from visual inspection) the séquence of sériai corrélations appears to
cross from positive to négative. If the "cross-over" is nearer to k12ytl than
k13 „, we choose model (12), otherwise we piek (13). Evidently this is a very
naive décision rule; but, in Anderson and De Gooijer (1979), it was shown
to give 80% correct discrimination. For instance, figure 2 shows a pair of
such sériai corrélation plots together with the resulting inferences — both of
which are correct.

7. AN INDICATION OF HOW THE APPROACH GENERALISES

The "autoregressive" factors (l-q>B) and (1-2?) form, in fact, the most
difficult basic pair of near-nonstationary and homogeneous nonstationary
operators to distinguish. The other first order duo, (l+cp2?) and (1+5), is
generally extremely easy to correctly discriminate between. Amongst the
quadratic factors, (1 — oc2?)2 and (1— 2?)2 form an easy pair to distinguish as
indeed do other (1+ 2 ai? cos ©-ha2/?2) and (1 + 22?cosœ + i?2), in gênerai,
including (1 + oc£)2 and (1 +£)2 .

However, period-2 "seasonal" quadratic operators behave anomalously.
(1 + 2?2) behaves rather like a period-2 version of (1+2?), but
(1 — B2) = (1— 2?)(l+2?) tends to reflect the behaviour of the more "dominant"
(1 + B), without seasonality. Often the (1 — 2?2) sériais will quite closely resem-
ble those from just a (1 + 2?); but also, frequently (if one does not warm up
the simulation adequately), the (1—2?) component succeeds in reducing the
(positive) even-lagged sériais substantially, and the magnitudes of the (néga-
tive) odd lagged ones rather more, to give a sériai corrélation pattern inter-
mediate between that characteristic of 1 + 2? and seasonal period-2 Wichern-
like behaviour analogous to that of 1-2?. (Evidently the two components
reinforce, for even lags, but are in opposition at odd ones.)
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Figure 2. — Sériai corrélation plots for two length-100 simulations, each from an unseen choice of
either model (a) (1 - B) Z, = (1 - .8 B) At or model (b) (1 - .95 B) Zk = (1 - .74 B) At.

In figures 3 to 9, we give some results for series réalisations of length 100
from various models. These show that, for the nonstationary cases, the ££°
patterns are closely followed and that the nearly nonstationary models should
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Figure 3. — Sériai corrélation plots for two length-100 simulations from models (top)
(1 + .95 B) Z{ = (1 + .74 B) A( and (bottom) (1 + B) Zt = (1 + .8 B) Av
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dooi

(100)

Figure 4. — Sériai corrélation plots for two length-100 simulations from models (top)
(1 - .95 B)2 Z, = (1 - .74 E)2 Ai and (bottom) ( 1 - Bf Z, = (1 - .8 Bf Ai9 with E[100)

lines drawn in.
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Figure 5. — Sériai corrélation plots for two length-100 simulations from models (top)
( l 1 9 4 5 o 9 0 2 5 5 2 ) Z ( i 1 4 8 5 4 5 ° 4 7 6 2 ) ^ and (bottom)
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Figure 6. — Sériai corrélation plots for two length-100 simulations from models (top)
(1 + .902 5 B2) Z( = (1 + .547 6 B2) At and (bottom) (1 + B2) Zt = (1 + .64 B2) At.
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Figure 7. — Sériai corrélation plots for two length-100 simulations from models (top)
9 ° 2 2 ) ( 1 4 8 5 4 5 o 5 4 7 6 5 2 ) 4 i and (bottom)
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Figure 8. — Sériai corrélation plots for two Iength-100 simulations from models (top)
(1 + .95 B)2 Zi = (l + J4B)2 Ai aoA Qmttom) (l+B)2 Zt = (l + à B)2 At.
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Figure 9. — Sériai corrélation plots for two Iength-100 simulations from models (top)
(1 - .902 5 B2) Zt = (1 - .547 6 B2) A{ and (bottom) (1 - B2) Z, - (1 - .64 B2) At.
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not be confused with them. With the stationary processes, the ££° pattern is
not necessariiy so close to that of the E[r{^], but the very much increased
sampling variability makes this less important anyway. Basically, the différ-
ence in behaviour is: for a nonstationary model, a sample sériai corrélation
plot in very close agreement with Éj? (hardly any bias or scatter); whilst, for
a near-nonstationary one, the sampling fluctuations are very substantial and,
also, about values considerably displaced from those of the nonstationary
case.

It is important to réalise that, when simulating nonstationary models,
considérable warm up periods may be necessary. For this reason, we started
up from cold and simulated 1,000 terms for a variety of models. We then
split these runs into ten consécutive sub-series, each of length 100, and
produced the corresponding sériai corrélation plots.

This enabled us to get some idea, empirically, of how long a warm up
period is necessary. 400 terms appeared enough for all our runs (and the
plots of figures 3 to 9 correspond to the fifth subseries from each run). We
also used the same shocks for each model, so as to ensure that marked
différences in behaviour were indeed due to the different models and not to
peculiarities of the sampled driving shocks.

Of course, this type of design has severe drawbacks as far as arriving at
conclusions (on how easy discrimination will be in practice) is concerned.
For we have restricted ourselves to just ten sets of independent shocks, and
so our results could evidently appear good by luck. Further (and perhaps
worse), if a long warm up period is needed for a particular nonstationary
model, then consécutive sub-runs (once warming up has been achieved) may
be highly dependent.

Thus, if we judge warm up as haviïig occurred when the sériai corrélation
structure appears to have got close to the 2$° pattern, then perhaps staying
close to this pattern is fairly likely in the short term (for the next few sub-
runs), but the possibility of the structure slowly wandering away again is not
precluded. Ho wever, we do believe that we shall eventually have all the
apparatus necessary for answering such questions — and we are confident that
our ideas will then be vindicated.

8. IMPROVED IDENTIFICATION

Of course, the situation of discriminating between just a pair of appropriate
models is not very relevant, in practice, But we believe the ideas can be very
usefully employed at the identification stage of Box-Jenkins analysis.
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It is well-known that, when a process contains a x¥(B) = (l~ B), little can
be learnt (by conventional methods) from studying the sériai corrélations,
except for the f act that some degree of series differencing is needed. We
believe that (l — cpB) factors are also frequently mistaken for (l — B) ones;
and that, by considering the cross-over and drawing on our expérience, we
can often spot when this has been done — although our work does not yet
provide a formai test procedure. When a (1-cpi?) is indicated, we believe
that the "cross-over" in the sériai corrélations can be used to obtain a fairly
efficient rough estimate of 9, and we would then propose employing (1 — 9 B)
as a simplifying operator — rather than (1— i?)-for purposes of investigating
the remaining structure. To save time and computation, we suggest that the
sériai corrélations for the simplified series be obtained approximately from
those of the original series, through relation (11).

The same approach can be used to simplify models for which gênerai
operators *F (a B) or *F (E) have been identified, these identifications following
from observing a fairly smooth sériai corrélation function (taking into account
possible alternating sign) not too far away from the lines ±(l — kjn) or a
very smooth function virtually touching these lines, respectively. The degree
of smoothness to be expected evidently dépends on n, and decreases with
shorter series.

We conclude our contribution with a référence to Anderson (1990) which
gives a large number of examples of this augmented identification approach.

ACKNOWLEDGEMENT

The basic material of this paper was first presented at the series of International Time Series
Meetings (ITSM). The authors are most grateful for helpful comments from Neville Davies,
Jim Durbin, and Morris Walker.

REFERENCES

O. D. ANDERSON, Time Series Analysis and Forecasting: The Box-Jenkins Approach,
Butterworths: London and Boston, 1975.

O. D. ANDERSON, Time series analysis and forecasting: a further look at the Box-
Jenkins approach, Cahiers du CERO, Vol. 19, 1977 a, pp. 223-256.

O. D. ANDERSON, Formulae for the expected values of the sampled variance and
covariances from series generated by gênerai autoregressive integrated moving
average processes of order (p, d, q), Sanhhya B, Vol. 41, 1979 a, pp. 177-195.

O, D. ANDERSON, The autocovariance structures associated with gênerai unit circle
nonstationary factors in the autoregressive operators of otherwise stationary
ARMA time series models, Cahiers du CERO, Vol. 21, 1979 b, pp. 221-237.

Recherche opérationnelle/Opérations Research



NONSTATIONARY AND NEARLY NONSTATIONARY PROCESSES 91

O. D. ANDERSON, Some sample autocovariance function results for a once integrated
q-th order moving average process, Statistica, Vol. 39, 1979 c, pp. 287-299.

O, D. ANDERSON, Identification of linear time processes: an augmented Box-Jenkins
approach, Working Paper, 1990,

O. D. ANDERSON and J. G. DE GOOIJER, On discriminating between IMA (1,1) and
ARMA(1, 1) processes; some extensions to a paper by Wichern, The Statisücian,
Vol. 28, 1979, pp. 119-133.

O. D. ANDERSON and J. G. DE GOOIJER, Formulae for the covariance structure of the
sampled autocovariances from series generated by gênerai autoregressive moving
average processes of order (py d7 q), d=0 or 1. Sankya B, Vol. 45, 1983, pp. 249-
256.

O. D. ANDERSON and J. G. DE GOOIJER, Discriminating between IMA (1,1) and

ARMA (1, 1) models: a simulation study; Working Paper, 1987.
O. D. ANDERSON and J. G. DE GOOIJER, Sampled autocovariance and autocorrélation

results for linear time processes, Communications in Statistics (Simulation and
Computation), Vol. 17, 1988, pp. 489-513.

G. E. P. Box and G. M. JENKINS, Time Series Analysis, Forecasting and Control,
Holden Day, San Francisco (Revised Edition), 1976.

H. E. DANIELS, The approximate distribution of sériai corrélation coefficients, Biome-
trika, Vol. 43, 1956, pp. 169-185.

J. P. IMHOF, Computing the distribution of quadratic forms in normal variables,
Biometrika, Vol. 48, 1961, pp. 419-426.

M. G. KENDALL, Note on bias in the estimation of autocorrélation, Biometrika,
vol. 41, 1954, pp. 403-404.

D. W. WICHERN, The behaviour of the sample autocorrélation function for an inte-
grated moving average process, Biometnka, Vol. 60, 1973, pp. 235-239.

vol. 24, n° 1, 1990


