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MAXIMAL ASSOCIATION
FOR THE SUM OF SQUARES

OF A CONTINGENCY TABLE (*)

by H. MESSATFA (*)

Abstract. — In this paper, we show how to approximate, in the quickest and the most realistic
possible way, the maximum of the sum of squares of a contingency table ( £ n*v)f with fixed

margins. The trivail case, where the margins are not fixed, corresponds to the matrix structure
known as "Complete Association". For practical problems, no methods exist which guarantee an
exact optimal solution. Bounds dues to mathematics inequality are proposed. We dont talk
about the combinatory complexity of the problem; let us quote with regards to Hubert and
Arabie [3]"... Constructing an exact bound, conditional on the fixed row and column totals of the
given contingency table, is a very difficult problem of combinatorial optimization..." Lerman [5]
proposed a recursive algorithm, which détermine step by step an optimal solution, based on the
notion of "points extremaux". (Infortunately the Computing time increases exponentially. We
shall propose two fîner bounds that those proposed in the literature. The distribution nuv corre-
sponding to these bounds is not often reached. Then, we shall propose a very fast heuristic
procedure, based on classical assignment techniques, to fînd such optimal distribution.

Keywords : Measure of association; contingency table; maximal association.

Résumé. — Dans cet article nous montrons comment approximer de la façon la plus rapide et
la plus réaliste possible le Maximum de la somme des carrés d'une contingence ( £ n*v), à marges

fixées. Le cas trivial où les marges ne sont pas fixées correspond à la structure du tableau dite :
« Association Complète ». Pour les problèmes pratiques, il n'existe pas de méthodes qui garantissent
une solution optimale exacte. Des bornes dues à des inégalités mathématiques ont été employées.
On ne va pas parler de la complexité combinatoire du problème, citons en effet à cet égard Hubert
et Arabie [3] « . . , Constructing an exact bound, conditionnai on the fixed row and column totals
of the given contingency table, is a very difficult problem of combinatorial optimization... » Lerman
a proposé un algorithme récursif qui détermine la solution pas à pas en s'appuyant sur ta notion de
« points extremaux ». Malheureusement le temps de calcul croît exponentiellement. On proposera
deux bornes plus fines que celles présentées dans la littérature (elles serrent de plus près le critère
des associations positives). La distribution nuv correspondante n'est pas souvent atteinte. On
proposera une méthode heuristique très rapide, basée sur des problèmes d'affectation classiques,
pour déterminer une telle distribution.

Mots clés : Mesure d'association; table de contingence; association maximale.
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30 H. MESSATFA

1.1 INTRODUCTION

The normalization problem of criteria of association between two partitions
(qualitative variables) has been considered in various studies related to classif-
ication (Morey and Agresti [1], Hubert and Arabie [3], Lerman [5],
Marcotorchino [6], H. Messatfa [8]). The principle of normalization is imple-
mented using the gênerai formula:

where:
• / is a measure of association between two qualitative variables;
• x represents a structure for which IN = 0;
• /max represents the maximum value of the measure /.
From a previous study [8] it has been shown that if a measure / can be

expressed as a linear function of A = £ n^v then it can be stated that

Anax TJ ^4 max XA

where Amax is the maximum of A for a particular structure of the contingency
table.

The above shows that the discriminant element between the normalized
criteria lies in the sélection of Amax, which in most cases cannot be computed
and will therefore be approximated by a value dependent of the table.

Amax has been approximated by many different ways. An exhaustive survey
of approximation of Amax is found in [8], Lerman [5] show that the symmetrie
boundary

2*3 = min £ i £ , En2.)
U V

proposed by Hubert and Arabie [3] is in fact less than all the bounds based
on application of Cauchy-Schartz inequality.

In this paper, we shall analytically define two boundaries of A which may
be proved to be better than those mentioned above. The fïrst bound (noted Ê)
due the inequality of Hoffman-Wielandt and the second (noted E) is due to
the linear writing of criteria A.
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SUM OF SQUARES OF CONTINGENCY TABLE 31

In a second part of this study, we will détermine an optimal distribution nuv

of a contingency table with fixed margins (2) such as: the positive association
YJ «iL is maximal. For most practical problems, no methods exist which

U, V

guarantee an optimum solution. In [5] an algorithmic bound is introduced, but
the computational time required increases exponentially. It is computationally
feasible for very small problem. We dérive an algorithmic bound noted B\
It will be compared to the boundary determined by Lerman [5].

1.2. NOTATIONS

The study starts from the following configuration:
• C represents a variable with p modalities (partition with p classes);
• Y being a variable with q modalities (partition with q classes);
• nuv dénote the number of objects that are common to class u of C and

to class v of Y.

The information on class overlap between the two partitions can be written
in the form of a contingency table as in table I.

1

u

p

1 V q

nu

N

Table ^

nuv: number of objects having modality u of C and modality v of Y;

nu: number of objects having modality u of C;

(2) The trivial case where margins are not fïxed corresponds to the matrix structure known
as "Complete Association".
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32 H. MESSATFA

n v: number of objects having modality v of F

Partitions C and Y can be represented by using paired comparison matrices
of size n x n with value in (0, 1} and their gênerai term ctj and y^ are defîned
by:

Cij= 1, if i and j are in the same class of C

ctj = 0? otherwise

ytj= 1, if ƒ and y are in the same class of Y

yij = Q, otherwise.

Classical contingency formulas are linked to paired comparisons formulas
by the means of the one to one correspondence relations (Marcotorchino
[6]).

u, v », j v i, j u i, j Q \

j i j i

1.3. DETERMINING THE RELATIONAL BOUND

1.3.1. Analytic bound

Let | |C | | = \ / E cu dénote the Frobenius norm of a matrix C—ic^. An

analytic bound can be provided by the Hoffman-Wielandt inequality. If A
and B are real nxn symmetrie matrices with eigenvalues at ^ . . . *tanJ

bx^ . . . ^ bn respectively then

n

WA-BW'zZia.-bf (2)

The eigenvalues of each partition C are given by the number of éléments
in each class because the rows (columns) of C corresponding to éléments in
the same class are identical. Each partition has exactly p (the number of
class) distinct rows (columns). For example» if C is a partition with 3 classes
with 4, 3, 2 éléments in each class respectively, then the associated matrix
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SUM OF SQUARES OF CONTINGENCY TABLE 33

can be written as followed:

1 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0

C= 0 0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1

We are now in a position to apply the Hoffman-Wielandt inequality. If C
and Y are two partition matrices, the inequality states that

| | C - y | | 2 ^ £ (nu-nj2+ £ n\ with p< q
U = l U = p + 1

According to the previous notations we have

« = 1 U—l l, j « , V

We now obtain

tt=l

Then

= Y 2 ^ y
Uj u, v w = 1

Thus, the bound Ê can be derived as:

j]«Ï.9 Z ^ ' Z
U 17 « = 1

vol. 24, n° 1, 1990



34 H. MESSATFA

In this boundary, we have introducé the third parameter, which, in some
occasion gives a better solution than

1.3.2. Determining the relational bound

We now show that it is more convenient to use the relational expression
(3) of A = YJ nL> t o fin<i a bound lower than the previous one. As a resuit, it

U , V

will be referred as relational bound. The following lemmas will be used to
defîne this bound.

1.3.2.1. Lemma 1

Using the previous notations we have:

E nuv = E Cü-Vy = E m i n (ciP yij>'

1.3.2.2. Proof

As cue{0, 1} and ^Oe{05 1} then:

Cyj/y=l if

co.^. = 0 if

this complètes the proof of the lemma.

1.3.2.3. Lemma 2

For every contingency table we have

E ^0^
U , V l

w h e r e

c i . = E c y a n d A = E c y ' ' = ! > • • • > « ; 7 = 1 , . . - , «

(3) The relational expression of A is defined as follow: ^ = ̂ c y ^ y
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1.3.2.4. Proof

From lemma 1 and the property of the Min operator, we have

Z ««„ = Z min (cip yi}) g £ min (£ cu, Z J'y)
M, y t, 7 i j j

This proves our claim.

1.3.2.5. Corollary

Let /={1 , • • -, n) and let the permutation a be a bijection on L From
the previous lemmas,

B=Y, min(c£., j;o(0 .)
iel

is a b o u n d a r y of A .

In o ther h a n d a cor respond to a value [nuv ; l < w < / ? , l ^ t > ^ # ] of a
contingency table. T h e n B is obta ined by formula (4).

1.3.2.6. Proposition

Let a be a given permutation then we may obtain

5 = X milite., j ; a ( 0 . ) = - —? E w«« I"«."".» I (4)

1.3.2.7. Proof

To prove this proposition we need to prove only the following equality:
Z min(c;., yaii))= ^ nuvmin(nu, nj

iel u, v

Knowing that V/e/ , | l\ = N, i belongs to one and only one subset Iuv of
objects having the u modality of C and the v modality of Y.\luv\ = nuv and
U/„„ = /, therefore

X min(ci<5 ^o(0.)=X E minfe.Jo(i)J
i e / u, t; i e / U ü
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36 H. MESSATFA

and since, by définition, for every ieIuv we have: nu =cL and n v = yi, Then

E min(cit, ya(i) ) = nuvmin(nu, n v).

Since

min(fl, b)=——--\a~b\ (5)

we may obtain

E min(Cf, yoii))= E w«i;min(M«.5 w .J~Enuu ~ i i : — ~~ - E nuv \nu.~n.v
iel u, v uv *• •£ u, v

or

1.3.2.8. Proposition

For every contingency table we have

- min ^ I
^ o ie I

1.3.2.9. Proof

We have shown that

u, i; i e /

From equality (5) we obtain

min (cL, ^ (0 . )=
i e / i e /

i e / ^ Z i e /

This equality is obtained for all a and

X "«»< E min(Ci.-J'a*(£).)
u, v i e /

Recherche opérationnelle/Opérations Research
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where G* is the permutation which realize the maximum of the quantity

X min(c£., ya{i))
iel

we get

2 u /

Because the margins are fïxed, the quantities £ q and E^ï. a r e constant,
i i

we finally obtain

Ko ^ Z niin(cit, j o ( 0 . )= - min £ I cL -yaii>. \
u, v iel ^ ** & i e /

which proves the proposition.
We are now ready to defme the relational bound.

1.3.2.10. Définition

Let a be a permutation then the relational bound B is defmed as follow:

K _ i e / iel _ 1 . v^ i i ,s^

2 2 c iel

1.3.2.11. Remarks

In contingential notations, B can be written as:

^ - Œ w « . + E «2») - - min Z ««» I n«. - n.v I (7)
^ U V ^ U, V

From equalities (6) and (7) the computed value of S dépends on minimizing
the quantities

m i n E I ct,-ya(j) |; min ̂  «BO|nu - n V \
1 6 /

vol. 24, n° 1, 1990



38 H. MESSATFA

1.3.3. Computing the relation al boundary

To compute boundary B of A, when margins are fixed, we can proceed
solving one of the 2 following equivalent problem:

Problem 1:

Z nuv ««."«.o

= > n.,

n = > . « „

(8)

0

This is a classical transportation problem where the variables are nuv and
the costs are given by Cuv = | nu ~ n v |.

Problem 2:

1 = 1 , . . . , « (9)

The first constraint, implies that each component of C is assigned to one
and only one component of Y. The second implying that each component of
Y has one and only one component of vector C assigned to it. The unknown
indicator xu is either 1 or 0 depending on whether the component of the two
vector s are assigned. The solving process associated to this problem is not
time consuming, because we deal with a classical linear assignment problem.
The appropriate set of dichotomous indicator functions can be obtained by
an application of the methods for solving integer linear programming.

It is interesting to examine that B can be obtain analytically. The following
proposition generalizes this observation.

1.3.3.1. Proposition

Consider that the margins of the contingency table are fixed. Let

(nlm9 n2, . . .,np) and (ntl, n2, . . . , n q)
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those margins respectively. The éléments cL and yL are respectively eom-
ponents of C and F defmed as:

C=(n1 , . . ., n2., . . ., np) with nx > n2 > . . . > np

r = ( n . i , • • ., n2i . . ., n €) with n t l > «<2 > . . . > n>?

In C, nL is repeated «f times, for z= l , . . . , / ? . In F5 n?J. is repeated « j
times, f o r j = l , . . ., q.

m For the variable C5 the objects / are ranked with respect to an uniform
decreasing order of ct, for i=l9 . . ., n.

m For the variable F, a 1 is the complete order on the group of the objects
i with respect to an uniform decreasing order of y j9 for i~ 15 . . . , n.

Thus

where

iel a iel

1.3.3.2.

We shall show that if the components yL are ranked according to an order
o ^ o 1 , then

iel iel

According to orders a1, C and Fcan be written as folio wed:

C=(e l 5 c2, ...,cp, . . ., c j and F^Cy^ y2, ...,ym9 . . ., jM)

Suppose that the components j ^ and j m are exehanged, referred to a permuta-
tion a of /.

According to er we get

vol. 24, n° 1, 1990



4 0 H. MESSATFA

If cx ̂  yx and ym is assigned to ck then

i e / i e /

= ki-> ; i l+kfe ' -3 ;
m | -ki

As cx ̂  ƒ 1( Cj ̂  j>m5 Ai/ can be written

AH= | Ci - yt | +1 ck - ym | -1 cx ~ j m | -1 ck -y1 \

&H=ym-y1 +1ck-ym \- \ ck-yx \

Let us consider A// in both cases:

First case ck ^ ym

AH=ck-y1-\ck-y1\ < 0.

As JT— | JST| ^ 0, then AH < 0

Second case ck ^ ym

As y m "^i =̂  0, then AH < 0.
We have in both cases

Z h.-jV(i).l < Z lci.^B<o.l
i e J i e J

We conclude that every <J ̂  a1 does not improve H,

The same proof is also applied to the case c1 ̂  yx.
According to the proposition, we can see that B is easily computed through

decreasing order of cx and of yt. Vectors C and Y are ranked according to
the decreasing order of their components ct and yt. We compute term by
term their différence in absolute value.

1.3.4. Example of the compilation of H

Let us consider the following fixed margins:

(10, 7); (5, 5, 4, 3)

So, C is decomposed in 10 values of ct = 10 and 7 values of c2 = 7

Recherche opérationnelle/Opérations Research
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Y is decomposed in 5 values of ypl = 5, 5 values of y2
 = 55 4 values of

y.3™ 4 and 3 values of y.4 — 3.

C = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 7, 7, 7, 7, 7, 7, 7).

7= (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3).

1.3.5. The relational bound compared to the others boundaries

1.3.5.1. Proposition

The boundary B is lower than the smallest of the proposed boundaries.
We have

2 < 2»3 = min(£/£,£>£)

1.3.5.2. Proof

From formula (5) and by using the "Min" operator, we get

B=£ min ( £ cip £ j>y) ^ min (£ cip X j>y) = min (£ ni, ^ n2
v)

i 3 j ij ij u v

1.3.5.3. Example

Let the fixed margins defined as follows:

(12, 11,5,2,2, 1, 1); (10, 9, 9, 6)

The bounds are computed and we get

£3 = 298; i?=276; 5=252

1.4. DETERMINING THE ALGORITHMIC BOUND B'

In many cases the contingency table associated to the relational bound is
not reachable. That mean, it does not exist a distribution nuv such that:

E n2

u, v

vol. 24, n° 1, 1990



42 H. MESSATFA

Now, we are interested to find a bound of A and its associated contingency
table. We will defme an heuristic strategy. The determined relational bound-
ary S has required the allocation of yi to ct in such a way that
Y, min (q , j o ( 0 . ) is minimal.
ieï

Let's consider Ak a group of yk ailocated to ck; let the function Fk be
defïned by:

Fk = (ck + yk-2\Ak\)\Ak\

where | Ak | is the cardinal of the set Ak; Fk is the cost of allocating yk to ck..

We begin with an example that illustrate the basic concept of the procedure.
Consider the following 3x3 contingency table:

0

8

1

9

6

0

0

6

6

0

0

6

12

8

1

21

Table T2

We have B= 148 and ,4= 137.

In terms of assignment the contingency table can be also described by the
following représentation

12

6

12

6

12

6

12

6

12

6

12

6

12

6

12

6

12

6

12

6

12

6

12

6

8

9

8

9

8

9

8

9

8

9

8

9

8

9

8

9

1

9

For this représentation we have four At corresponding to the following
costs:

- 2 x 6 ) 6 ;

The total costs is computed as:
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For the same distribution of margins, let us consider the following contin-
gency table:

9

0

0

9

3

3

0

6

0

5

1

6

12

8

1

21

Table r3

We have B= 148 and A = 125.

T3 can be also described by the following représentation

12

9

12

9

12

9

12

9

12

9

12

9

12

9

12

9

12

9

12

6

12

6

12

6

8

6

8

6

8

6

8

6

8

6

8

6

8

6

8

6

1

6

For this représentation we have five Aii=l. . .5 corresponding to the
following costs:

The total costs is computed as:

It follows from these results that if F is minimum then A=Y, nlv
U, V

maximal.

1.4.1.1. Proposition

For every contingency table, we have the following formulas

vol. 24, n 1, 1990



4 4 H. MESSATFA

1.4.1.2. Proof

For any | Ak| there exists a couple (u, v) such as nuv= \ Ak|. Therefore

k k k v u

and finally

u

1.4.1.3. Définition

According to the previous proposition we define the algorithmic bound
by:

1.4.1.4. Proposition

Boundary B' is more précise than B, that is 4̂ ̂  B'

1.4.2. Proof

We have:

and thus

ci + yi-2\Ai\

As | A{ | ^ 0, we have:

Finaly we obtain

This proves our claim.

Recherche opérationnelle/Opérations Research
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Note that if for every k, we have:

then

B' = B

In order to détermine B\ it is required to minimize the function F (quadratic
problem). For this purpose an heuristic procedure is used minimizing every
allocation (Fk). We summarize hère an algorithm that has been proved
theoretically to yield the maximal distribution of a contingency table. It is
based upon assignment and transportation techniques.

1.4.3. The heuristic

The heuristic opérâtes in the following mannen

STEP 0

We start with an initial empty contingency table T* with given margins.

STEP 1

We built a table 7\ such as nuv = min (nu , n v) (nu and n v are the fixed
margins). w- 1, . . ., p; v= 1, . . ., q.

STEP 2

Détermine an element of Tl which minimizes the cost F, Assign this
element in the solution T*. We built a table T2 such as nuv = mm(nu, n v)
(«u> and n v are the fixed margins). M= 1, . . .9p- 1; v= 1, . - . . , ? . For every
step k, the size of table Tk is reduced.

Step 1 and step 2 are repeated until Tk will be empty.

1.4.3.1. Remark

The affectation principle used in the heuristic is derived from the notion
of "déchargement" defined by Lerman [5]. In Lerman context an element is
affected (décharge) if he corresponds to an extremal point, while in our
procedure an element is affected if the cost is minimum.

To illustrate the heuristic let us consider an example.

vol 24, n° 1, 1990



46 H. MESSATFA

L4.3.2. Example

We consider the following marginal distributions of a contingency table

(403, 120, 117, 111, 104, 87, 35, 14)

(377, 252, 220, 139, 3)

The example has been treated with our heuristic and the Lerman algorithm
[5].

For this example, we compute:
S (the relational boundary), B3 (the minimum between squared sums of

margins), AH (the value of A computed by the heuristic) and AL (the algo-
rithmic bound computed by Lerman).

The solution given by the two methods are.

377

0

0

0

0

0

0

0

377

1

120

117

0

0

0

0

14

252

22

0

0

111

0

87

0

0

220

0

0

0

0

104

0

35

0

139

3

0

0

0

0

0

0

0

3

403

120

117

111

104

87

35

14

377

0

0

0

0

0

0

0

377

1

120

117

0

0

0

0

14

252

22

0

0

111

0

87

0

0

220

0

0

0

0

104

0

35

0

139

3

0

0

0

0

0

0

0

3

403

120

117

111

104

87

35

14

Table given by our heuristic. Table given by Lerman (33706 tables com-
puted).

£ 3 = 222 625, ^ H = ,4L= 208 864,

In this example the two methods give the same resuit but the one given by
the algorithm of Lerman requires Computing 33706 tables.

1.5. CONCLUSION

The proposed algorithm has the virtues of being relatively simple, math-
ematically tractable and very fast. The algorithm we have described requires,
some calculations for its implementation. First, we détermine the value of
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the relational bound; in gênerai this portion of the algorithm requires a small
number of opérations. The computation of the costs is also easier to solve.
We cannot say that the solution obtained by the heuristic will be optimal as
we don't know it. However, we expect the one found by the procedure, is
very close to a global optimum. This is due to the comparison of the optimum
value with the relational bound. There exists other improvement possibilities
of the final solution, they will be developed in the forthcoming articles. Thus,
the author believes that the procedure may used for many other applications.
Additional research could be both interesting and enlightening.
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