RAIRO. RECHERCHE OPERATIONNELLE

ALAIN BILLIONNET

JEAN-FRANCOIS BRETEAU

A comparison of three algorithms for reducing
the profile of a sparse matrix

RAIRO. Recherche opérationnelle, tome 23, n°3 (1989),
p. 289-302

<http://www.numdam.org/item?id=RO_1989_ 23 3 289 0>

© AFCET, 1989, tous droits réservés.

L’acces aux archives de la revue « RAIRO. Recherche opérationnelle »
implique I’accord avec les conditions générales d’utilisation (http:/www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=RO_1989__23_3_289_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Recherche opérationnelle/Operations Research
(vol. 23, n° 3, 1989, p. 289 a 302)

A COMPARISON OF THREE ALGORITHMS FOR REDUCING
THE PROFILE OF A SPARSE MATRIX (*)

by Alain BiLLioNNET (1) and Jean-Frangois BreTEAU (1)

Abstract. — First a variant of a well-known algorithm, the Levy algorithm, is described. Then
a new algorithm for reducing the profile of a sparse matrix is proposed. These two algorithms and
the commonly-used reverse Cuthill-McKee algorithm are tested and compared for their ability to
reduce matrix profile.

Keywords : Sparse matrix; profile reduction; heuristic; graph; interval graph.

Résumé. — Nous décrivons tout d’abord une variante d’un algorithme classique, Ialgorithme de
Levy, puis nous proposons un nouvel algorithme pour réduire le profil d’une matrice creuse. Ces
deux algorithmes ainsi qu'un troisiéme, largement utilisé, le « reverse Cuthil-McKee algorithm »,
sont testés et comparés.

Mots clés : Matrice creuse; réduction de profil; heuristique; graphe; graphe d’intervalles.

1. INTRODUCTION

Many problems of scientific and engineering interest reduce to the problem
of solving a system of linear equations

Ax=b

where A4 is an n by n, symmetric, positive definite coefficient matrix, b is a
vector of length n and x is the solution vector of length n. Applying Chole-
sky’s method to A4 yields the triangular factorization

A=LLT

where L is lower triangular with positive diagonal elements. Let us note that
such a factorization always exists when A4 is symmetric and positive definite.

(*) Received December 1987, revised March 1989.
(%) Institut d’Informatique d’Entreprise, Conservatoire national des Arts et Métiers, 18, allée
Jean-Rostand, 91002 Evry.

Recherche opérationnelle/Operations Research, 0399-0559/89/03 289 14/$ 3.40
© AFCET-Gauthier-Villars

290 A. BILLIONNET, J.-F. BRETEAU

The system Ax=>b becomes LLT x=b and by substituting y=L7 x, we can
obtain x by solving the triangular systems

Ly=b and LTx=y.

An important fact about applying Cholesky’s method to a sparse matrix
A is that the matrix usually suffers fill-in. That is L has nonzeros in positions
which are zero in the lower triangular part of 4. However a judicious
reordering of the rows and columns of the coefficient matrix can lead to
enormous reductions in fill-in, and hence savings in computer execution time
and storage. We consider here one of the simplest methods for solving sparse
systems, the envelope or profile method. The objective of this method is to
reorder the rows and columns of A4 so that the nonzeros in the obtained
matrix are clustered near the main diagonal since this property is retained in
the corresponding Cholesky factor L. We analyse and compare here three
algorithms for the reduction of matrix profile: the “Reverse Cuthill McKee
algorithm” [CUT-MCK, 69}, [GEO, 71], a variant of the King [KIN, 70] and
Levy [LEV, 71] algorithms and a new algorithm that we propose here.

2. BASIC CONCEPTS FROM GRAPH THEORY

If V is a finite nonempty set and E< {{a, b}: a#banda, beV} is a
collection of unordered pairs of elements of V, then G=(V, E) is a finite
undirected graph. Given a n by n symmetric matrix 4=(a;;) we can define a
graph G=(V, E) where V has n vertices vy, ..., v, and {v, v;}€E if a;; # 0
and i # j. The elements of E are called edges. If {v;, v;} €E then v; and v; are
said to be adjacent and we denote by I"(v)) the set of vertices adjacent to v;.
The degree of a vertex is the number of vertices adjacent to it.

For A<V let us define I'(4)=U I'(v), Adj(4)=T'(4)—A and

. ved
Adj(4)=T (A) U A.

G is connected if there exists a path between all pairs of vertices and 4 = V
induces a complete subgraph of G=(V, E) if all pairs of distinct elements of
A belong to E.

G=(V, E) with V={v,, ..., v,} is an interval graph if there exists a set
{I, ..., I} of intervals of the real line such that for all pairs of distinct
vertices v;, v; of V, {v,, v;}€E if and only if I, N\ I; # &.

Recherche opérationnelle/Operations Research

PROFILE REDUCTION ALGORITHMS 291

3. THE ENVELOPE METHOD

A well known scheme for exploiting sparsity of A is the so-called envelope
or profile method. Let 4 be an n by n symmetric positive definite matrix,
with entries a;;. For the i-th row of 4 let

fi(4)=min {j | a;; # 0}.
The envelope of 4, denoted by Env (A) is defined by
Env(A)={{i, j} | f(D Sj <1}

and the quantity | Env(4)| is called the profile or envelope size of 4 and is
given by

|Env(4)|= Y, li—fi(4)]
i=1

Example

]
.
.
»

o rmwe -

Figure 1. — A matrix whose envelope size is 15
(nonzeros are depicted by *)

The problem that we consider here is to find, for a symmetric and positive
definite matrix A a reordering of the rows and columns of A which minimizes
the envelope size of the obtained matrix. Finding a “good” reordering of A
can be regarded as finding a “good” numbering of the vertices of the
associated graph G=(V, E).

The problem of minimizing the envelope size of a matrix A is NP-complete.
It is proved in [BIL, 86] that this problem is equivalent to that of finding
the minimum number of edges which must be added to the associated graph
to obtain an interval graph. Finding the optimal envelope size of a matrix A

vol. 23, n° 3, 1989

292 A. BILLIONNET, J.-F. BRETEAU

is undoubtedly a very difficult problem. The three reordering algorithms that
we analyse here allow us to only obtain “good” envelope sizes.

4. THREE REORDERING ALGORITHMS

4.1. The reverse Cuthill-McKee algorithm

Perhaps the most widely used profile reduction ordering algorithm is a
variant of the Cuthill-McKee ordering [CUT-MCK, 69]: the reverse Cuthill-
McKee ordering (RCM) [GEO, 71]. We have considered here the following
version of the (RCM) algorithm for the graph associated to A which is
supposed to be connected. This version is that which is presented in [GEO-
LIU, 81].

step 1: determine a starting vertex r and assign v, « r;

step 2: for i=1, 2, ..., nfind all the unnumbered vertices adjacent to the
vertex v; and number them in increasing order of degree;

step 3: the reverse Cuthill-McKee ordering is given by y,, y,, ..., y, where
Yi=v,_;+, fori=12 ..., n
We now consider the problem of finding a starting vertex (or a pseudo-

peripheral vertex) for the (RCM) algorithm. Given a vertex veV, the level
structure rooted at v is the partitioning % (v) of V satisfying

L@={Lo(), L, (), ..., Ly [®)}
where
Lo ={v}, L, (v)=Adj (L, (v)),
and
Liw)=Adj(L;_, @)—Li_, (), i=23, ..., ().

I(v) is called the length of £ (v) and the width w(v) of & (v) is defined by
w)=max {|{L,;(v)|| 0 Li L I(v)}.

We can now describe the starting vertex finding algorithm which is essen-
tially a modification of an algorithm due to Gibbs et al. [GIB-POO-STO, 76].

step 1: choose an arbitrary vertex r in V;

step 2: construct the level structure rooted at r: &£ (r);

step 3. choose a vertex v in L, (r) of minimum degree;

Recherche opérationnelle/Operations Research

PROFILE REDUCTION ALGORITHMS 293

step 4: (a) construct the level structure rooted at v; (b) if I(v) > I(r), set
r < v and go to step 3;

step 5: the vertex v is a starting vertex.

4.2. The Levy algorithm [LEV, 71]

R. Levy has proposed an algorithm for reducing the profile of a symmetric
matrix. His algorithm for a connected graph can be described as follows

step 1: determine a pseudo-peripheral vertex r and assign v, « 7;

step 2: for i=1,2, ..., n—1 find an unnumbered vertex y such that
|Adj({v, . .., v, ¥})| is minimum; number the vertex y as v;, ;

step 3: the Levy ordering is given by vy, v, ..., v,

This algorithm reduces the profile by a local minimization of the
frontwidth. (For a matrix A, the i-th frontwidth of A is ,(A)=|{k | k > i
and a,; # 0 for some | £ i} |.) The only difference between this algorithm and
that of King [KIN, 70] is the set in which the vertex y is searched. In the
King algorithm y belongs to Adj({v,, ..., v;}).

4.3. A variant of the Levy algorithm

We propose here a variant of the Levy algorithm (VL). In this method for
choosing y we distinguish (step 2 of the Levy algorithm) between the vertices
which belong to Adj({v,, ..., v;}) and the other unnumbered vertices. This
algorithm can be described as follows

step 1: determine a pseudo-peripheral vertex r and assign v, « r.
step 2: for i=1, 2, ..., n—1 find an unnumbered vertex y such that the

cardinality of the set T; (y)=XEj({vl, ..., Uy ¥}) is minimum; number the
vertex y as v;44.
step 3: the (VL) ordering is given by v,, v, ..., v,

Justification of the (VL) algorithm

Let us consider a n by n matrix A and its associated graph. Minimizing
the envelope size of a matrix is equivalent to maximizing the number of zeros
outside the envelope. This number of zeros is

5 =D [Adi (o)~ Adi({wr, - v

vol. 23, n° 3, 1989

294 A. BILLIONNET, J.-F. BRETEAU

So minimizing the envelope size is equivalent to finding an ordering

n

vy, ..., v, which maximizes the expression), (i—1)|S;_, (v;)| where
i=1

/\. /\'

Si-1@)=Adj({v:)—Adj({vy, ..., v;-4})
fori=2,...,nand §, (vl)=K<Tj({v1}). Let us notice that for any ordering
Uty - U O |Sizy @)|=n. Let {vy, ..., v;} be the set of numbered vertices

i=1

at a step of the algorithm; we will choose next the vertex y which minimizes
the cardinality of S;(y). So we hope that for the high values of i the cardinality
of S;(y) will be large.

Let us consider the step 2 of the (VL) algorithm.
| T.0)|=|Adi({o, - - -, vy ¥D)|
T P N
=|Adi({vy, ..., oD [+|AG({PD—Adj({vy, - ., v})|
=[Adj({vy, - .., oD[+]S:0)].

Hence the step 2 of the (VL) algorithm is equivalent to finding y which
minimizes | S;(»)|.

4.4. A new algorithm for reducing the profile of a sparse matrix

For a matrix A, if a; # 0 for all {i, j}€Env(4) then we say that the
envelope of A is full. It has been proved in [TAR, 76] that the envelope of a
matrix A is full if and only if the associated graph G=(V, E) is an interval
graph.

Let us consider a matrix A with a full envelope and the associated graph
G=(V, E).

On the one hand each vertex v; (i=1, ..., n—1) of V clearly satisfies

IT@)N {visys - - -» V)]
=max {{T @) N\ Vi, - - 0} || k=1, ..., i} (1)

On the other hand, for each je{1, ..., n}

C={w} UL @) N {1, - v,}]
is a complete subgraph of G [BIL, 86]. (2)

Recherche opérationnelle/Operations Research

PROFILE REDUCTION ALGORITHMS 295

Hence we propose the following algorithm (N) for reducing the envelope
size of a matrix whose associated graph is supposed to be connected:

step 1: determine a pseudo-peripheral vertex r and assign v, « 7;

step 2: for i=n—1, n—2, ..., 1 find an unnumbered vertex y such that
|ITG) N {1415 - - > 0} | is maximum. Number the vertex y as v;;

step 3: the ordering is given by v,, v,, ..., v,
because if G has a full envelope (is an interval graph) it has been proved

[SHI, 84] that all the numberings of the vertices of G given by this algorithm
satisfy the property (2).

5. INTERESTING CASES FOR THE (N) ALGORITHM

Example 1: Let us consider the graph of figure 2 in which there exists a
vertex of high degree

v
v, is a pseudo-peripheral vertex and the (RCM) algorithm leads to the

n
Figure 2
following order of the vertices

Vapats Vam « o o5 Upias Upits Ups - - o5 U3y Uy

The corresponding envelope size is (n—1) (n+2).

If we do not take a starting vertex in the set {vy, v, 1, U;,4+1} We also
obtain an envelope of size O (n?). For example if we choose v, as starting
vertex, we obtain the following order of the vertices

Van+15 U2+ v o5 Unt2s Ups o v o5 U35 Upyys Uy U

and an envelope size equal to n?/2+5n/2—2.
The (VL) algorithm with v, ,,, as starting vertex gives the following order

02n+1’ v2m L) vn+2’ Um R 03, Un+17 Uza vl

vol. 23, n° 3, 1989

296 A. BILLIONNET, J.-F. BRETEAU
and the envelope size also is n?/2+4 5n/2—2.
The (N) algorithm with v, ,, as starting vertex gives the following order

Uns Un—15 = -5 Va> U15 U35 Uz, Uy V15« + +5 Untss Unt 15 Unt 35 Unt2s Vapty

and the envelope size is 4n.

“’1 ‘\’6 ve ‘ 5n-4 e o
LT, /\ Ny N
< 2 -
iy Sn-1
Figure 3
Example 2. — Let us consider the graph of figure 3 in which the vertices

of low degree are dispersed. This graph is formed by n subgraphs of five
vertices.

The (VL) algorithm numbers first the vertices of degree 1:
vy, Vg, - - -» Us,_4 then the vertices of the complete subgraphs of 4 vertices:
Uy, Us, Ug, Us, U, Ug, Ugy Uygs « + -5 Us 35 Vs ue2s Vs n_ys Vs, Lhe corresponding
envelope size is n(S5n+9)/2.

The (N) algorithm with v, as starting vertex gives the order
USmw Usn—15 Usn-2> Usn—4> Uspn—35 Usy—5, - - -5 Usy Vg, U3, Uy, Uy

The envelope size is in this case: 8n—1.

Let us remark that in this example the (RCM) algorithm gives the same
order as the (N) algorithm.

6. IMPLEMENTATION OF THE THREE ALGORITHMS

The graphs (which are associated with sparse matrices) are represented
classically by two one dimensional arrays:

TABADJ: the adjacency lists of each vertex are stored sequentially in this
array of length 2m (m is the number of edges of the graph);

TABSOM: it is an index array of length n containing pointers to the
beginning of each adjacency list in TABADJ.

Recherche opérationnelle/Operations Research

PROFILE REDUCTION ALGORITHMS 297

For the three algorithms (RCM), (VL) and (N) the graphs are supposed
to be connected. The starting vertex r is the same in the three cases i.e. a
pseudo-peripheral vertex which is found by the method of section 4.1. At the
end of the algorithm the new numbering of the vertices is stored in the one-
dimensional array TABPERM where TABPERM (i)=k means that the
original vertex number k is the i-th vertex in the new ordering.

6.1. The (RCM) algorithm

The two main stages of this algorithm are
— the search of all the unnumbered neighbours of a vertex v;
— the numbering of these vertices in increasing order of degree.

Therefore we' use a one-dimensional boolean array TABNUM which indi-
cates for each vertex if it is numbered or not and another one-dimensional
array which gives for each vertex its degree.

Selection of the minimum is used for sorting the unnumbered vertices by
their degrees. Then it is not difficult to prove (see for example [GEO-LIU, 81],
Chap. 4) that the time complexity of the (RCM) algorithm is bounded
by O(d.|E|) for a graph G=(V, E) where d is the maximum degree i.e.

d=max |T (v)|.
veV

6.2. The (VL) algorithm

The two main stages of this algorithm are

— find an unnumbered vertex v such that | T;(v)| is minimum (we will
call | T;(v)|—| Adj ({vy, . . ., v;})] the corrected degree of v).

— update the corrected degrees of the vertices.

For the first stage we need an array which indicates for each vertex if it is
numbered or not. To find the vertex v whose corrected degree is minimum
we use a set of linked lists (in order to avoid a search among all the vertices).
The sets of vertices of same corrected degrees are stored in the same list.

For the second stage we need an array which indicates for each vertex if it
belongs to the front of the numbering or not. (If {v, ..., v;} is the set of
numbered vertices then the front is Adj({v,, ..., v;}).) The only vertices
which are concerned with the updating of the corrected degree are the vertices
of the set T;(v)—Adj({v,, ..., v;}) and the unnumbered vertices adjacent to
(at least) one vertex of this set.

vol. 23, n° 3, 1989

298 A. BILLIONNET, J.-F. BRETEAU

For this second stage we need also an array which stores the corrected
degree of each vertex. When the corrected degrees are updated the correspond-
ing vertices are put into the appropriate list. In order to save computational
time they are not suppressed from the other lists. So the same vertex can be
stored simultaneously in several lists and for this reason the worst-case time
complexity is only bounded by O(| V|2). Let us note that it is possible by
using an ordered queue of doubly linked lists to obtain an O (| E|) implementa-
tion (such lists are necessary for deletion purposes). But the computational
experiments have shown that, at least for our test-problems, it was not
interesting to suppress the vertices from the linked lists.

6.3. The (N) algorithm

The two main stages of this algorithm are

— find a vertex v whose number of numbered adjacent vertices dy (v) is
maximum. (We shall call d (v) the “restricted degree” of v.)

— update dy (y) for the unnumbered vertices y adjacent to v.

We use an array which indicates for each vertex if it is numbered or not and
another one which gives, for each vertex, its restricted degree.

In order to obtain an efficient algorithm we also use here a set of linked
lists. In each list are stored the vertices which have the same restricted degree.
The choice of a vertex v automatically suppresses it in the linked list of
maximum restricted degree. Then the unnumbered vertices adjacent to x are
put in the lists which are associated to their new restricted degrees; these
new values are equal to the old ones plus one. As in the previous algorithm
it is not interesting to suppress these vertices from the other lists. The worst-
case time complexity is bounded by O (|V|?) but the “experimental time
complexity” is O (| E [). Let us also note that, as for the (VL) algorithm, it is
possible to have an implementation with a worst-case time complexity equal
to O (| E).

7. COMPUTATIONAL RESULTS

The comparison of the three algorithms (RCM), (VL) and (N) takes into
account the two following criteria

— the envelope size associated with the new numbering;
— the execution time necessary to obtain the new ordering,

Recherche opérationnelle/Operations Research

PROFILE REDUCTION ALGORITHMS 299

Let us recall that to compare the three algorithms we always use the same
starting vertex. Let us note also that these algorithms have been coded in
the PASCAL language (optimized version) and that all computer runs were
made on a VAX 11-750 (D.E.C.). We present in this section the most signifi-
cant results that we have obtained.

w‘rl TZ 1|73 R A e
e+l VYre2=—Vp+3 ooereee ‘l'Zr-l_"rh‘
Vor+1—or+2—"2r+3 00t VIp1— 3y
e
| |
V(I‘—;L)EY v............v————er

Figure 4

First of all we have considered the graphs of figure 4 with r rows, r
columns and n (=r?) vertices.

The numbering “row by row” of the figure 4 leads to an envelope size of
r3+0 (r?). The (RCM) and (VL) algorithms lead to a “diagonal” numbering
and to an envelope size of 2/3 7 +0 (r?) (cf. fig. 5). The (N) algorithm leads
to an “alternated” numbering (cf. fig. 6); the corresponding envelope size is
4/3r34+0 ().

TlS_"’lg_‘T22—"'24—T25 ‘|'5 ‘l’ls ‘|’19 ' ‘|’23 ‘l’zs

“’10 ‘|’14 ‘|’15 ‘l’zl ‘|’23 "’4 Yio ‘l’ls «‘l"zz ‘|’24

‘l’é ‘|’9 "’13 ‘|’17 ‘l’zo ‘i 3 YIT “’17 ‘l’zo T2l

T} "’5 ‘I’s ilz ‘l’ls I’z ilo ‘|’14 Y15 716

Vl V2 V4 ‘V‘,7 Vll Vl V6 \77 V8 V9
Figure 5 (r=5) Figure 6 (r=>5)

vol. 23, n° 3, 1989

300 A. BILLIONNET, J.-F. BRETEAU

We have studied for the three algorithms and for these particular graphs
the ratios between the CPU time (measured in seconds and multiplied by
10,000) and the number of edges in the graph. The results of the tests appear
in table L

TABLE 1
n (RCM) (VL) (L)
625 0.58 7.83 4.00
1,225 0.50 8.57 4.03
2500 0.51 8.85 4.14
10,000 0.52 7.82 4.19
19,600 0.78 8.93 4.35

This table shows that the CPU time grows linearly with the number of
edges for the three algorithms. The other conclusion that can be drawn from
table I is that (RCM) is eight times faster than (N) and that (N) is twice as
fast as (VL).

Then we have considered randomly generated graphs. First we consider
some graphs of n vertices in which the degree of each vertex is greater than
2 and smaller than 6, the mean degree being 4. The table II allows us to
compare the envelope sizes that were obtained by the three algorithms.

TABLE 11
n (RCM) (VL) ™
100 2,249 1,783 1,917
500 52,371 42,879 45,719
1,000, 216,111 164,480 183,561
2000........... 850,463 674,341 741,833

The (VL) algorithm always leads to the best envelope size. The envelope sizes

produced by the (N) algorithm are slightly smaller than the envelope sizes

obtained using the (RCM) algorithm. The ratios between the CPU time

(multiplied by 10,000) and the number of edges are presented in table III.
The results of these tests are very similar to those of table I

We have also randomly generated some graphs with a few vertices of large
degree; the degree of the others are greater than 1 and smaller than 5. The
results appear in table IV.

If a few vertices have a large degree the (RCM) algorithm leads to a very
large envelope size comparatively with the envelope sizes that can be obtained

Recherche opérationnelle/Operations Research

PROFILE REDUCTION ALGORITHMS 301

TABLE 111
n (RCM) (VL) (V)
100 0.50 8.04 4.02
SO0 0.60 7.68 4.69
1,000 0.54 8.46 4.03
2000........... 0.60 8.07 4.04
TABLE IV
Number Envelope size
Nug}ber of vertices Mean produced by
. of large degree
vertices degrege gt (RCM) (VL) ()]
100 1 3.50 2,007 704 1,287
100 2 4.30 2,199 689 1,700
100 10 11.76 2,174 1,103 2,279
500 1 3.52 59,536 17,178 33,772
1,000........... 1 3.56 230,118 68,574 128,635

by other algorithms. The ratios between the CPU time (x 10,000) and the
number of edges are presented in table V [for the worst cases of (RCM)].

TABLE V
Number Ratios corresponding to
Nug}ber of vertices Mean
vertices of large degree | (RCM) VL) ™)
degree
100 1 3.50 1.14 8.00 4.00
500 1 3.52 4.89 7.50 4.09
1,000........... 1 3.56 9.72 7.98 4.10

For the (VL) and (N) algorithms the results are similar to those of
tables I and III. For the (RCM) algorithm, the ratio is greater than those
corresponding to (VL) and (N) when there are more than 1,000 vertices in
the graph. That can be explained by the fact there is a vertex of large degree:
this vertex is considered from the outset of the execution of (RCM) since it
is adjacent to almost all the other vertices.

vol. 23, n°® 3, 1989

302 A. BILLIONNET, J.-F. BRETEAU

Concluding remarks

On the three kinds of test problems the (VL) algorithm always leads to
the best envelope size. However this algorithm is generally twice slower than
(N) and sixteen times slower than (RCM) except in the case where there are
some vertices of large degree; in this case and for the conditions under which
the tests were made, the (RCM) algorithm does not seem interesting.

To conclude we can say in short that
— (RCM) is a fast algorithm;
— (VL) achieves very good reduction of the profile;

— (N) yields an interesting compromise between envelope size and CPU
time.

REFERENCES

[BER, 70] C. BerGe, Graphes et Hypergraphes, Dunod, Paris.

[BIL, 86] A. BiLLioNNET, On Interval Graphs and Matrice Profiles, R.A.I.R.O. Opera-
tions Research, Vol. 20, No. 3, aoit, pp. 245-256.

[CUT-MCK, 69] E. CutniLL and J. McKEeg, Reducing the Bandwidth of Sparse Symme-
tric Matrices, Proc. 24th Nat. Conf. Assoc. Comput. Mach., ACM Publ., pp. 157-
172.

[EVE,79] G. C. EverstiNe, A Comparison of Three Resequencing Algorithms for
Reduction of Matrix Profile and Wavefront, Int. J. for Num. Meth. in engineering,
Vol. 14, pp. 837-853.

[GEO, 71] A. GeorGe, Computer Implementation of the Finite Element Method, STAN-
CS-71-208, Computer Science Dept., Stanford Univ., Calif.

[GEO-LIU, 81] A. Georce and J. W.H. L, Computer Solutions of Large Sparse
Positive Definite Systems, Prentice Hall, Englewood Cliffs, New Jersey, 324 p.

[GIB-POO-STO, 76] N. E. Gisss, W. G. PooLE and P. K. STOCKMEYER, An Algorithm
for Reducing the Bandwidth and Profile of a Sparse Matrix, S.1.A.M. J. Numer.
Anal., Vol. 13, No. 2, April, pp. 236-250.

[GIB-POO-STO, 76] N. E. Gises, W. G. PooLe and P. K. StockMEYER, A Comparison
of Several Bandwidth and Profile Reduction Algorithms, A.C.M. Transactions on
Math. Software, Vol. 2, No. 4, December, pp. 322-330.

[GOL, 80] M. C. Gorumsic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 284 p.

[KIN, 70} I. P. King, An Automatic Reordering Scheme for Simultaneous Equations
Derived from Network Systems. Int. J. Numer. Meth. Engrg., Vol. 2, pp. 523-533.
[LEV, 71] R. Levy, Resequencing of the Structural Stiffness Matrix to Improve Comput-

ational Efficiency, J.P.L. Quart. Tech. Rev., Vol. 1, pp. 61-70.

[LEW, 82] J. G. Lews, Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King
Algorithms, A.C.M. Transactions on Mathematical Software, Vol. 8, No. 2, June,
pp- 180-189.

[SHI, 84] D. R. Suier, Some Aspects of Perfect Elimination Orderings in Chordal
Graphs, Discrete Applied Mathematics, Vol. 7, pp. 325-331.

[TAR, 76] R. E. TarsaN, Graph Theory and Gaussian Elimination in Sparse Matrix
Computations, J. R. Bunca and D. J. Rose Eds., Academic Press, New York,
pp. 3-22.

Recherche opérationnelle/Operations Research

