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LAGRANGEAN DECOMPOSITION
FOR INTEGER PROGRAMMING:

THEORY AND APPLICATIONS (*)

by Monique GUIGNARD (*) and Siwhan KIM (*) (2)

Abstract. — Given a mixed-integer programming problem whose constraint set is the intersection
of several specially structured constraint sets, it is possible to artificially induce décomposition in
the Lagrangean relaxation problems by introducing copies of the original variables for a subset of
constraints and dualizing the équivalence conditions between the original variables and the copies.
We study duality for Lagrangean décomposition and compare it with conventional Lagrangean
duality. The implications of Lagrangean décomposition can be quite profound for integer program-
ming problems containing special classes of constraints such as subtour élimination constraints or
matching inequalities. Several application problems exemplify the use of Lagrangean décomposition.

Keywords : décomposition; Lagrangean relaxation; Lagrangean décomposition; Lagrangean
duality; integer programming; variable splitting; layering; subtour élimination constraints,-
b-matching; implicit constraints; facets; integer polytopes.

Résumé. — Considérons un programme en nombres entiers dont l'ensemble des solutions réalisa-
bles est l'intersection de plusieurs ensembles possédant des structures particulières. Il est possible
d'introduire dans ce problème une structure décomposable en remplaçant les variables initiales par
des « copies » dans chacun des sous-ensembles de contraintes, sauf un, et en dualisant les conditions
d'identité entre originaux et copies. Nous étudions la dualité en décomposition lagrangienne
classique. Nous montrons l'importance de la décomposition lagrangienne pour des problèmes
contenant des sous-structures spéciales du type contraintes d'élimination de circuits ou inégalités
de couplage. Nous démontrons sur plusieurs exemples l'application de ce principe.

Mots clés : décomposition; relaxation lagrangienne; décomposition lagrangienne; dualité
lagrangienne; programmation en nombres entiers; découplage de variables; contraintes d'élimina-
tion de circuits; b-couplage; contraintes implicites; facettes; polytopes entiers.

1. INTRODUCTION

Given a mixed-integer programming problem whose constraint set is the
intersection of several specially structured constraint sets, it is possible to
define a Lagrangean relaxation whose problems décompose into several
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308 M. GUIGNARD, S. KIM

subproblems, each one over one of the special structures. The technique used
consists in creating one (or more) identical copies of the vectors of décision
variables, in using one of these copies in each set of constraints and in
dualizing the condition(s) that they should be identical.

The new Lagrangean scheme, called Lagrangean décomposition, is import-
ant as well as interesting in that the Lagrangean subproblems keep all the
original constraints; conventional Lagrangean relaxation inevitably loses ail
but at most one specially structured constraint set. Under a condition discus-
sed in section 2, Lagrangean décomposition may yield a stronger bound than
conventional Lagrangean relaxation, emphasizing the importance of keeping
all the problem constraints.

The idea of creating "copies" of some subset of the original variables has
been used earlier, in particular in the context of layering stratégies for
networks by [Glover and Mulvey (1975, 1980)]. It was then used for Lagran-
gean relaxation by [Shepardson and Marsten (1980)] for the two-duty period
scheduling problem, by [Ribeiro (1983)] for constrained shortest path prob-
lems and by [Jörnsten and Nàsberg (1986)] for the generalized assignment
problem. Yet it does not seem that the implications of this new way of
applying Lagrangean relaxation have been studied or fully exploited for lack
of understanding of the primal-dual relationship.

ïn the first part of this paper, the "decomposed" Lagrangean dual will be
shown to be at least as strong as the standard dualization of a portion of
the constraints. Duality theory specialized to Lagrangean décomposition
implies that the Lagrangean décomposition dual is equivalent to an LP
problem in the original variable space whose feasible set is defined on the
intersection of the convex hulls of the feasible solutions of the corresponding
blocks. It furnishes a necessary condition under which stronger bounds than
the conventional Lagrangean bounds can be obtained. In addition to provid-
ing bound improvement, Lagrangean décomposition is also important because
it permits the implicit use of facets of integer polytopes without requiring
their explicit construction. When one or more integer constraint sets can be
described by an exponential number of équations, yet yield easily solvable
subproblems, Lagrangean décomposition provides the same bound as the
Lagrangean relaxation in which all these constraints are dualized. Independent
sets in a graphie matroid (which can be described by subtour élimination
constraints) and b-matching polytopes are examples of such a situation.
Lagrangean décomposition permits the implicit use of all facets describing
such integer polytopes.
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LAGRANGEAN DECOMPOSITION 309

In the second part of the paper, examples are introduced to demonstrate
how Lagrangean décomposition can be used. They are the generalized assign-
ment problem, the resource constrained arborescence problem, the capacitated
plant location problem, and the symmetrie traveling salesman problem.

2. LAGRANGEAN DECOMPOSITION

We shall use the following notation. Given a constrained optimization
problem(*), (*) will dénote its continuous relaxation, FS(*) its feasible
set, OS(*) its optimal set, i. e. the set of all its optimal solutions, and
V(*) its optimal value. Co (S) will dénote the convex huil of a set S of Rn,
and Co {(a), (b), . . . } will dénote the convex huil of the feasible solutions
to (a) and (b) and so forth. A®B represents the Cartesian product of the
two sets A and B. Given a constraint set ( * ) , A( *) dénotes the polyhedron
defined by(*) . We shall occasionally use "décomposition" for Lagrangean
décomposition and "relaxation" for Lagrangean relaxation.

Lagrangean relaxation is a partial constraint dualization. Full dualization
is equivalent to the dual of the continuous relaxation most commonly used
in commercial mixed-integer programming codes. Through partial dualiza-
tion, one can exploit exactly one of possibly many special structures embedded
in the original problem. Partial dualization has two advantages over full
dualization: (1) a possible bound improvement in the absence of the Integrality
Property, (2) the non-dominated nature of the restricted dual space compared
with the full dual space. Simultaneous exploitation of several special structures
by Lagrangean décomposition may yield even further bound improvement.
This section studies bound improvement in Lagrangean décomposition.

Lagrangean décomposition artificially constructs a block angular form in
order to force décomposition. It replaces the original variables with different
copies in different subsets of the constraints, each subset having a special
structure, and dualizes the équivalence conditions between the original and
the copied variables. The resulting subproblems may be tractable, while
conventional Lagrangean relaxation could keep no more than one of these
substructures to maintain tractability.

We shall briefly review some of the theory of Lagrangean relaxation bef ore
introducing Lagrangean décomposition.

Consider the following integer programming problem:

(P) Max{ fx\Ax£b, Cx^d, xeX}.

vol. 21, n° 4, novembre 1987



310 M. GUIGNARD, S. KIM

where f b, d, A and C are vectors and matrices of comformable dimensions.
Xis a special structure including integer requirements on a subset of variables.

One of the possible Lagrangean relaxations is to dualize Ax^b:

(LRV) Max{ fx + v(b-Ax)\Cx^d, xeX}

= Max{fx + v(b-Ax)\xeCo{x\Cx£d9 xeX}}.

The corresponding Lagrangean dual is defined as:

(R) MinV (LRV).

Consider the primai relaxation of (P):

(S) Max{fx\Ax^b, xeCo{x\Cx^d, xeX}}.

The following lemma [Geoffrion (1974)] holds since (R) is a partial dual
of the LP problem defined on the convex huil of the feasible solutions of
Cx^d and xeXintersected by the polyhedron {x | Ax^b}.

LEMMA 1 [Geoffrion (1974)]: The optimal value of the Lagrangean dual (R)
is equal to the optimal value of the LP problem (S).

In addition to Geoffrion's characterization of the Lagrangean dual given
by lemma 1, the following result describes more specifically the relationship
between Lagrangean solutions of (LRvo), with v°eOS(R\ and optimal
solutions of (S). We shall show that it is possible to construct an optimal
solution of (S) if one knows ail optimal solutions of

THEOREM 2: There exists a convex combination of optimal solutions of
(LRvo) which is an optimal solution of(S).

Proof — Let xk(v°)e0S (LRvo) for every keK, where K is the index set
of ail multiple optimal solutions of (LRvo). Let us prove that there exists a
set of multipliers |ifc, such that x (\i) = ]T \xk x

k (v°) is an optimal solution of
keK

(S), where £ \ik= 1 and |ifc^0 for ail keK.
keK

Let us first show that there exists a set of convex multipliers \ik such that

keK

is feasible for S. Obviously x (\i) e Co { x \ C x ̂  d, x e X}.

keK

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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where gk = - A xk (v°) 4- b is a subgradient of V (LRV) at v = v°. The subdifferen-
tial of V(LRV) at v = v° is equal to the convex huil of gk

9 keK. Since i;0 is a
minimizer, there exists a subgradient at v = v° which belongs to the positive
polar cone of the feasible set at v = v°; therefore in this case, a subgradient
belonging to the nonnegative orthant exists. Thus there exists a set of convex
multipliers \ik such that £ \ikg

k^0 at v = v°, and x(\i) is a feasible solution
keK

of(S).

Now we show that fx (|i) is equal to V(S):

fx(\x)=fx(\x)-v° £ i\kg
k (by complementary slackness)

keK

keK

keK

= V(R)

= V(S) (by lemma 1). •

If we knew every optimal solution corresponding to the optimal Lagrangean
multiplier, we could find an optimal solution of (S), even though the domain
of (S) is defined only implicitly.

Let us now introducé Lagrangean décomposition. We treat the case of two
explicit constraint sets for expository simplicity (some examples in section 3
deal with multiple special structures). It is another Lagrangean relaxation of
(P) obtained by (1) introducing problem (P'):

(F) Max{fx\Ay^b, Cx^d, xeX, y = x, yeY),

which is equivalent to (P) for any set Y containing X, and (2) relaxing the
"copy" constraint y = x in (Pr). This yields a decomposable problem, (LDJ.
justifying the name "Lagrangean décomposition":

(LDU) Max{/x + u(y-x)|Cx^d, xel, Ay^b, yeY}

= Max{(/-w)x|Cxgrf, xeX} + Max{uy\Ay^b9 yeY}.

Let (D) dénote the Lagrangean décomposition dual:

(D) Min F (LD J .
u

Let us now compare Lagrangean décomposition bounds with Lagrangean
relaxation bounds. Let v° be an optimal Lagrangean multiplier, then we can
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312 M. GUIGNARD, S. KIM

show that V(LDuo) with M0 defined as v° A is at least as good a bound as
V(LRvo):

THEOREM3: Consider v°eOS(R\ u° = v°A, and let (x°, y°)eOS(LDuo).
Then

(i) V(LRvo)-V(LDuo) = v°(b-Ay°l and

(ii) V(D)£V(R).

Proof. - Let v° e OS (R) and u° = v° A, then

(f-v°A)x\Cx<^d, xeX} + Mzx{v°Ay\Ay^b, yeY)

= ( ƒ - v° A) x° + v°A y0 (as (x°, y0) e OS (LDuo))

yo) +t?° (A y0 - b) (as x° e OS (LRvo) as well)

therefore V(D)^V(R). •

This resuit was also proved independently by [Glover and Klingman (1984)]
and [Jörnsten, Nàsberg and Smeds (1985)].

Notice that the potential bound improvement of V(D) over V(R) may
corne from two different directions:

(1) V(LDU)^V(LRV) for u = vA: in particular if it is impossible for y
solution of V(LDU) to satisfy Ay = b9 the slack (b — A y) may create a gap
between V(LDU) and V(LRV).

(2) F(D) = Min V(LDU): there may be better values for u than those in the
subspace spanned by the rows of A, i. e. those of the form u = vA.

Lagrangean décomposition is unique among ail possible Lagrangean
relaxations in that it can capture multiple special structures, unlike standard
Lagrangean relaxation which is limited to keeping at most one such structure.
When there are more than two constraint sets, décomposition can easily be
shown to be at least as good as any standard Lagrangean relaxation. One
might also consider mixing relaxation and décomposition to achieve computa-
tional efficiency.

The set X might actually contain a third set of constraints. One may choose
to keep these constraints in both subproblems (the only requirement on Y is
that it must contain X), and this will usually yield a stronger bound, at the
expense of having possibly more difficult problems to solve. The resource
constrained arborescence problem of section 3.2 présents such an example.

Another way to further strengthen the Lagrangean décomposition bound
is to add to the x-problem a surrogate constraint of Ax^b and/or to the
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LAGRANGEAN DECOMPOSITION 313

7-problem a surrogate constraint of Cy^d. The capacitated plant location
problem of section 3. 3 présents such an example.

The following lemma gives a sufficient optimality condition for the Lagran-
gean solution:

LEMMA 4: Let (x(w), y{û)) be an optimal solution of(LDâ). Ifx(û) and y(û)
are identical, then x (û) is an optimal solution of (P), û is an optimal solution
of (D) and there is no duality gap.

Proof. — If x(û)=y(û), the weak optimality conditions hold (x(û) is
feasible for (P) and complementary slackness holds), thus x(û) is optimal
for (P). Since V(D) is bounded from below by V(P), û is optimal for (D).
•

It is then natural to ask when Lagrangean décomposition indeed yields a
bound improvement; theorem 5 provides the necessary background to answer
that question.

Consider problem (Q):

(Q) Max{ fx\xeCo{x\Ax£b, xeY}, xeCo{x\CxSd, xeX}}.

Now we show that problems (Q) and (D) are equivalent:

THEOREM 5: The optimal value of the Lagrangean dual (D) is equal to the
optimal value of the LP problem (Q).

Proof — Consider the following primai relaxation of (P'):

r<x,y)eCo\{x>y)A^b>yeY>\.l
(6) Max /x | Cx^d,xeX)

L x->> = 0 J

By applying lemma 1 for problems (D) and {Q'\ V(D)=V(Q'). Then

(x, y)eCo{x\Cx^d, xeX} ®Co{y\Ay^b, yeY}

x=y

= Max{fx\xeCo{x\AxSb, xeX} (~)(

= V(Q).

Therefore, V(D) = V(Q). M
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314 M. GUIGNARD, S. KIM

Thus optimizing the Lagrangean décomposition dual is equivalent to opti-
mizing the primai objective function on the intersection of the convex hulls
of the constraint sets. This provides a means to compare bound strength
of alternative Lagrangean relaxation/décomposition schemes by comparing
inclusion relationships among the respective LP polytopes in the original (x-)
variable space even though the dual is complicated by the copied (y-) varia-
bles. This is illustrated on figure 1.

Ax < b Cx < d

x: point in X
y: point in Y

Figure 1

Finally, we introducé, in a négative way, a necessary condition for bound
improvement.

THEOREM 6: Ifeither the x- or y-problem has the Integrality Property, V{D)
is equal to the stronger of the two Lagrangean bounds obtained by relaxing
one or the other of the two sets of constraints.

Proof — Let RI and R2 be the two Lagrangean relaxations obtained by
dualizing Ax ̂  b and Cx^d respectively. Without loss of generality, assume
that the ̂ -problem has the Integrality Property. Then

fx\xeCo{x\Ax^b, xeX} C\ Co{x\Cx^d, xeX}
= Max{ fx\Ax<*b, xeCo(X), xeCo{x|Cxgd, XGX}} (by LP.)

:^d, xeX}}

^d, xeCo(X)}
Sb, xeX}} (by LP.)

R.A.I.R.O. Recherche opérationnelle/Opérations Research



LAGRANGEAN DECOMPOSITION 315

Conversely, if neither problem has the Integrality Property, then the décom-
position bound can be strictly better than the relaxation bounds.

Theorem 7 is the counterpart of theorem 2 for Lagrangean décomposition.
It characterizes the relationship between optimal solutions of (LDuo), with
u°eOS(D), and optimal solutions of (Q). We show that it is possible to
construct an optimal solution of (Q) if one knows ail optimal solutions of
(LD.o).

THEOREM 7: There exist two sets of convex multipliers ocm, me M and pn,
neN such that £ amxm(w°) = £ Vny

n(u°)eOS(Q) where {xm(u0)\meM}
me M neN

is the set of distinct optimal x-solutions and {yn (u°) | neN} is the set of distinct
optimal y-solutions to (LDuo).

Proof - Let (x*(u°), yk(u°))eOS(LDuo) for every keK where K is the
index set of ail optimal solutions of (LDuo). By theorem 2, there exist convex
multipliers Xk such that

keK

Since (x, y) is feasible for (Q'\

*=>>= I K*k(u°)= I Xky
k(u°)eOS(Q).

keK keK

Notice that some x* (u°)'s and/or ƒ* (H°)'S may appear more than once, for
keK. Adding those X^s yields the two convex multiplier sets am and Pn, and
the index sets M and N. •

The above discussion is centered around the integrality property of each
constraint set. Recently, however, in [Guignard (1986)], the potential useful-
ness of Lagrangean décomposition has been further enhanced by recognizing
special classes of structures. The structures are those on the borderline
between linear programming and integer programming; the undirected and
directed spanning tree problems and the various matching problems are of
this nature. The common characteristics of these problems are that a suitable
LP description leads to a complete characterization of the IP polytope and
there exists a polynomial time algorithm taking advantage of the special facet
structure. Most importantly, the number of these implicit constraints (facets)
would be too large to allow their explicit dualization.

Consider an integer programming problem whose implicit constraint set is
denoted by / :

(P) Max{/x|,4x^b, xe/, xeX}.

vol. 21, n° 4, novembre 1987



316 M. GUIGNARD, S. KIM

Suppose that the problem max{gx|xe/C]X} can be solved (relatively)
easily without writing a spécifie set of constraints to represent /. Let
{x\Gx^g^xeX} = mX and {x\Hx^h} = Co{I DX}. In other words,
Hx^h represents all the facets of 1C\X and Gx^g defines a polyhedron
whose integer points constitute I(^X. An important distinction between
Hx<*h and Gx^g is that the former may consist of at least an exponential
number of constraints and the latter a polynomial number of constraints.
Then we construct two Lagrangean relaxations and one Lagrangean décom-
position:

(LRlu) max { fx + u(h-Hx)\Ax^b, xeX} with dual (RI),

(LR2V) max { fx + v (g - Gx) \ Ax ̂  b, x e X} with dual (R2)

and

(LDW) msix{(f-w)x\Ax^b, xel}+max{wy\yeIC\X} with dual (D).

By lemma 1 and theorem 5, V(D) = V(Rl)^V(R2). Therefore the Lagran-
gean décomposition (LDW) is a practical way of obtaining the same bound
as the one given by (LR\U); V(LRlu) is only of theroretical interest due to
the large number of constraints. The resource constrained arborescence pro-
blem of section 3.2 and the symmetrie traveling salesman problem of section
3.4 present such examples.

3. APPLICATION PROBLEMS

The problems in this section illustrate how a careful analysis of the feasible
sets corresponding to the primai équivalents of relaxations or décompositions
enables us to compare their relative bound strength without any computa-
tional study. This type of analysis will either save unnecessary efforts or
justify computational studies a priori.

3 .1 . The generalized assignment problem

The generalized assignment problem consists of disjoint knapsack
constraints and multiple choice constraints. The problem concerns the
assignment of jobs to agents such that each job is assigned to exactly one
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agent without violating an agent's capacity:

(GAP) Min £ c y x y

s. t. EayXyè&i» Vi, (3.1)
j

Yxij=h U (3.2)

Xy = 0 or 1, V U (3.3)

The common relaxations found in the literature dualize either set of
constraints [see Ross and Soland (1975), Martello and Toth (1981) and
Fisher et al (1986)].

We will analyze the décomposition scheme of [Jörnsten and Nâsberg (1986)]
and another complicated décomposition scheme and compare them to the
conventional Lagrangean relaxation where (3.2) is dualized [Fisher et al
(1986)].

Let (#1) dénote the Lagrangean dual where (3.2) is dualized and disjoint
0-1 knapsack problems are solved. Then, by lemma 1, (JRI) is equivalent to
the LP problem (S) whose feasible space is defined as

FS(5) = A{(3.2)}nCo{(3.1),(3.3)}.

Under the décomposition scheme found in [Jörnsten and Nàsberg (1986)],
one solves disjoint 0-1 knapsack problems defined by (3.1) and (3.3) and a
multiple choice problem defined by (3.2) and (3.3). By theorem 5, the
corresponding Lagrangean dual (D\) is equivalent to the LP problem (gl)
whose polytope is

FS(Ql) = Co{(3.2),(3.3)}nCo{(3.1),(3.3)}

= A{(3.2)}OCo{(3.1),(3.3)} (by I.P. of (3.2))

= FS(S).

Therefore V(Dl) is equal to V(Rl). .

Now consider a more complex form of décomposition where multiple
copies of the original variables are created. Each subproblem is a 0-1 multiple
choice knapsack problem defined by {(3.1.i), (3.2), and (3.3)}. By
theorem 5, the corresponding Lagrangean dual (D2) is equivalent to the LP
problem (g2) whose feasible space is

vol. 21, n° 4, novembre 1987



318 M. GUIGNARD, S. KIM

= [nCo{(3.1.i),(3.3)}]n[Co{(3.2),(3.3)}]
i

= Co{(3.1), (3.3)}nCo{(3.2)5(3.3)}

= FS(Ql)

= FS(S).

Therefore V(D2) is equal to V(Dl) and V(Rl). The second equality of the
above dérivation is valid because the intersection of Co {(3.1. i), (3.3)} and
Co {(3.2), (3.3)} does not create fractional vertices.

If (JR2) dénotes the dual obtained by dualizing (3.1), the following relation-
ships hold:

Since bounds are the same for (RI), (Dl) and (D2), the increase in computa-
tional complexity for (Dl) and (D2) would not pay off in terms of overall
performance in branch and bound algorithms.

3.2 . The resource constrained arborescence problem

The resource constrained arborescence problem treated in [Rosenwein
(1986)] and [Guignard and Rosenwein (1987)] is formally described below.
The problem is to find the minimum cost arborescence for a given root node,
while satisfying the generalized degree constraints (3.6):

(RCAP) Min

s. t.

L CijXij
i, j

E*y=1»
i

U J e S

J

xtj=0 or 1,

V;#root,

VSc{l ,2 , . . . n

U

Vi,j.

(3.4)

}. (3-5)

(3.6)

(3.7)

An obvious relaxation dualizes constraints (3.6) and solves the resulting
arborescence problem defined by (3.4), (3.5) and (3.7). Let (#) dénote the
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corresponding Lagrangean dual. Then, by lemma 1, (R) is equivalent to the
LP problem (S) defined on the feasible space

F5(S) = A{(3.6)}nCo{(3.4),(3.5)and(3.7)}.

[Rosenwein (1986)] treated the problem by decomposing it into one arbores-
cence problem and a set of disjoint knapsack problem. Let (Dl) dénote the
corresponding Lagrangean dual. By theorem 5, (Dl) is equivalent to the LP
problem (Q\) defined on the feasible space

= Co{(3.6)and(3.7)}nCo{(3.4),(3.5)and(3.7)}

Therefore V(Di)^V(R).
Rosenwein also suggested to treat this problem by decomposing it into one

arborescence problem defined by (3.4), (3.5) and (3.7) and one generalized
assignment problem defined by (3.4), (3.6) and (3.7), sharing (3.4) as part
of the special structure X. Let (Dl) dénote the corresponding dual. By
theorem 5, (D2) is equivalent to the LP problem (Q2) defined on the feasible
space

FS(Q2) = Co{(3.4),(3.6)and(3.7)}nCo{(3.4), (3.5) and (3.7)}

S FS (61).

Therefore this décomposition provides a closer approximation of the IP
polytope of (RCAP) than (R) or (Dl).

Then the following relationships hold:

F(RCAP) ^ V(D2) ^ F (Dl) ^ F(J*)=K(RCAP).

It should be pointed out that solving such hard problems as the generalized
assignment problem as a Lagrangean subproblem is rarely found in the
literature.

3.3 . The capacitated plant location problem

The capacitated plant location problem is a classic mixed-integer program-
ming problem and has been studied by too many researchers to name them
all here. Works related to the following discussion are by [Nauss (1978)] and
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[Van Roy (1980)]. The strong formulation of the problem is

(CPLP) Min EcyXy + E / i »
ij i

S. t. £ X y = l , Vj, (3.8)

i

x v ^ VU h (3.9)
X y ^ S ^ Vï, (3.10)

j

O ^ J C y ^ l , UÏ, (3.H)

^ = 0 or 1, Vi. (3.12)

One possible décomposition consists in combining the relaxations used by
[Nauss (1978)] and [Van Roy (1980)]. The actual work of [Nauss (1978)] is
based on the weak formulation [i. e., without (3.9)]. We consider a similar
relaxation based on the strong formulation. Dualizing constraint (3.8) and
(3.9) and adding an implied constraint

(3.13)

Nauss transformed the resulting subproblem into a 0-1 knapsack problem
by projecting problems associated with (3.10) on the j-space. Van Roy
relaxed constraint (3.10) and solved the simple plant location problem defined
by (3.8), (3.9), (3.11) and (3.12).

The décomposition introduced hère consists in one 0-1 knapsack problem
and one simple plant location problem. Let (D) and (Q) dénote the correspon-
ding Lagrangean dual and the equivalent LP problem respectively. Let (RI)
and (SI) dénote the Lagrangean dual defined by [Nauss (1978)] and the
equivalent LP problem respectively. Let (R2) and ($2) be defined in the same
manner for the case of [Van Roy (1980)]. First the feasible space of (Q) is

FS(g) = Co{(3.8), (3.9), (3.11) and (3.12)}

r\Co{(3.10), (3.11), (3.12) and (3.13)}.
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The feasible space of (SI) is

F5(Sl) = A{(3.8)and(3.9)}nCo{(3.10,(3.11),(3.12)and(3.13)}^FS(e).

The feasible space of (S2) is

FS(S2)-A{(3.10)}nCo{(3.8),(3.9)J(3.11)and(3.12)}3F5(g).

Therefore the following relationships hold:

F(CPLP) ^ V(D) ^ V(R\) ^ F(CPLP)

and
F(CPLP) ^ V(D) ^ V(R2) ^ F(CPLP).

3.4 . The symmetrie traveling salesman problem

We discuss the symmetrie traveling salesman problem to demonstrate the
potential of the décomposition approach for problems with implicit
constraints [for other examples see Guignard (1986)]. [Held and Karp (1970)]
solve the 1-tree problem repeatedly to optimize the corresponding Lagrangean
dual. The 1-tree is a spanning tree together with two edges incident to node 1,
forming a single cycle. By applying lemma 1, their dual (R) is equivalent to
the LP problem (S) defined on the 1-tree polytope (denoted Co {1T}) intersec-
ted by the polyhedron [denoted A (d)] generated by the degree constraints (d):

FS(S) = A(d)C\Co{lT}.

Even though there always exits one cycle in a 1-tree solution, the primai
solution defined by theorem 2 satisfies all subtour élimination constraints.

By the polyhedral theory of Edmonds (1965), the 2-matching polytope
(denoted Co {2 M}) is completely characterized by the degree constraints and
the 2-matching inequalities. It has been shown that 2-matching inequalities
are facets of the symmetrie traveling salesman problem polytope. One possible
décomposition consists in solving the 1-tree problem and the 2-matching
problem. Let (D) dénote the corresponding Lagrangean dual and (Q) the
equivalent LP problem. By theorem 5, the feasible space of (Q) is

FS (Q) = Co {1 T} n Co {2 M} o FS (S) (since A (d) z> Co {2 M}).

The primai solution defined by theorem 7 satisfies all 2-matching inequalities
as well as the subtour élimination constraints.

The approximation of the symmetrie TSP polytope given by Lagrangean
décomposition is very close to that of [Crowder and Padberg (1980)], since the
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portion of comb inequalities generated comparée to all the facets generated is
only 1.1%, the rest being either subtour élimination constraints or 2-matehing
inequalities.

4. CONCLUSION

The décomposition of an integer programming problem into many subpro-
blems which share the constraints of the original problem can yield bounds
substantially better than "standard" Lagrangean relaxation bounds. Lagran-
gean décomposition introduces many additional ways of decomposing and/or
relaxing a given problem. Careful analysis of the geometrie structure of.
candidate décompositions and/or relaxations is required for successful deve-
lopment of branch and bound algorithms.

Optimization of the Lagrangean function associated with a particular
décomposition scheme is mostly an unexplored area. Lagrangean dual ascent
methods appear to be particularly well suited, as one can probably predict
with enough accuracy the implications of multiplier changes on the two
subproblems and their solutions. Further research is required to clarify the
structure of the Lagrangean dual especially as the number of copies increases.
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