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OPTIMAL TRAFFiC ASSIGNMENT
IN A SS/TDMA FRAME:

A NEW APPROACH BY SET COVERING
AND COLUMN GENERATION (*)

by M. MINOUX (2)

Abstract. — We address hère the problem of optimal assignment of a given traffïc matrix,
within a satellite system TDMA (time division multiple access) frame where no traffïc splitting is
allowed (in view of keeping the number. of different switching states as low as possible). Âfter
reformulating the problem as a large scale set covering problem, it is shown that, in spite of the
large number of columns, its continuous relaxation can be solved optimally according to a
column-generation procedure (generalized linear programming). Computational expérimenta show
that this approach usually produces lower bounds which significantly improve upon the trivial lower
bounds used so f ar for this problem (the greatest row or column sum of the trafflc matrix) thus
opening the way to exact solution of problems ofhigher dimensions.

Keywords: Combinatorial optimization; generalized linear programming; column génération;
assignment problem.

Résumé, — On s'intéresse ici au problème a"affecter une matrice de trafic donnée dans une
trame satellite AMRT (accès multiple à répartition dans le temps) lorsque le fractionnement du
trafic n'est pas autorisé. Après avoir reformulé le problème comme un problème de recouvrement
de grande dimension, on montre qu'en dépit du très grand nombre de colonnes, la relaxation
continue peut être résolue de façon exacte par programmation linéaire généralisée (génération de
colonnes). Les résultats de calcul obtenus montrent que cette approche produit des bornes inférieures
qui améliorent significativement les bornes élémentaires utilisées jusqu'à présent (la plus grande
somme en ligne ou en colonne de la matrice de trafic) et qui sont même très souvent optimales.
Elle ouvre donc la voie à la résolution exacte, en nombres entiers, de problèmes de dimensions plus
élevées.

Mots clés : optimisation combinatoire; programmation linéaire généralisée; génération de
colonnes; affectation.
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274 M. MINOUX

1. INTRODUCTION

On-board switching Systems for satellite communications, which are based
on the Time Division Multiple Access principle (TDMA), are used to set up,
periodically and at spécifie instants (to be determined) digital radio channels
between a number of earth stations. The total switching capacity of the
satellite System is expressed in terms of the number of elementary time periods
contained in the TDMA frame (in practice this number is about 1.000 to
2.000). An elementary time period in the frame corresponding to one digital
voice channel each interstation traffic value is expressed as a number of
elementary time periods (i. e. as a number of required digital voice channels).

A fundamental problem arising in this context, is to find an optimum
TDMA frame time schedule, in other words, to find an optimal "timetable"
for the switching System on board. Though this kind of problem may be
formulated in many ways, it is often stated as follows: Given an interstation
traffic matrix, détermine the successive switching modes (and in particular, the
very instants when switching states should be changea) in order to switch all
the traffic requirements in minimum time.

A simplified version of this problem, where it is assumed that the traffic
blocks can be split (divided into subblocks) as much as desired, has first been
studied by Ito et al. (1977) who have shown that in that case there always
exists an optimal schedule with duration equal to the largest row or column
sum in the traffic matrix. The method suggested to actually build such an
optimal schedule was based on a greedy-type algorithm (however incorrect as
pointed out by Inukai 1978). Inukai (1979) has later on proposed a correct
greedy solution method for the same problem. However, one of the results
of this work showed that, when an optimal schedule (with duration equal to
the largest row or column sum) is required, then the number of different
switching modes may, at least in the worst case, be as large as n2 —2n + 2
for a n x n traffic matrix. On real problems, the observed figures are usually
not that large, but may stay rather high (cf. the computational experiments
in Bongiovanni et al 1981). In practice, any change in the switching mode
requiring transmission of some signalling information (preambles) to be
inserted within the frame, such results are usually not directly applicable.

This explains why more realistic (though more complex) models have been
subsequently studied, in which a good compromise between the length of the
schedule in the frame and the number of necessary different switching modes
is looked for. Along this line, Gopal and Wong (1983) have proposed a
method aiming at explicitly minimizing the number of different switching
modes. Natarajan and Calo (1980) suggest a number of heuristic methods
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for minimizing the length of the schedule under the constraint that the
number of distinct switching modes be minimal (equal to n, the size of the
traffic matrix in case of a full density matrix). However such a constraint
may prove in practice to be uselessly strong (relaxing this constraint only
slightly, e. g. by allowing just n+1 or n + 2 switching modes may lead to
significantly shorter schedules). That is why it appears that the most extensi-
vely studied model consists in minimizing the length of the schedule in the
frame, while indirectly limiting the number of switching modes by forbidding
any splitting of the interstation traffic blocks.

For this difficult combinatorial optimization problem (as a scheduling
problem with pure disjunctive constraints and no precedence constraint, it is
NP-Hard as shown by Gonzales and Sahni 1976) quite a lot of heuristics
have been proposed: Camerini, Maffioli and Tartara (1981), Gopal (1982),
Balas and Landweer (1983). On the contrary, very few attempts seem to have
been made towards the exact solution of this problem (e. g. by Branch and
Bound techniques). The reason of this is most likely to be found in the poor
quality of the lower bounding functions which have been known so far. As
an example of such an attempt, the work by L. Vismara (together with
P. Camerini and F. Maffioli) which uses as lower bounds, the largest row or
column sum of the matrix, only allowed to get exact optimal solutions on
very small sized examples (5 x 5 or 6 x 6).

We propose hère a new approach based on reformulating the problem as
a set covering problem with a huge number of variables. It is shown how the
continuous relaxation of this problem may nevertheless be solved to optima-
lity by using a column génération technique (or generalized linear program-
ming), the détermination of a minimum reduced cost column being achieved
through the solution of a séquence of ordinary assignment problems.

Preliminary computational testing shows that this solution procedure syste-
matically produces lower bounds which not only significantly improve upon
the previously known bounds (largest row or column sum) but are almost
always optimal, thus confirming the relevance of the new approach. Current
work is going on towards exploiting the various informations provided by
the optimal solutions to the continuous set covering problem within tree
search methods (Branch and Bound).

2. OPTIMAL DECOMPOSITION OF A MATRIX INTO SWITCHING MODE MATRICES

Let T= (ty)i = î n b e a square nxn matrix (traffic matrix) with non négative

entries.
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276 M. MINOUX

We address hère the problem of finding a décomposition of T into:

K

T= I P* (1)
k=l

with the following conditions:

(i) V k = 1, . . . , K, Pk = (P£-)i = i...„ is a switching mode matrix, i. e.
J = 1 . . . B

a matrix containing no more than one nonzero entry in each row or column.

(ii) V k = 1, . . . , K, Pk
u > 0 => Pk

tj = tij (thus each entry of the original matrix
will appear in one and only one matrix of the décomposition).

K

(iii) -The sum £ |P k | is minimized, where for any nxn matrix Q = (qtj).
jt=i

| Q | dénotes the L^ norm of matrix Q i. e.:

(i. J)

Observe that, in the above problem, the number K of mode matrices in the
décomposition is not imposed: this number should actually be the resuit of
the optimization process. However, it is always possible to refer to the case
of fixed K in view of the following remark.

If M (M ^ n2) is the number of nonzero entries in T, any décomposition
of type (1) will contain at most M mode matrices. Thus one may choose
K=M in (1) by considering that some of the matrices Pk will be zero (when
Pk = 09 then | Pk | =0, hence such matrices do not play any rôle in the objective
function).

3. FORMULATION AS A LARGE SCALE SET COVERING PROBLEM

We show in this section that the search for an optimum décomposition of
a given matrix into switching mode matrices can be formulated as a set
covering problem in 0-1 variables but with a very large number of columns.

If M dénotes, as in section 2, the number of nonzero entries of the
given matrix, each switching mode matrix PJ which may be involved in the
décomposition (1) can be characterized by a 0-1 vector Ai = {aij) i=\...M
such that:
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atj = 1 if Pj contains the ith nonzero entry of matrix T

= 0 otherwise.

There are as many distinct mode matrices as there are ways of choosing 1,
2, . . . , n independent nonzero entries in T (a subset of entries is called
independent if and only if it contains at most one entry in each row or
column). We shall dénote by N the total number of distinct switching mode
matrices (obviously N<2M), and A = (atJ) the MxN 0-1 matrix whose
columns are the characteristic vectors of the independent subsets of nonzero
entries of T.

With each column j of A (with each mode matrix) we associate a binary
variable Xj such that:

mode matrix j is selected in the solution

and a cost c] equal to the value of the largest entry of mode matrix j .

The problem can then be formulated as the search for a minimum cost
covering of the M entries of T, i e. as the following set covering problem:

(SC)

N

Minimize £ C
i=i

subject to
A.x'è 1

xe{0, \}N

where 1 dénotes the M-vector with ail components equal to 1.

An example

Consider the 3 x 3 matrix below, which contains 6 nonzero entries numbe-
red from 1 to 6 (in parentheses):

4(4, O

1(5) 9(6)_j

The corresponding set covering problem for this example is stated below
and includes 18 columns (18 distinct independent subsets of nonzero entries):
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x l X2 X3 X4 X5 X6 X7 X8 X9 x10 X12 X13 X14 X15 X16 X17 X18

costs - 9 7 7 2 4 9 7 7 7 5 9 9 2 7 5 4 1 9

1
2

3
4

5
6

i

1 1
1 1
1

1 1

1 1
1

ndependent
subsets with

3 éléments

1

1

1

1

1 1 1

1 1 1
1 1

1 1
1 1

independent subsets
with 2 éléments

1

1
1

1

1

1
r ^ J

independent

>

1

1
1
1
1

1

subsets with

1 element

The optimal integer solution to this problem is xf = 1, x% = 1 (all the other
variables being 0) with optimal cost equal to 16.

This optimal solution corresponds to the optimal décomposition of T:

T=

4. SOLUTION OF THE CONTINUOUS RELAXATION OF (SC) BY COLUMN GENERA-
TION. LOWER BOUNDS

Balas and Landweer (1983) used the set covering formulation (SC) to
devise efficient heuristic procedures to obtain good approximate solutions to
the optimal matrix décomposition problem. We propose hère to exploit this
formulation in another way, namely the exact solution of the continuous
relaxation of this problem by generalized linear programming techniques.

Due to the huge number of variables there is no hope of solving directly
(SC) as an integer programming problem.

However, solving the continuous relaxation of (SC) may be of interest, at
least because it will provide lower bounds to the optimum integer solution
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cost. We shall dénote by (SC) the (large scale) linear program obtained by
relaxing the integrality requirements in (SC), i. e.:

(SC)

JV

Minimize £ c

s. t.

xe[O, lf.

The above linear program has only a limited number of constraints (M :g n2)
but a huge number of columns as soon as the size of the matrix exceeds 7
or 8. In practical applications, one may have n ~ 10 to 50, which definitely
excludes the possibility of explicitly stating the full matrix A.

In that situation however, there exists a particular technique, known as
generalized linear programming or column génération (cf. Dantzig 1963 for
instance) which allows solving such large scale linear programs, under the
mère condition that, at each step, there is an appropriate method (more
efficient than enumeration) to find out a minimum reduced cost column (the
so-called "pricing out" process). Recall that the reduced cost cj of any column
AJ is defined by:

Cj = Cj — n. Aj

where n = (nu ..., nM) is the current vector of simplex multipliers.
For the relaxed set covering problem (SC), we now show that this column

génération problem can be efficiently solved by a polynomial time algorithm.
Dénote by J a {0, 1}M the set of all independent subsets of nonzero en tries

in T. n = (nl9 ..., nM) being, as above, the current simplex multipliers, the
problem is to détermine the independent subset v = (vl)l = lt ,_M

e^ s u c n t n a t :

c(v)- X üi7i, = Minic(i?)- X vi>%i\ (2)

where, ^fveJ, c(v) is the cost of the independent subset i;, i. e. the value of
the largest entry in the corresponding mode matrix.

Though much alike an assignment problem, this problem cannot be solved
as it stands, as an ordinary (min-sum) assignment problem. As a matter-of-
fact, it is seen that the objective function in (2) is a combination of a min-max
criterion [term c(v)] and a min-sum criterion (term- — S V,TCZ). However, it can
be observed that c (v) can take on at most M distinct values, corresponding
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to the M nonzero entries of matrix T. Hence the idea of solving (2) via a
parametric approach where each of the possible values of c (v) is examined in
turn.

Suppose first that we know the value c(v) in (2): this means that we know
the largest entry of matrix T involved in v. Problem (2) then reduces to the
following problem (3) for the value a = c(v) of parameter a

Détermine an independent subset of weight £ nivi maximum in

*/(oc), where ./(oc) dénotes the set of all independent subsets of
entries of matrix T which have value < oc.

(3)

Since the value c (v) is not known a priori, it will thus be necessary to solve
(3) for each of the possible values of oc, the number of which is less than or
equal to M (number of entries with distinct values in matrix T).

Now for any value of a, problem (3) is recognized as a classical assignment
problem, which can be solved as a maximum cost network flow problem
between s and t in the following transportation network G = [X, U\:

— The set of nodes X is of the form R{J C[J {s, t} where R corresponds
to the n rows of T, C to the n columns of T, and where 5 and t are two
additional vertices called the source and the sink respectively.

— The set of arcs U is formed by: n arcs of the form (s, r) (reR) with
capacity 1 and zero cost; n arcs of the form (c, t) (c e C) with capacity 1 and
zero cost; as many arcs of the form (r, c) (where reR and ceC) as there are
entries trc ^ a in T. With each such arc (r, c) we associate infinité capacity
and cost equal to nt, the simplex multiplier attached to the entry trc of
matrix T.

If this problem is soived by using the Busacker and Gowen algorithm
(1961) properly improved by the Edmonds and Karp technique (1972), the
complexity is O (n3) for each single value of a, and since there are at most
M distinct possible values of a to consider, the overall complexity for solving
the column génération subproblem would be O (M/i3).

However, substantial improvement can still be gained as the following
resuit shows.

THEOREM 1. — The column génération subproblem (2) can be solved in worst
case polynomial time O (Mn2) where M is the number ofnonzero entries in the
given traffîc matrix (M ^ n2).

R.A.LR.O. Recherche opérationnelle/Opérations Research
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Proof. — Start by solving problem (3) on >(amin) where ocmin is the value
of the least entry in T; this amounts to solving an assignment problem on a
n x n auxiliary matrix with only one nonzero entry corresponding to the least
term in T. Then raising a little by little results in incorporating in the auxiliary
matrix new entries, one at a time, at places corresponding to the entries of T
taken in increasing order. Each time a new entry is incorporated one checks
whether the current assignment is still optimal or not. This can be efficiently
tested in time cornplexity 0(1) by Computing the reduced cost of the entry
under considération (since the dual variables of the assignment problem are
available in the Busacker and Gowen-Edmonds and Karp procedure),

If the reduced cost is non positive (remember that we are maximizing
Yjnivi) then the current assignment remains optimal, and we just have to
proceed to the next candidate entry. If the reduced cost is strictly positive,
then this means that the current assignment is no longer optimal, and we
have to perform a flow change. Now, since we are certain that the new
optimal assignment shouid actually contain the new entry, this flow change
consists in sending one additional unit of flow on the circuit of maximum
reduced cost running through the arc associated with the new entry in the
so-called incrémental graph (see Gondran and Minoux 1979, 1984). Reoptimi-
zing thus only requires one longest path calculation in a n x n bipartite graph,
the lengths on the arcs being nonpositive. Since Dijkstra's algorithm solves
this problem in O (n2) time complexity, and the maximum number of neces-
sary flow changes is bounded by M in the worst case, the theorem follows. •

5. PRELIMINARY COMPUTATIONAL RESULTS AND CONCLUSIONS

The column génération algorithm has been implemented and preliminary
computational tests were carried out on a number of small-to-medium sized
problems (for n ranging from 5 to 8). The numerical results obtained are
subsumed in table I below where the following indications are displayed:

— The référence number of the example together with its size. The label
(R) means that the example corresponds to a real trafic matrix, the label (NR)
means that it corresponds to a fictitious one (usually, randomly generated).

— M, the number of nonzero entries in the traffic matrix.
— z0, the value of the starting solution; in ail but one examples, the

starting solution consists in M switching mode matrices (M columns), each
containing exactly one of the nonzero entries of the original traffic matrix.
In Example 5 only, the solution provided by the greedy heuristic (and
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TABLE I

Resulîs of computational experiments with the column génération algorithm.

O

o
'S

Example

EX1 5 x 5 (NR)

EX2 6x6(R)

EX3 6x6(NR)

EX4 5 x 5 (NR) . . . .

EX 5 same as EX4 . .

EX6 6x6(R)

EX7 8 x 8 (R)

EX8 7 x 7 (NR)

EX9 7x7(NR)

EX10 8x8(NR) . . .

EXll 8 x 8 (NR) . . .

M n b
of

terms

16

18

26

25

25

16

36

34

26

36

34

starting
solution

1.528
(16 cols)

7.180
. (18 cols)

2.490
(26 cols)

11.857
(25 cols)

3.496
(6 cols)

greedy sol.

9.168
(16 cols)

8.660
(36 cols)

1.482
(34 cols)

5.738
(26 cols)

7.372
(36 cols)

7.560
(34 cols)

Nb col
in

final
solution

16 + 46
(22 iter.)

18 + 55
(14 it.)

26+120
(26 it.)

25 + 52

6 + 60

16 + 40
(9 it.)

36 + 128
(16 it.)

34+153
(20 it.)

26+130
(27 it.)

36 + 252
(38 it.)

34 + 204
(38 it.)

zc*
contin,

optimum

565
(integer)

3.380

650

3.388

3.388

3.983
(integer)

3.710

341
(integer)

LI 54
(integer)

1.360
(integer)

1.298
(integer)

Structure
of contin.
solution

5 variables
set to " 1 "

3 Var. " 1 "
4 var. "0.5"

3 Var. " 1 "
4 var "0.5"

1 Var. " 1 "
8 var. "0.5"

2 Var. " 1 "
6 var. "0.5"

4 Var. " 1 "

19 var.
fractional

(0.2; 0.4; 0.6)

6 Var. " 1 "

5 Var. " 1 "

5 Var. " 1 "

5 Var. " 1 "

Greedy
heuristic

585

3.380

692

3.496

3.496

3.983

3.710

383

1.154

1.627

1.420

lower
bound

555

3.380

605

2.867

2.867

3.983

3.710

325

1.055

1.254

1.228

integer
optimum

565

3.380

650

3.388

3.388

3.983

3.710

341

1.154

1.360

1.298

O

X
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containing only 6 switching mode matrices) was taken as starting solution
(indeed, the only différence between Examples 4 and 5 lies in the starting
solution).

— The total number of columns added to the initial set of columns by
the column génération process, in order to reach the continuous optimal
solution. When multiple pricing was used (several columns being selected
each time the column génération algorithm was applied) we indicate in
parentheses the number of times the column generator was called for.

— z*, the value of the continuous optimal solution.

— Some indications about the structure of the continuous optimal solution
(number of variables with value 1, number of fractional variables).

— zGi the value of an approximate solution obtained through the greedy
heuristic which consists in building successive switching mode matrices in the
following way. Suppose that mode matrices 1, 2, . . . , k — 1 have already been
built and consider the residual traffic matrix consisting in those entries which
have not been assigned to a switching mode matrix yet The feth mode matrix
is then determined by selecting as many entries of the residual matrix as
possible, according to the rule that, at each step, the largest entry which does
not conflict with the previously selected entries is chosen. (In spite of its
simplicity, this heuristic procedure exhibits pretty good average performance
in terms of the quality of the solution costs obtained, as already observed by
several authors; see e. g. the comparative computational results presented in
Brandt 1982.)

— zL the lower bound to the optimal integer solution cost equal to the
largest row or column sum of the traffic matrix.

— zf the cost of an optimal integer solution (obtained by a branch and
bound procedure).

Various interesting observations can be drawn from Table I.

(a) 6 out of 10 problems (recall that Examples 4 and 5 concern the same
problem) lead to an optimal intégral solution, and this not only occurred in
"easier cases" (when the greedy heuristic happened to provide the exact
optimal solutions too, see EX6, EX9) but also in some "harder cases" (when
the greedy solution proved to be far away from the exact optimal solution,
and the lower bound zL was observed to be rather poor, see EX1, EX8,
EX 10, EX 11). This is a highly positive resuit since, if we consider the problems
of larger sizes among the "harder cases" (i. e. EX8, EX 10 and EX 11), it can
be easily realized that no existing exact (branch and bound) method based
on the lower bound zL could have solved them to optimality (see the already
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284 M. MINOUX

mentionned computational results of Vismara 1982), whereas the column
génération method provided guaranteed optimal integer solutions.

(b) The problems corresponding to real data (labelled "R" in first column
of table I), at least those dealt with hère, appeared to be in the "easier cases"
where both the greedy solution value and the lower bound were equal (EX2,
EX 6, EX 7). Somewhat surprisingly, in those cases, the column génération
method (in addition to being obviously more time-consuming) provided
fractional solutions in 2 over 3 of the examples (EX2, EX7). An explanation
of this is that, in such situations, very high degeneracy occurs (the continuous
optimum solution set is large) thus the probability of getting an integer point
is low. In practice, this strongly suggests to restrict the use of the column
génération technique to the "harder cases" where, after applying the greedy
algorithm (or any possibly more involved heuristic) a gap is observed between
zG (the heuristic solution obtained) and zL (the lower bound).

(e) In all the examples treated, the lower bound z* appears to be optimal,
i. e. exactly equal to the cost of an intégral solution. This clearly demonstrates
the interest of the approach presented here since, even if the existence of a
gap between z* and zf for some special instances of the problem cannot be
ruled out, at least significant improvements upon the usual lower bound can
be expected (note that the relative improvement (zf—zL)/zL is about 7,5% for
EX 3 and as large as 17% for EX4-5). This suggests that, incorporating the
column génération scheme for getting lowers bounds (and possibly helping
in providing better feasible integer solutions than those provided by known
existing heuristics), in the framework of a branch and bound process, should
be worth while future investigation, and is likely to open the way to exact
solution, even in the harder cases, of problems of significantly higher dimen-
sions.
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