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THE MUTUAL INFORMATION
ESTIMATION IN THE SAMPUNG WITH REPLACEMENT (*)

by M. A. G I L O , R. PEREZ(2) and I. MARTINEZC1)

Abstract. — The concept of " conditional entropy of order $ of a random variable with respect to
another one" (Z. Daróczy, 1970) leads to the définition of the "amount of information of order p
conveyed about a random variable by another one", which détermines a symmetrie measure for both
variables. The aim ofthis paper is to estimate the amount of information of order (3 = 2 concerning two
variables in a population on the basis of a sample drawn from the population. In this way, we first
construct an unbiased estimator in the sampling with replacement, and then study its précision. In
addition, we discuss the suitability ofadopting the measure of order p — 2 instead of the classical amount
of information,, when we consider large populations.

Finally, we will corroborate the advantages exhibited by the measure of order p = 2 by means of
Monte Carlo simulation.

Keywords: Finite population; sample; Shannon's mutual information; quadratic mutual
information; unbiased estimator; sampling with replacement.

Résumé. — De la notion « entropie conditionnelle de type $ d'une variable aléatoire sachant la valeur
d'une autre variable» (Z. Darózcy, 1970), découle la définition de «quantité d'information de type p
concernant une variable et contenue dans l'autre» en déterminant une mesure symétrique par rapport
aux deux variables. L'objet de cet article est l'estimation de l'information mutuelle de type P = 2 pour
deux variables dans une population, à l'aide d'un échantillon prélevé de la population. A ce propos, dans
un premier temps nous construisons un estimateur sans biais dans l'échantillonnage avec remplacement,
et puis nous examinons sa précision. En outre, nous discutons l'intérêt d'adopter la mesure de type p = 2
au lieu de la mesure classique de Shannon, lorsque nous considérons de grands échantillons.

Finalement, nous corroborrons les avantages montrés par la mesure de type p = 2 avec la méthode, de
Monte-Carlo.

Mots clés : Population finie ; échantillon ; information mutuelle de Shannon ; information mutuelle
quadratique; estimateur sans biais; échantillonnage avec remplacement.

1. INTRODUCTION

Consider an experiment involving the observation of two random variables
corresponding to measurable characteristics associated with each random
choice from a certain finite population. In order to evaluate how much
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information is conveyed about one of the variables by the another one, a usual
procedure is to measure it as a réduction in uncertainty.

In this way, let X and Y be two random variables in the considered
experiment. When the joint probability distribution of X and Y is known, the
uncertainty about the identity of the value of the variable X (or Y), and the
uncertainty about X (or Y) when the value of Y is revealed (respectively, when the
value of X is revealed) can be quantified by means of a probabilistic uncertainty
measure. Then, if H(X) and H(X/Y) (or H(Y) and H(Y/X)) dénote such
uncertainties, "the information conveyed about X by Y" (respectively, the
information conveyed about Y by X) can be evaluated by means of the value:

J{XjY) = H(X) - H(X/Y) (respectively, J{YjX) = H(Y) - H(Y/X)).

In this way, the information conveyed about a random variable by another
one is herein intended as the mean decrease in uncertainty about the first variable
motivated by the revealment of the value of the second one.

Particularly, ifH(X\ H(X, Y) and H(X/Y) represent respectively the entropy
of order p of X, the joint entropy of order (3 of (X, Y) (cf. Havrda-Charvat [18],
Daróczy [11] ), and the conditional entropy of order p of X with respect to Y
(Daróczy [11]), or the corresponding Shannon's entropies, then:

J(XjY) = H(X) - H(X/Y) = H(X) + H(Y) - H(X9 Y)

= H(Y) - H(Y/X) = Jf(Y/X)

that is, the information conveyed about X by Y is the same as the information
conveyed about Y by X. For this reason, this symmetrie information will be
referred as mutual information and will be denoted by J{X, 7), from now on.

On the other hand, Statistical Inference deals with the drawing of conclusions
concerning the variables behavior in a population, on the basis of the variables
behavior in a sample from the population. The purpose of the present paper is to
estimate the mutual information J{X, Y) in a finite population given the
probabilities of each "value" of (X, Y) in a sample from it when we adopt a
random sampling with replacement.

In order to achieve this purpose we will first consider the quadratic mutual
information, or mutual information of order P = 2, and then we will define an
unbiased estimator which will be a function of the analogue estimator, the
quadratic sample mutual information.

After approaching the précision of the preceding estimation, we will discuss
the advantages of the measure of order P = 2 against Shannon's measure (and
the measures of order p # 2) in the sampling with replacement.

These advantages will be finally confirmed by examining a simulated example.

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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2. PRELIMINARY CONCEPTS

Consider a finite population with N members, and let X and Y be two random
variables in the population such that the random vector (X, Y) takes on the pair
of real values (x(> y.) with joint probabilities pn (i = 1, . . ., M,j = 1, . . . , M'),

M' M

respectively. Let pL = £ Pu (i=h . . . , M) and pj = £ Po* 0" = 1, . . . , M')

the marginal probability distributions of X and Y in the population.

Following Daróczy [11] the mutual information concerning the variables X
and Y in the population can be quantified by means of

DÉFINITION 2.1: The value I2(X, Y) defined by:

I2(X, Y) = H2(X) + H2(Y) - H2(X, 7)
A f A f '

( M M' Af Af'

is called quadratic population mutual information concerning X and 7.

The analogue estimator of this value is introduced in an immédiate way. If we
consider a sample of n members drawn at random, denoted by (x, y), taking on
the pairs of values (xh ŷ ) with relative frequencies / y (x , y) (i = 1, . . . , M,
7 = 1, . . . , M'), respectively, the mutual information concerning X and 7 in the
sample can be quantified by means of

DÉFINITION 2.2: The value I2(x, y) defined by:

72(x, y) = H2
n(x) + H2(y) - H2

n(x, y)

= 2(1 - I [AW]2) + 2(1 - E

( MM'

1 - Z Z [ƒ/*, y)
1 = 1 J = I

= 2 ( 1 - 1 [/i.W]2 - Z U.jiy)V + Z I
\ i=l j = l i = l j =

Af' Af

being ƒ..(*) = ^ /0(x, j;), ƒ/.y) = ^
j = i t = i

ï = l , . . . , M , ; = 1, . . . ,

is called quadratic sample mutual information concerning X and Y
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REMARK 2.1: It is worth emphasizing that the quadratic entropy (H2) in the
preceding définitions has the qualitative signification and essential properties in
Shannon's entropy, for quantifying probabilistic uncertainty. In the same way,
the quadratic mutual information has the qualitative signification and essential
properties in Shannon's mutual information (recalled in Section 6) for
quantifying the information conveyed about one variable or experiment by
another one.

REMARK 2.2: The quadratic mutual information above defined has some
interesting applications which allows us to interpretate this concept in different
fields.

As a first application of this information, we consider the problem of
measuring the ecological diversity of a finite population under a classification
process X dividing it into M classes or species, when the population is subjected
to an additional separate classification process Y that divides it into M' classes. If
the diversity under a classification within each class determined by the other one
is measured by means of the Gini-Simpson index ( [5], [6], [7], [25], [26] ), then
I2(X, Y) quantifies the mean decrease in diversity (or, the mean increase in
concentration) under the ^-classification motivated by the adoption of the
additional classification process 7, and conversely, the mean decrease in
diversity under the Y-classification motivated by the ^-classification.

A second application of the quadratic mutual information is the évaluation of
the quadratic information processed by a discrete constant channel (and, the
capacity of type p = 2 of this channel) with input alphabet X, characterized by M
symbols, and output alphabet Y, characterized by M' symbols (cf. [11]). A
similar application is given by the évaluation of the informations processed and
transmitted by a questionnaire having M questions and M' answers ([3],[13],
[24]).

3. AN UNBIASED ESTIMATOR
OF THE POPULATION MUTUAL INFORMATION
IN THE SAMPLING WITH REPLACEMENT

When we consider the notations in Section 2, the random vectors
(n/n, ...,nfMM*)9 (n/i.» • • •> nfM) and (nfA, ...,nf.M.) have multinomial
distributions with parameters (n,pU ) . . . , pMM), (n, p^, . . ., pM) and
(n, pml, . . ., P^MX respectively. Consequently, the expected value of the analogue
estimator in Définition 2.2, over all samples (x, y) of size n in a random sampling
with replacement, is given by:

[ M M' MM' ~| _ i

i - Z E{ff) - z £(/5) + Z Z £(/&) = - — i2(x, Y)
i - i ;= i i = i j = i J n

RA.l.R.O. Recherche opérationnelle/Opérations Research
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Therefore, the analogue estimator il is asymptotically unbiased. In addition,
it allows us to construct an unbiased estimator of I2(X, Y), since whatever the
size n may be we have.

THEOREM 3.1: Let (X, Y)bea random vector in afinite population taking on the
pairs of values (xh yj)(i = 1 , . . . , MJ = 1 , . . . , M'). In the random samplingwith
replacement from this population, the estimator ÎI allocating to each sample (x, y)
ofn members the value îl(x, y) = n I*(x, y)/(n — 1) is an unbiased estimator ofthe
quadratic population mutual information concerning X and Y. •

Theorein 3.1 suggests the introduction of the following concept:

DÉFINITION 3.1: The estimator il allocating to each sample (x, y) of size n with
replacement the value îl(x, y) = n ll(x, y)/(n — 1) is called quadratic sample
mutual quasi-information concerning X and Y.

4. EXACT PRECISION OF THE UNBIASED ESTIMATOR

In order to evaluate the exact précision ofthe quadratic sample mutual quasi-
information in estimating the quadratic population mutual information, we now
measure the mean square error of that estimator. As it is an unbiased estimator,
the corresponding mean square error is given by the estimator variance.

THEOREM 4.1: Let (X, Y) be a random vector in afinite population taking on the
pairs of values {xh y3) (i — 1, . . ., MJ = 1 , . . . , M'). Ifî\ is the quadratic mutual
quasi-information for a random sample ofsize n with replacement, then its variance:

V{îl) = |(6 - 4n)U2(X, Y)]2 - 12(n - 2)I3(X, Y) + 4(4n - 1)I2{X, Y)

+ 32(n - 2) £ I PtjiPi. " Ptj)(P.j ~ Ptj)}/"(" - 1)

(being I3(X, Y) = H*(X) + H\Y) - H3(X, Y) = \ ( l - f pi ~ E Pj
\ 3 \ i = i j=i

M M' \ \

"+• Z Z Pu ) tne mutual information of order P = 3 concerning X and Y j .

Proof: As the random vectors {nf11, ..., nfMM), (nflm9 . .., nfMm) and
(nfA, . . . , nf M) have multinomial distributions with parameters
(n, P u , . . . , PMM'\(n> Pi., • • -, PM.)and(n, pA, ..., pM), respectively, we have:

( /M M' M M' \ 2

V{îl) = 4(6 - 4n) I pi + Z PÎ ~ Z Z PU
l v = i j - i i - i j = i /

vol. 20, n° 3, août 1986
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( M M' M M' \

Z PÎ.+ Z P 5 - E S P5
i = l J = l i = l J = l /

( M M' M M'

ÏPÎ.+ Z P2;-Z Z
M M'

+ 32(n - 2) X Z tt;(tt. ~ PyXP.; "

which accounts for proving the theorem. •
M M'

REMARK 4.1: The expression £ £ Po"(P». ~ Pij)(Pj ~~ Ptj) i*1 V(îî) (Theo-
rem 4.1) cannot be stated only in terms of mutual informations of order P, but
it may be further stated in terms of other measures concerning another basic
concept in the Information Theory and Statistics: the inaccuracy. (In addition,
the entropy of order P is the inaccuracy of order P of a probability distribution

M M' I2(X Y)

with respect to itself). So, Z Z PuiPt. ~ Pij)(Pj ~~ Pu) = w— [1
- H2(P; ô)/2], being H2(P; Q) the inaccuracy of order P = 2 of P with respect
to Q, where P and Q dénote the probability distributions {ptj} and

(PL ~ Pij)(Pj - Pij)r v\n f ' resPect iveiv> E26] •

REMARK 4.2: Theorem 4.1 implies that zero is the limit of Vil2) as n -+ oo.
Therefore, zero is the limit of the standard error [K(/^)]1/2 as n -> oo.

Remark 4.2 allows us to conclude that for a large sample the standard error of
the estimator Ĵ  is small. In addition, we can verify that the greater the size of the
sample, the lower its mean square error is, as we now prove in the following:

THEOREM 4.2: Whatever the sample size n may be, then:

V{îl) ~ V{îl_,) = - [(n - 2)(n - 3)K(£_2) + 2V(f^]/n(n - l)(n - 2). •

5. ESTIMATED PRECISION OF THE UNBIASED ESTIMATOR

As the mean square error of ÎI involves population probabilities of the
variable values, this error will not be known in practice. However, this error can
be estimated from the considered sample. The following result states an unbiased
estimator of V{ïl) defined on the basis of the analogue estimâtes of I2(X, Y\

/3(X, 7)and £ X Pu(Pi.~-Pij)(Pj-PiA

R.A.LR.O. Recherche opérationnelle/Opérations Research
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THEOREM 5.1: Let (X, Y) be a random vector in afinite population taking on the
pairs of values (xi9 yj) (i = 1, . . . , M, j = 1, . . . , M') If v(î%) is the estimator
allocating to each sample (x, y) of n members in a random sampling with
replacement the value given by:

v(I*)(x, y) = jn2(6 - 4n)[72(x, y)]2 - 12n2(n - l)/3(x, y)

-l)/*(x,jO

32n2(n - 1) I I fu(x9 y)(fL(x) - /„(x,

n - l)2(n - 2)(n - 3)
;

being I%(x, y) = Hl{x) + H3(y) - H*(x, y) = ^ -j 1 - £ {/;.W]3

- E [/j(y)]3 + Z E [/y(x, ^)]3 j

the mutual information of order P = 3 concerning X and Y in the sample (x, y) j ,

then, v(îl) is an unbiased estimator of V(îl). m

REMARK 5.1: Theorem 5.1 connects n with an unbiased estimate of the
précision of ÎI. With such a connection one could readily estimate the suitable
size for estimating the quadratic population mutual information (and
consequently, the mean decrease in diversity, the information processed by a
channel, and so on), by means of the quadratic sample mutual quasi-
information, with a desired degree of précision. The estimation of this suitable
size could be accomplished either by using a previous sampling from the
population (in order to approximate J2(x, y\ /3(x, y\ f{j{x, y\ fu[x) and fj(y))9

or by using a sequential sampling.

REMARK 5.2: The size and finiteness of the population are irrelevant in the main
results of the present paper (e.g., Theorems 3.1, 4.1, 4.2 and 5.1).

6. ADVANTAGES OF THE QUADRATIC MUTUAL INFORMATION
AGAINST THE SHANNON'S MUTUAL INFORMATION

Consider the finite population, the associated variables X and 7, a generic
sample of size n with replacement, (x, y\ and the notations in the preceding
sections.

vol. 20, n° 3, août 1986
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Following Shannon, the mutual information concerning the variables X and
Y in the population is quantified by means of:

DÉFINITION 6.1: The value I(X, Y) defined by:

I(X, Y) = H{X) + H(Y) - H(X, Y)
M M' M M'

= - Z Pi.l°%2Pi.- Z Pjl°%2Pj+ Z Z Pijl°&2Pij

MM'

i=lj=l Pi.P.j

is called Shannon's population mutual information concerning X and Y.
The analogue estimator of this value is defined for the random sample (x, y) as

follows:

DÉFINITION 6.2: The value In(x, y) defined by:

= - z ƒ*.(*) io g 2 ƒ,.<*)- z f.
M M'

+ Z Z Mx9y)log2fiJ(x9y)

f-(xM M'

is called Shannon's sample mutual information concerning X and Y.

When we examine the expected value of In over all samples of size n in a
random sampling with replacement, we obtain:

E(In) = 1 1 E(ftJ log2 ftj) - Z £(ƒ-. log2 ƒ,) - Z E(fj log2 ƒj).
» = i ; - i i = i j=i

Nevertheless, an exact relation, irrespective of the variables X and 7, cannot be
established either between E{ftj log2 fi3) and £(ƒ;;) log2 £(ƒ•;) = ptj log p0-,

/;. log2 A) and E(fL)log2E(fL) = pLlog2pu or £(ƒ7 log2 ƒ,.) and
Iog2 E(fj) = pj log2 Pj.

Consequently, an unbiased estimator of/ irrespective of the variables X and Y,
cannot be immediately defined from /„.

In the same way, if /p and ƒ J dénote respectively the population and sample
mutual information of order p ((3 ̂  1, 2) (Daróczy, [11]), to state exact relations
between £(/£) and /p is either impossible or very complex.

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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7. SIMULATED EXAMPLE

In order to corroborate the results in the preceding sections, we now analyze
an example when we assume the population distribution is known (although
such results will be useful in practice when that distribution is unknown).
Consider the bivariate normal distribution Ar({u.r}, ||a„||), r = 1, 2, s = 1, 2,
with m = u2 = 0, a l x = a22 = 1, cr12 = a21 = 2"1/2, where the values have
been grouped according to 40 intervals, [— 4, — 3.8], [— 3.8, — 3.6],
. . . , [3.6, 3.8] and [3.8, 4] for each of the marginal distributions.

Let (X, Y) be the random vector whose values are the 40 x 40 pairs
determined by the mid-points in both groupings, and so that the probability of
each of these pairs is given by that of the corresponding product interval for the
bivariate normal distribution.

Then, the Shannon's population mutual information is given by:

I(X, Y) = 0.494,625,164,5

and the quadratic population mutual information is given by:

I2(X, Y) = 1.783,644,870,0.

For the sample size n = 5000,100 samples of size n have been generated from
thejoint distribution of X and Y by Monte Carlo simulation. For each sample, In

and I2 have been calculated.
Being n a very great size, we can approach f2 by means of I2 and compare the

estimations of I(X9 Y) and I2(X, Y) given, respectively, by their analogue
estimâtes. This comparison is now stated by evaluating the mean of the estimâtes
of I (X, 7), which has been given by:

7n = 0.563,272,295,8

and the mean of the estimâtes of I2(X, Y), which has been given by:

l2
n = 1.784,541,862,4.

In addition, the mean square error of the 100 estimâtes of I(X, Y) has been
given by:

(/„ - /(X, 7))2 = 0.004,720,211,4

and the mean square error of the 100 estimâtes of I2(X9 Y) by:

(11 - I2(X, Y))2 = 0.000,000,941,2.

vol. 20, n° 3, août 1986
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On the other hand, the ratio (biais/standard déviation) for the 100 estimâtes of
I(X9 Y) equals to 24.703,763,337,4, and for the 100 estimâtes of I2(X, Y) equals
to 2.426,964,261,3.

Consequently, the estimation of I(X, Y) by means of/„ is "less suitable" than
the estimation of I2(X, Y) by means of I„.

8. CONCLUDING REMARKS

The study in this paper could be developed for the random sampling without
replacement and the stratified random sampling, which would provide greater
précisions.

In the same way, the estimation of the population mutual information may be
examined for the case when the adopted sampling is not random.

On the other hand, a similar study for estimating the uncertainty associated
with a variable in a finite population has been accomplished in [23]. It should be
emphasized the existence of many analogies between the results in [23] and the
present paper.

Another interesting similar study would be determined by the estimation of
the unquietness associated with a random variable in a finite population, which
could be applied to the estimation of the income inequality in a large population,
[22], and [8], [10], [12], [14], [15], [16], [28], [30], [31].

Finally, the results we have just expounded migth be used for estimating the
information conveyed by a sample about its corresponding population (with
respect to a random variable).
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APPENDIX 1

Moments of the multinomial distribution

Let (n1, . .., nM) be a random vector with multinomial distribution, where n,
/ M \

pXi ..., pM I £ pt= l \ are the parameters. Then,
v=i /

E(nt) = npi

E(nf) = nPi[(n-l)Pi+ll

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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E(nf) = nPil(n - l)(n - 2)pf + 3(n - l)Pi + 1]

E(nf) = nPil(n - l)(n - 2)(n - 3)pf -f 6(n - l)(n - 2)pf + 7(n - l)Pi + 1]

£(«(«,,•) = n(n - l)PiPp i ^j

E(nfnj) = n(n - l)PiPjL(n - 2){n - 3)PiPj + (n - 2)(Pi + Pj) + 1], i * j

E(nfrtj) = n(n - l)PiPjl(n - 2)(n - 3)Pf + 3(n - 2)Pi + 1], i ^j

E(nfnjnk) = n(n - l)(n - 2)PiPjPk[(n - 3)Pi + 1], j # z, fe # i, j

EinifijtiM) = n(« - 1)(B - 2)(w - 3)PiPjPkPh j * i, k # z, j , / ^ i, j , k.
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