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OIM INTERVAL GRAPHS AND MATRICE PROFILES (*)

by Alain BILLIONNET (*)

Abstract. — If an undirected graph is the intersection graph of a set of intervals of the real line, it is
called an interval graph and the set of intervais is called an interval représentation of the graph. In this
paper, we recall a characterization ofan interval graph given by Tarjan. This characterization allows us
to show that the problem of minimizing the envelope size of a sparse symmetrie matrix is NP-complete.
Then we give a short proof of a known resuit about a Turan type problem for interval graphs. We prove
also a new resuit on the décomposition of a graph in an intersection of interval graphs. The end of the
paper is concernée by the chronological orderings of interval graphs. We give an 0(|£|) method to
détermine whether an interval graph has a représentation satisfying relative positions of the intervals.

Keywords: Interval graphs; matrice profiles; optimization; NP-complete.

Resumé. — Un graphe d'intervalles est le graphe d'intersection d'un ensemble d'intervalles de la
droite réelle. Dans cet article nous rappelons une caractérisation des graphes d'intervalles donnée par
Tarjan. Cette caractérisation nous permet de démontrer que le problème de la minimisation du profil
d'une matrice creuse et symétrique est NP-complet. Nous donnons ensuite une preuve très courte d'un
résultat connu concernant un problème de type problème de Turan sur un graphe d'intervalles. Nous
démontrons également un résultat nouveau sur la décomposition d'ungraphe en intersections de graphes
d'intervalles. La fin de l'article concerne les ordres chronologiques que l'on peut associer à un graphe
d'intervalles. Nous proposons une méthode de complexité 0(|£|) pour déterminer s'il existe, pour un
graphe d'intervalles donné, un ensemble d'intervalles associé qui respectent un ordre fixé des extrémités
de ces intervalles.

Mots clés : Graphe d'intervalles; profil de matrice ̂ optimisation; TVP-complet.

1. INTRODUCTION

G = (V, E)is an interval graph if there exists a set {Il9 . . . , / „ } of intervals of

the real line such that, for i ^ j , { vi9 v}}eE iff It n Is / 0 . We recall in section 2

the définition of an interval graph given by Tarjan.

The envelope size of a n by n symmetrie matrix A with entries a o ( % ^ 0) is
n

equal to £ [i — fi(A)'] where ft(A) — min {j \ atj ^ 0}. In section 3 we consider

the problem of reducing the envelope size of a sparse symmetrie matrix. The
définition of section 2 allows us to show that this problem is equivalent to the

(*) Reçu en octobre 1985.
j1) Institut d'Informatique d'Entreprise, Conservatoire National des Arts et Métiers, 18 allée Jean-

Rostand, 91002 ÉVRY.
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246 BILLIONNET

minimum completion of an interval graph. So we prove that the problem of
minimizing the envelope size of a symmetrie matrix is ATP-complete.

In section 4 we deal with the connections which exist between, on the one
hand, envelope of a symmetrix matrix and interval graphs and, on the other
hand, between fill in gaussian élimination process and triangulated graphs.

We show in section 5 how the définition of an interval graph presented in
section 2 allows us to easily prove a known resuit about a Turan type problem
for interval graphs. This result concerns the largest integer c such that any
interval graph with n vertices and at least m edges contains a complete subgraph
on c vertices.

The section 6 is concerned by the intersection of interval graphs. (The
intersection of several graphs on the same vertex set Kis the graph in which two
vertices in V are joined by an edge just when they are so joined in all the given
"factor" graphs). We give a new result on the décomposition of a graph in an
intersection of interval graphs. As a conséquence of this result we give an original
proof of the known following property:

every graph on v vertices is the intersection of - t; or fewer interval graphs.

The section 7 is concerned by the chronological ordering of interval graphs.
Let {/ls . . . , / „} dénote an interval représentation of G in which the left
[resp., right] endpoint of interval It is lt [resp., r j . Let VR dénote the set
{ri > • • • > rn} anc* VL the set {lt, . . . , / „ } . The question we discuss in this section
is: given an interval graph G, which linear orderings of VR and VL, respectively,
give chronological orderings of G. We present a theorem which is an
improvement of the known results about this question. This theorem is a
conséquence of the définition of interval graphs that we give in section 2.

2. INTERVAL GRAPHS

2.1. Définitions

Let an undirected graph G = (K, E) have vertex set V = {v1,v2, . •., un}.The
graph G is called an interval graph if there exists a set { ï l, . . . , ƒ „} of intervals of
the real line such that, for i #_ƒ :

{vh Vj}eEo / £ n ƒ_,.# 0 .

The set {ïl9 . . . , ƒ „ } is called an interval représentation of G (G has many
different interval représentations, differing not only in the lengths of the intervals,
but also in the relative positions of these intervals).
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ON INTERVAL GRAPHS AND MATRICE PROFILES 247

An ordering (labelling) of G = (K E) is a mapping of {1, 2, . . . , n} onto V.
Let A be the adjacency matrix associated with the labelled graph G. It is the n by
n boolean symmetrie matrix with entries au such that au = 1 if and only if
{vh Vj}eE or i — j , (Hère vt dénotes the node of V with label i.)

2.2. A characterization of an interval graph

THEOREM 1 [11 bis]: G = (K E)is an interval graph if and only if there exists an
ordering of G such that the associated adjacency matrix A vérifies:

{?): V ie{ l , 2 , . . . , n } , atj = 1 for j = f(A\ f(A) + U • - •, *•

Proof: The condition is sufficient.
For each f let us consider on the real line the i-th interval lt = ] f(A) — 1, i [ .

Let ƒ7- and /k be two intervais with j < k.

Ij^h * 0 o ]fj(A) - W[ n 2Â(A) - l9 kl * 0
oj > fM) -loj> fk(A) ^ akj = 1.

Therefore (/ l s / 2 , . . . , ƒ„) is an interval représentation of G.

The condition is necessary.

Let G = (V, E) be an interval graph and / , - = ] / ; , r(-[ (i — 1, 2, . . . , n) an
interval représentation of G. Suppose that the intervals are numbered in such a
way that rx ^ r2 ^ . . . ^ rn. Let us prove that if au = 1 (j < ï) then aik = 1 for
each k such that j < k < i.

0 n 0

/̂  < rk and

EXAMPLE:

rt implies :

n Vk> rkl # 0 = 1.
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Figure 1. — G is an interval graph since there exists a numbering of its nodes
such that the adjacency matrix A vérifies the property {^).
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248 BILLIONNET

COROLLARY 1: Let A be the adjacency matrix of an interval graph G which
satisfies the property {£?) of theorem 1. Then for each je{ 1, . . . , n) the set
Cj = {vi\i^j and atj = 1} is a complete subgraph of G.

Proof: Let us suppose that { vk, vt} <= Cj with k < L

vt e Cj => atj — 1 => alk = 1 since j < k < L

COROLLARY 2: The maximum complete subgraph including Vj and some vertices vk

such that k > j is Cj.

Proof: Let us dénote T(vj) the set of vertices adjacent to Vj\

COROLLARY 3: A maximum complete subgraph of G is Cjo with
\CJo\ = max \Cj\.

The proof is obvious after corollary 2.

3. REDUCING THE PROFILE OF A SPARSE MATRIX

3.1. Cholesky's method for sparse matrix factorization ([5], chap. 2)

Suppose the given system of équations to be solved is:

Ax = b

where A is an n by n symmetrie, positive defmite coefficient matrix, b is a vector of
length n and x is the solution vector of length n. Applying Cholesky's method to
A yields the triangular factorization:

A = LLT

where L is lower triangular with positive diagonal éléments. If A is symmetrie
and positive defmite then such a factorization always exists.

The system of équations becomes:

LLFx = b

and by substituting y = LTx we obtain x by solving the triangular Systems:

Ly = b and ïlx = y.

The most important fact about applying Cholesky's method to a sparse matrix A
is that the matrix usually suffers fill-in. That is L has nonzeros in positions which
are zéros in the lower triangular part of A. However for most sparse matrix
problems a judieious reordering of the rows and columns of the coefficient

R.A.LR.O. Recherche opérationnelle/Opérations Research



ON INTERVAL GRAPHS AND MATRICE PROFILES 249

matrix can lead to enormous réductions in fill-in, and hence savings in computer
exécution time and storage. This task of finding a good ordering is central to the
study of the solution of sparse positive definite Systems.

3.2. The envelope method

3.2.1. Définitions

One of the simplest methods for sol ving sparse Systems is the band scheme and
the closely related envelope or profile method. Loosely speaking the objective is
to order the matrix so that the nonzeros in the obtained matrix are clustered near
the main diagonal because this property is retained in the corresponding
Cholesky's factor L. We consider hère the envelope method.

Let be an n by n symmetrie positive definite matrix, with entries aijt For the
ï-th row of A let:

the envelope of A9 denoted by Env (A) is defmed by:

Env (A) = {{iJ}\fi(A)^j<i}

the quantity |Env (A)\ is called the profile of envelope size of A and is given by:

EXAMPLE:

\ * *
\

* *\
* * * * *

\
* * # * *

' I * * * * * *
* * v

Figure 2. — A matrix A whose the envelope size is 15
(nonzeros are depicted by *).

The envelop method consists in ignoring the zéros outside Env (A) because
Env (̂ 4) = Env (L). Although the orderings obtained by this method are often far
from optimal in the least arithmetic or least-fill sensés, they are often an attractive
practical compromise because the programs and data structures needed to
exploit the sparsity that these orderings provide are relatively simple.
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250 BILLIONNET

3.2.2. Minimization of the envelope size
The problem that we consider here is to find, for a symmetrie and positive

defmite matrix A a reordering of the rows and columns of A which minimizes the
envelope size of the obtained matrix.

For a matrix A, if atj ^ 0 V { i, j} e Env (A) then we say that the envelope of A is
full.

PROPERTY 1. — Let A be a symmetrie positive defmite matrix A, there exists a
reordering A of A with a full envelope if and only if the associated graph G is an
interval graph. (The graph G = (F, E) associated to a n by n symmetrie matrix is
one for which the n vertices are numbered from 1 to n and {xt, Xj} e E if and only
iïaij = aji ^ 0 , iVj.)

The proof is obvious after theorem 1.

The problem of minimizing the envelope size of a matrix A is equivalent to that
of minimizing the number of zéros inside the envelope. In terms of graph this
problem is equivalent to that of finding the minimum number of edges which
must be added to the associated graph GA to obtain an interval graph.

THÉORÈME 2: Let A be a symmetrie matrix with entries au (au ^ 0 Vi') and K a
non négative integer.

Consider the question: is there a reordering A of A such that:

|{a y I{i , j}GEnv (Â) and atj = 0 } | ^ KI

This décision problem is iVP-complete.
Proof: It follows immediately the result on interval graph completion (Garey

and Johnson [4]):

Let G = (V, E) be a graph and K be a non négative integer. The problem "is
there a superset E' containing E such that \E' — E\ ^ K and the graph G'
= (V, E') is an interval graph?" is NP-complete.

Since it is clear that a graph G = (V, E) admits a superset E' ^ E such that
\E' — E\ ^ K and G' = (V, E') is an interval graph if and only if there exists
a reordering Â of the adjacency matrix A associated to G such that
\atj\ {ij}eEnw (Â) and atj = 0 } | ^ K.\{

4. TRIANGULATED GRAPHS, INTERVAL GRAPHS
AND GAUSS ELIMINATION

4.1. Triangulated graphs and interval graphs
A vertex x of G = (X, E) is called simplicial if its adjacency set T(x) induces a

complete subraph of G.
Let T = (x l s x2, . . . , xn) be an ordering of the vertices. We say that % is a

perfect élimination scheme if each xt is a simplicial vertex of the subgraph
induced by {xi9 xi+1, . . . , x„}.
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Let us recall that G is triangulated if and only if G has a perfect élimination
scheme (Fulkerson and Gross [3] ). Let us recall also that a graph G is an interval
graph if and only if G is a triangulated graph and its complement G is a
comparability graph (Gilmore and Hoffman [8]). For more details about
interval and triangulated graphs the reader can see: Golumbic [9], chap. 4 and 8.

4.2. Gauss élimination

Let Go be the graph associated with a symmetrie matrix A. The process of
Gauss élimination applied to A can be interpreted as a séquence of graph
transformations on Go.

Let G = (X, E) be a graph and y be a node in G»: X = {xx, x2 , . . . , xB}. The
élimination graph of G by y, denoted by Gy, is the graph:

(X-{y},E(X-{y})v{{u,v}\u,ver(y)}).

With this définition, the process of Gaussian élimination on A can be viewed
as a séquence of élimination graphs Go, Gl9 ..., Gn-l where G; = (Gi-i)Xi for
î = l , 2 , . . . , n - l .

The graph Gt precisely reflects the structure of the matrix after the i-th step of
the Gaussian élimination. Let us dénote £f the set of edges of Gt. The fill can be

i i - l

expressed as £ \Et ~ £*-i1- A judicious numbering of the nodes can drastically
t = i

reduce fill. (A heuristic algorithm which expérience has shown to be extremely
effective in finding low-fill orderings is the so-called minimum degree algorithm
[5] [6].)

THEOREM 3 [10 bis]: Let A be a matrix and Go the associated graph. The
minimum fill is equal to the minimum number of edges which must be added to Go to
form a triangulated graph.

The proof is a direct conséquence of the définition of the fill and of the previous
characterization of a triangulated graph.

REMARK: This problem of triangulated graph completion is iVP-complete [13].

We can now formulate the theorem 4 which gives a connection between fill in
the envelope method and fill in the gênerai Gaussian élimination process. (We
call fill in the envelope method the number of zero éléments which belong to the
envelope.)

THEOREM 4: Given a matrix A and its associated graph Go, the additional fill in
the optimal envelope method with regard to the fill in the optimal Gaussian
élimination process is equal to the minimum number of edges which must be added to
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252 BILLIONNET

Go to form an interval graph minus the minimum number of edges which must be
added to Go to form a triangulated graph.

Proof: It is a direct conséquence of section 3.2.2 and of theorem 3 associated
with the fact that an interval graph is a triangulated graph (the reverse is false).

5. A TURAN TYPE PROBLEM FOR INTERVAL GRAPHS

Consider the following analogue of a problem of Turan for interval graphs:
let c = c(n, m) be the largest integer such that any interval graph with n vertices
and at least m edges contains a complete subgraph on c vertices, détermine the
value of c(n, m) explicitely. H. Abbott and M. Katchalski [1] have proved that:

r 3 u ï v i
c(n, m) = \n + - - lin --J - 2m - 1

we give hère a simple proof of this result which is a direct conséquence of
theorem 1 and of its first corollary.

LEMMA 1: If Lis a lower triangular matrix with no more than d nonzeros in each
d2 d

column then the total number of nonzeros in L is not greater than —— + - + nd.

The proof is obvious.

THEOREM 5: Let c = c(n, m) be the largest integer such that any interval graph
with n vectices and at least m edges contains a complete subgraph on c vertices, then:

c(n, m) = [n + 3/2 - J(n - 1/2)2 - 2m\ - 1.

Proof: Let G = (F, E) be an interval graph with n vertices and m edges. Let us
consider a numbering of the nodes of G which vérifies the condition of theorem 1.

d2 d
After corollary 1 of theorem 1 and previous lemma if m + n > —=- + * + wd

then there exists a complete subgraph with at least d + 1 vertices.
The greatest value of d which vérifies this last inequality must be

+ 2 ) ~ J(n - j ) " 2m' H e n c e c<n> m) = rd— + 1 1 - 1 -

6. ON INTERSECTIONS OF INTERVAL GRAPHS

Given several undirected simple graphs on the same vertex set V, their edge
product or ' ' intersection " is the graph in which two vertices in V are j oined by an
edge just when they are so joined in all of the given ("factor") graphs.

R.A.LR.O Recherche opérationnelle/Opérations Research
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Let G = (F, E) be an undirected simple graph. If vertices a and b are not
adjacent let us consider an ordering of G which begins by a and ends by b with ail
the vertices adjacent to b immediately before b. Let us note G(a, b) the obtained
graph, A(a, b) its adjacency matrix and G(a, b) = (V, Ê(a, b)) a new graph such
that for each {r, s} r ^ s, {vr> vs} s Ê(a, b) if and only if { r, s } e Env (A(a, b)).

After theorem 1 it is clear that G(a, b) is an interval graph.

THEOREM 6 : Let G — (V, E) be an undirected simple graph, a and b two non
adjacent vertices. Then G is the edge product of G {a, b) with p orfewer interval
graphs where p is the number of edges in a maximal matching on the graph
(K, Ê(a, b) - £).

Proof: Let (el9 e2. . . . , ep) such a maximal matching. Let us note
ei = {ahbi}.

Let us prove that G is the edge product of G(a, b) with G(ah è(-) (i = 1, . . ., p).

It is clear that each edge of G is an edge of G(a, b) and an edge of G(ah bt) for
each ie{ 1, . . . , p}.

Let {x, y} be an edge of Ê(a, b) — E . x or y is an endpoint of an edge of the
matching. Let us suppose (without loss of generality) that { x, z} is an edge of the
matching, then G(x, z) does not contain the edge {x, y}.

COROLLARY : Every graph on v vertices is the edge product of [yl2\ or fewer
interval graphs, ([aj = greatest integer not exceeding a.)

Proof : First let us remark that a and b are isolated vertices in the graph (F,
Ê(a, b) — E). Therefore a maximal matching in this graph contains no more than
(v - 2)/2 edges i.e. p^(v — 2)/2 which implies p + 1 < |_i;/2j.

The upper bound [*V2J is due to F. Roberts [10]. This resuit has been also
given by H. S. Witsenhausen [12]. His proof is based on investigations of finite
families of finite sets with the Helly property.

7. CHRONOLOGICAL ORDERINGS OF INTERVAL GRAPHS

Let G(V, E) be an interval graph with n vertices, and let { 71? . . . , ƒ „ } dénote
an interval représentation of G in which the endpoints of the intervals are all
distinct Let P dénote the set {Zl5 . . . , / „ , r l s . . ., rn}. If we associate the left
[resp., right] endpoint of interval ît with lt [resp. r j from P, for i = 1, . . . , n then
the linear order of the endpoints of the intervals along the real line induces a
linear ordering of the éléments of P.
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We study here those linear orderings of P induced by an interval
représentation of an interval graph G. We call such linear orderings of P
chronological orderings of G.

D. Skrien [11] has proved that to completely describe a chronological
ordering of a graph, all that is needed is the linear order of the subset
VR = {ru . . . , r „ } of P a n d of the subset VL = {ll9 . . . , / „ } .

The question we discuss here is: given an interval graph G, which linear
orderings TR and TL of VR and VLi respectively, give chronological orderings of G.
The theorem 7 gives a condition on TR necessary and sufficient for there exists TL

such that TR and TL give a chronological ordering of G.

In fact, this theorem is stronger since it characterizes interval graphs, in that G
is an interval graph iff there exists linear ordering TR with the stated property.

The theorem 8 gives two conditions on TR and TL necessary and sufficient for
them to give a chronological ordering of G. In fact this theorem is also slightly
stronger since it characterizes interval graphs, in that G is an interval graph iff
there exists linear orderings TR and TL with the two stated properties.

THEOREM 7: Let G = (F, E)bea graph and TR a linear ordering ofVR. Then G is
an interval graph for which there exist a chronological ordering which respects TR

if and only if TR have the following property:

If(rh rj)e TR and(vi9 Vj)e E then (ri9 rk)e TR and (rk, r,-)e TR implies {vk9Vj}eE.

Proof: The condition is necessary.

Let us consider the adjacency matrix of G obtained by numbering the nodes of
G with respect to TR, Then the property of 7^ follows immediately the proof of
theorem 1 in the section 2.2.

The condition is sufficient.

TR has the property of the theorem. Let us number the n nodes of G according
to the linear ordering TR. The property of TR implies that the adjacency matrix A
of G vérifies: Vi e { 1, . . ., n} atj = 1 for j = ft{A) + 1, . . . , i and after theorem 1
of section 2.2, G is an interval graph.

THEOREM 8: Let G = (V, E)bea graph and TR and TL linear orderings of VR and
VL respectively. Then G is an interval graph for which TR and TL give a
chronological ordering if and only if TR and TL have the following properties:

(a) the adjacency matrix A obtained by numbering the nodes of G according to
TR vérifies the property of theorem 1

(b) (li,lj)eTL*

Proof: The condition is necessary.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



ON INTERVAL GRAPHS AND MATRICE PROFILES 2 5 5

The property (a) follows immediately theorem 1.

Let us suppose ft(A) > fj(A) and let us note k = fj(A). (First let us suppose
k <j.) That implies (rk, r})sTR, (rk, rt)eTR, I,nIk = 0 and lsnlk*0.

Case 1: (r„ r,) e TR (see fig. 3) Ik

J
L Figure 3. ,

Case 2: (rJt rt)e TR (see fig. 4) Ik

Now let us suppose fj(A) = j . That implies (r,-, r^ e TR, It nlj — 0 and hence

h > rJ > lr
The condition is sufficient.

If the property (a) is true then G is an interval graph after theorem 1. As in the
proof of this theorem let us consider the interval représentation of G constituted
by the following intervais on the real line: It = ] ft{A) — 1, i[ for i = 1, . . . , n.
Let us note, a(i) the position of lt in the linear order TL. The interval représenta-
tion of G, It(i = 1 , . . . , n) induces another one: ƒ• = Ut(A) ~ 1 + a ( 0 • £> Q
(i = 1, . . . , n) with 0 < 8 < l/w. (All the endpoints of these closed intervals are
distinct).

It is clear that if TR and TL vérifies the propoerties (a) and (b) they give a
chronological ordering of G since it is the chronological ordering which
corresponds to the set of intervais ƒ•(*' = 1, . . . , n).

Now let us compare this resuit with that of D. Skrien [11]: for each vertex v of
G = (V, E) we define the closed neighborhood:

N(v) = {weV : {v, w}eE or v — w}.

THEOREM 9: Let G = (F, E) be a graph and TR and TL linear orderings ofVR and
VL respectively. Then G is an interval graph for which TR and TL give a
chronological ordering if and only ifTR and TL have the following properties: For ail

(i) if(rt,rj)eTR and vkeN{vd - N(vj)9 then (lk9 lj)eTL, and

(ii) if(lh IJ)ETL and vkeN(Vj) - N(Vi) then (ri9 rk)eTR.

Clearly this theorem gives us an algorithm for determining whether TR and TL

give chronological orderings of G in time 0(|F|3).

The theorem 8 allows us to résolve the same problem with an algorithm in
timeO(|£|
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256 BILLIONNET

Suppose that we represent the graph G by its adjacency lists. For each node
veV we record the set of nodes adjacent to it (the nodes are supposed to be
numbered according to TR). Let us first calculate f((A) for i = 1, . .., \V\. That
can be done in 0( \E\ ) time. Then the property (a) can be verified in time 0( |£| )
and the property (b) in time 0(|K|).
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